• Nie Znaleziono Wyników

Thermal history of the Earth’s core

N/A
N/A
Protected

Academic year: 2021

Share "Thermal history of the Earth’s core "

Copied!
13
0
0

Pełen tekst

(1)

Thermal history of the Earth’s core

COME-IN meeting

Royal Observatory of Belgium Marie-Hélène Deproost 18 March 2016

(2)

Introduction

Introduction

Study thermal evolution of the Earth’s core and apply model to Mercury at a later time

Thermal evolution of the Earth’s core from the energy and entropy budgets

Model based on Gubbins (2003,2004) and Davies 2015

(3)

Introduction

What we know about Earth’s core...

Outer core radius rCMB = 3480 km Inner core radius rICB = 1221 km Density jump at the ICB ∆ρ = 0.8 g.cm−3

⇒ light elements in the core:

outer core 13 at.% O, 4 at.% S, 4 at.% Si inner core 0.1 at.% O, 3 at.% S, 4 at.% Si Geodynamo at least for the last 3.5 Gyr Problem: new higher (3x) thermal conductivity

⇒ enhances the heat conducted along the adiabat

⇒ less power available to generate dynamo

likely stable stratification below the CMB ⇒ influence on the magnetic field at the surface and on convection

alternative energy source needed

One solution: light element exsolution (O’Rourke and Stevenson, 2016 )

(4)

Energy and entropy budgets Energy balance

Energy budget

QCMB = Qs + QL+ Qg + QP + QPL+ Qr

CMB heat flux:

QCMB = − I

k ~∇T · ~n dS

Secular cooling:

Qs = fs(Cp, T )dTCMB dt Latent heat:

QL= fL(L)dTCMB dt Gravitational energy:

Qg = fgc, ∆cICB)dTCMB dt

(5)

Energy and entropy budgets Energy balance

Energy budget

QCMB =Qs +QL+Qg + QP + QPL+ Qr

CMB heat flux:

QCMB = − I

k ~∇T · ~n dS Secular cooling:

Qs = fs(Cp, T )dTCMB dt Latent heat:

QL= fL(L)dTCMB dt Gravitational energy:

Qg = fgc, ∆cICB)dTCMB dt

(6)

Energy and entropy budgets Entropy balance

Entropy budget

EJ+ Ek + Ea= Es+ EL+ Eg + EP + EPL+ Eh+ Er

Entropy of thermal conduction: Ek =

Z

k ∇Ta Ta

2

dV Secular cooling:

Es = gs(Cp, T , ρ)dTCMB

dT + Qs TCMB

Latent heat:

EL= QLTCMB− TICB TICBTCMB Gravitational energy:

Eg = Qg

TCMB

(7)

Energy and entropy budgets Entropy balance

Entropy budget

EJ+Ek + Ea=Es+EL+Eg + EP + EPL+ Eh+ Er

Entropy of thermal conduction:

Ek = Z

k ∇Ta

Ta

2

dV Secular cooling:

Es = gs(Cp, T , ρ)dTCMB

dT + Qs

TCMB Latent heat:

EL= QL

TCMB− TICB TICBTCMB Gravitational energy:

Eg = Qg TCMB

(8)

Marginal dynamo CMB heat flux and cooling rate

Marginal dynamo

Marginal dynamo: EJ = 0

 QCMB = Qs+ QL+ Qg

Ek = Es+ EL+ Eg

-2.0 -1.5 -1.0 -0.5 0.0

0.

2.

4.

6.

8.

10.

12.

14.

16.

0 50 100 150 200 250 300

time from today (Gyr)

CMBheatflow(TW) Coolingrate(K.Gyr-1)

(9)

Marginal dynamo Energy and entropy contributions

Heat flow and entropy contributions

Secular cooling Latent heat Gravitational energy

-2.0 -1.5 -1.0 -0.5 0.0

0 20 40 60 80 100

time from today (Gy)

%

Contribution to the CMB heat flow

Secular cooling Latent heat Gravitational Energy

-2.0 -1.5 -1.0 -0.5 0.0

0 20 40 60 80 100

time from today (Gyr)

%

Contribution to the entropy of thermal conduction Ek

IC age: ∼ 850 Myr

Without IC: QCMB = Qs and Ek = Es

With IC: Qs and Eg most important contributions

(10)

Magnesium precipitation One solution to the high thermal conductivity

Magnesium precipitation

Problem: new higher thermal conductivity

⇒ enhances the heat conducted along the adiabat

⇒ alternative energy source is needed

One solution: light element exsolution (O’Rourke and Stevenson, 2016 )

(11)

Magnesium precipitation Energy released

Energy balances

Marginal dynamo: EJ = 0

 QCMB = Qs+ QL+ Qg +Qg ,Mg Ek = Es + EL+ Eg +Eg ,Mg with:

Qg ,Mg = fg ,Mgc, Cm)dTCMB dt Eg ,Mg = Qg ,Mg

TCMB

O’Rourke and Stevenson, 2016

(12)

Magnesium precipitation Results

CMB heat flux and rate of cooling

-2.0 -1.5 -1.0 -0.5 0.0

0.

5.

10.

15.

0 50 100 150 200 250 300

time from today (Gyr)

CMBheatflow(TW) Coolingrate(K.Gyr-1)

With Mg exsolution:

IC age: ∼ 1.6 Gyr Very little variation Eg ,Mg  Es

With IC Without IC Larger contribution to QCMB (%)

with Mg Qs∼ 50% Qs∼ 65%

without Mg Qs∼ 55% Qs= 100%

Larger contribution to Ek(%)

with Mg Eg ,Mg∼ 55% Eg ,Mg∼ 80%

without Mg Eg∼ 50% Es= 100%

(13)

Conclusion

Conclusion

Without Mg:

rate of cooling at the CMB ∼ 300 K.Gyr−1

inner core age ∼ 850 Myr temperature at the CMB ∼ 4400 K (mantle melting) QCMB ∼ 15TW

With Mg:

rate of cooling at the CMB ∼ 65 K.Gyr−1

inner core age doubled temperature at the CMB

decreased by 300 K at t = 2 Gyr QCMB ∼ 5TW

And Mercury?

Mg exsolution unlikely...

Cytaty

Powiązane dokumenty

Girstmair gave a unified approach to the determination of all the Q-linear relations between conjugate numbers in a cyclotomic field... By virtue of Theorem A, we have only to

Measured densities (this study) and acoustic velocities (Nasch et al. 2016) (colored symbols) at varying temperature and predicted values according 62.. to the thermodynamic Model

– “….went very well, with both students and instructors learning some things……..analysing movie clips in light of physics.. principles helped reinforce the utility and relevance

Jak wynika ze źródeł niedawno odkrytych, Jaśkiewicz zajm ował się przede w szystkim che­.. mią i mineralogią z jej praktycznymi

At what distance from centre of the circle with radius 1 will the circle be seen at a right

– One bacteria, which divides in half to double its population once per minute, was placed in a test tube with an appropriate bacterial environment?. When would it be expected to

[r]

W badaniu nie wykazano istotnych różnic w ocenie dokonanej przez pielęgniarki i pacjentów w zakre- sie ogólnego poziomu pielęgnowania, który jest zda- niem badanych