• Nie Znaleziono Wyników

Coordination of calcium and lanthanide cations by (hydr)oxycarboxylates in water as studies by multinuclear magnetic resonance

N/A
N/A
Protected

Academic year: 2021

Share "Coordination of calcium and lanthanide cations by (hydr)oxycarboxylates in water as studies by multinuclear magnetic resonance"

Copied!
134
0
0

Pełen tekst

(1)

COORDINATION OF

CALCIUM AND LANTHANIDE CATIONS BY

(HYDR)OXYCARBOXYLATES IN WATER

AS STUDIED BY

MULTINUCLEAR MAGNETIC RESONANCE

• V I «

C . A . M . Vijverberg

(2)
(3)

CALCIUM AND LANTHANIDE CATIONS BY

(HYDR)OXYCARBOXYLATES IN WATER

AS STUDIED BY

MULTINUCLEAR MAGNETIC RESONANCE

n o o o N) 00 CD cr> BIBLIOTHEEK TU Delft P 1776 5128 C 861072

(4)

- • ... X -r >/

(5)

COORDINATION OF

CALCIUM AND LANTHANIDE CATIONS BY

(HYDR)OXYCARBOXYLATES IN WATER

AS STUDIED BY

MULTINUCLEAR MAGNETIC RESONANCE

Proefschrift ter verkrijging van

de graad van doctor in de

technische wetenschappen

aan de Technische Hogeschool Delft,

op gezag van de Rector Magnificus,

Prof.lr. B.P.Th. Veltman,

in het openbaar te verdedigen

ten overstaan van het College van Dekanen

op dinsdag 22 mei 1984

te 16.00 uur door

Cornelis Adrianus Maria Vijverberg,

geboren te Naaldwijk,

scheikundig ingenieur

(6)

Dit proefschrift is goedgekeurd door de promotor

prof.dr.ir. H. van Bekkum

Dit proefschrift kwam tot stand onder de dagelijkse leiding van

dr.ir. A.P.G. Kieboom en dr.ir. J.A. Peters.

(7)
(8)

The investigation described in this thesis has been supported by the

Netherlands Foundation for Chemical Research (SON) with financial aid from

the Netherlands Organization for the Advancement of Pure Research (ZWO).

Typing : Mrs. M.A.A. van der Kooij-van Leeuwen

Drawings: W.J. Jongeleen

(9)

C o n t e n t s

I I n t r o d u c t i o n 1

I I A s t u d y o f d y s p r o s i u m ( I I I ) h y d r o x y - and e t h e r c a r b o x y l a t e 4 complexes i n aqueous medium u s i n g l a n t h a n i d e i n d u c e d

oxygen-17 NMR s h i f t s A b s t r a c t A I n t r o d u c t i o n A A p p r o a c h t o d a t a a n a l y s i s 5 O r i g i n of i n d u c e d s h i f t s 5 F a s t l i g a n d exchange 6 Slow l i g a n d exchange 7 Water exchange 8 Complex s t o i c h i o m e t r y 8 R e s u l t s and d i s c u s s i o n 8 ^ 0 c h e m i c a l s h i f t s 8 F a s t l i g a n d exchange 11 I n t e r p r e t a t i o n o f 1 70 D y l S o f i n d i v i d u a l compounds 1A Slow l i g a n d exchange 17 C o n c l u s i o n s 19 E x p e r i m e n t a l 19 R e f e r e n c e s 20 I I I S y n t h e s i s of ^ C ~ e n r i c h e d sodium s a l t s o f h y d r o x y - and 23 e t h e r c a r b o x y l a t e s A b s t r a c t 23 I n t r o d u c t i o n 23 S y n t h e s i s o f ^ 0 - e n r i c h e d compounds 25 E x p e r i m e n t a l 29 R e f e r e n c e s 3A

IV The use of lanthanum-139 NMR i n the s t u d y of t h e 35 c o m p l e x a t i o n b e h a v i o u r of ( h y d r o x y ) c a r b o x y l a t e a n i o n s

A b s t r a c t 35 I n t r o d u c t i o n 35 R e s u l t s and d i s c u s s i o n 37

(10)

V I I I L i n e w i d t h s 44 Slow exchange 47 C o n c l u s i o n s 47 E x p e r i m e n t a l 47 R e f e r e n c e s 48 V An NMR s t u d y o f g a d o l i n i u m ( I I I ) ( h y d r ) o x y c a r b o x y l a t e 49 complexes i n aqueous medium u s i n g G d ( I I I ) i n d u c e d ^3C

r e l a x a t i o n r a t e enhancements A b s t r a c t 49 I n t r o d u c t i o n 50 T h e o r y 50 R e s u l t s and d i s c u s s i o n 52 C o n c l u s i o n s 63 E x p e r i m e n t a l 63 R e f e r e n c e s 63 V I The c o m p l e x a t i o n o f c a l c i u m ( I I ) and l a n t h a n i d e ( I I I ) 65 c a t i o n s w i t h t h e phosphate s u b s t i t u t e ( c a r b o x y m e t h o x y ) -s u c c i n a t e (CMOS) a -s -s t u d i e d by m u l t i n u c l e a r m a g n e t i c r e s o n a n c e s p e c t r o s c o p y A b s t r a c t 65 I n t r o d u c t i o n 65 R e s u l t s o f ( c a r b o x y m e t h o x y ) s u c c i n a t e (CMOS) 67 1H NMR s p e c t r u m o f r a c e m i c CMOS 67 *H c a t i o n i n d u c e d s h i f t s o f r a c e m i c CMOS 68 Comparison o f t h e *H L n ( I I I ) i n d u c e d s h i f t s 70 H E u ( I I I ) i n d u c e d s h i f t s o f n o n - r a c e m i c CMOS 74 pH dependence o f t h e L I S o f r a c e m i c CMOS 77 C NMR spectrum o f r a c e m i c CMOS 78 1 3C P r ( I I I ) i n d u c e d s h i f t s o f r a c e m i c CMOS 79 13 C T j r e l a x a t i o n r a t e enhancements o f r a c e m i c CMOS 79 1 70 NMR 80 R e s u l t s o f o x y d i a c e t a t e (ODA) 80 lH P r ( I I I ) i n d u c e d s h i f t s 80 ^3C l o n g i t u d i n a l r e l a x a t i o n r a t e enhancements 81 pH dependence 81 1 3 9L a NMR 82

(11)

H l o n g i t u d i n a l r e l a x a t i o n r a t e enhancements 82 1 70 NMR 83 D i s c u s s i o n 83 C o n c l u s i o n s 87 E x p e r i m e n t a l 88 R e f e r e n c e s 91 V I I X-ray a n a l y s i s of ( E ) - 2 - ( c a r b o x y m e t h o x y ) ( 3 - ^ H ) m a l e i c 94 a c i d d i h y d r a t e , C6H5 2H07.2H20 P r e l i m i n a r y i n f o r m a t i o n 94 C r y s t a l d a t a 94 I n t e n s i t y d a t a , s t r u c t u r e d e t e r m i n a t i o n and r e f i n e m e n t 95 Comments 97 Acknowledgements 98 R e f e r e n c e s 98 V I I I C h i r a l i n t e r a c t i o n s between e u r o p i u m ( I I I ) - ( S )- 99 ( c a r b o x y m e t h o x y ) s u c c i n a t e (Eu(_S)-CMOS) and some sodium

p o l y c a r b o x y l a t e s as s t u d i e d by *H NMR s p e c t r o s c o p y A b s t r a c t 99 I n t r o d u c t i o n 99 R e s u l t s and d i s c u s s i o n 100 S y n t h e s i s o f Eu(_S)-CM0S 100 R e s o l u t i o n o f e n a n t i o m e r i c m o l e c u l e s 100 R e s o l u t i o n of m o l e c u l e s c o n t a i n i n g e n a n t i o t o p i c 102 n u c l e i S e l f - r e s o l u t i o n of e n a n t i o m e r i c m i x t u r e s o f Na3CM0S 104 C o n c l u s i o n s 107 E x p e r i m e n t a l 108 R e f e r e n c e s 109 IX C o n c l u d i n g remarks 110 X Summary 113 X I S a m e n v a t t i n g 116

(12)
(13)

I

INTRODUCTION

C o o r d i n a t i o n phenomena o f c a t i o n s by p o l y o x y g e n s compounds o f t e n p l a y an i m p o r t a n t r o l e i n b o t h b i o l o g i c a l and c h e m i c a l s y s t e m s . I n p a r t i c u l a r , t h e c o o r d i n a t i o n o f c a l c i u m ( I I ) by o r g a n i c compounds i s of i n t e r e s t because o f i t s r e g u l a t i n g a c t i o n i n many b i o l o g i c a l processes'' and because of i t s

t e c h n o l o g i c a l i m p o r t a n c e . As an example, t h e w o r l d w i d e s e a r c h f o r an o r g a n i c 2 3 s u b s t i t u t e o f p e n t a sodium t r i p o l y p h o s p h a t e i n d e t e r g e n t s may be m e n t i o n e d * . These e x t e n s i v e i n d u s t r i a l r e s e a r c h programs p r o v i d e d a l a r g e number of new c a l c i u m ( I I ) c o m p l e x i n g a g e n t s . Because o f e n v i r o n m e n t a l r e a s o n s t h e s e new compounds b e l o n g p r e d o m i n a n t l y t o t h e c l a s s o f sodium p o l y c a r b o x y l a t e s , t h u s c o n t a i n i n g a p a r t from t h e c a t i o n o n l y c a r b o n , h y d r o g e n and oxygen. I n g e n e r a l , the s t a b i l i t y c o n s t a n t s of the complexes w i t h c a l c i u m ( I I ) , t h e e f f e c t i v e n e s s i n d e t e r g e n t f o r m u l a t i o n s and t h e b i o d e g r a d a b i l i t y of t h e new compounds have been d e t e r m i n e d , but no d a t a on t h e s t r u c t u r e of the c a l c i u m ( I I ) complexes i n w a t e r were g i v e n . I n o r d e r t o deepen t h e i n s i g h t i n t o t h e p r e c i s e c o o r d i n a t i o n phenomena t h e d e t e r m i n a t i o n of the s t r u c t u r e of t h e c a l c i u m ( I I ) complexes of t h e s e p o l y o x y g e n compounds i n w a t e r i s i n d i s p e n s a b l e . The aim o f t h e

i n v e s t i g a t i o n s d e s c r i b e d i n t h i s t h e s i s was t h e development of methods f o r t h e s t r u c t u r e d e t e r m i n a t i o n o f t h i s type of c a l c i u m ( I I ) complexes i n w a t e r . A p a r t f r o m t h e k i n e t i c s and thermodynamics o f c o o r d i n a t i o n p r o c e s s e s , knowledge of the donor s i t e s and t h e c o n f o r m a t i o n o f t h e p o l y o x y g e n l i g a n d s i s o f g r e a t i m p o r t a n c e . The knowledge o b t a i n e d may be o f g r e a t v a l u e f o r t h e f u r t h e r development o f c a l c i u m c o m p l e x i n g compounds.

I n t h e s t u d y o f t h e donor s i t e s and t h e c o n f o r m a t i o n of o r g a n i c compounds i n s o l u t i o n t h e use of n u c l e a r m a g n e t i c r e s o n a n c e (NMR) seems t o be an o b v i o u s c h o i c e . F i r s t , the p r e s e n t g e n e r a t i o n o f h i g h f i e l d s p e c t r o m e t e r s has opened new p o s s i b i l i t i e s and s e c o n d l y , t h e r e c o g n i t i o n , t h a t l a n t h a n i d e c a t i o n s c a n be used as s u i t a b l e model c a t i o n s f o r c a l c i u m has been o f g r e a t i n t e r e s t ,

(14)

2

because o f t h e v a l u a b l e c o n f o r m a t i o n a l i n f o r m a t i o n , w h i c h can be o b t a i n e d f o r the o r g a n i c l l g a n d from the e f f e c t s o f t h e l a n t h a n i d e c a t i o n s on b o t h t h e c h e m i c a l s h i f t s and r e l a x a t i o n r a t e s o f t h e d i f f e r e n t n u c l e i ^ j ^ . So f a r l i t e r a t u r e d a t a on c o o r d i n a t e d p o l y o x y g e n systems i n w a t e r a r e s c a r c e . I n t h i s t h e s i s b o t h t h e i n f l u e n c e o f t h e c a t i o n on t h e n u c l e i o f t h e l l g a n d as w e l l a s the i n f l u e n c e o f t h e l i g a n d on the c a t i o n have been s t u d i e d by means o f NMR t e c h n i q u e s , _ l . e . ^H, ^ C , and i ^ ' l a NMR. I n t h e s e s t u d i e s a l a r g e range o f c a t i o n - t o - l i g a n d r a t i o s were a p p l i e d . C o m b i n a t i o n o f t h e d a t a o b t a i n e d from d i f f e r e n t measurements g i v e s an e s s e n t i a l l y c o m p l e t e p i c t u r e o f t h e c o o r d i n a t i o n o f t h e c a t i o n .

The m a j o r p a r t o f t h e i n v e s t i g a t i o n s , w h i c h were p e r f o r m e d from 1978 t o 1982 have been p u b l i s h e d . When a p p r o p r i a t e t h e r e w i l l be r e f e r r e d t o t h e s e p a p e r s . I n C h a p t e r I I t h e r e s u l t s o b t a i n e d by 1 70 d y s p r o s i u m i n d u c e d s h i f t

measurements a r e d e s c r i b e d ? > 8 . The a d v a n t a g e o f 1 70 NMR i s t h e f a c t , t h a t t h e (oxygen) n u c l e u s s t u d i e d i s d i r e c t l y a t t a c h e d t o t h e c a t i o n . The 1 70 NMR measurements have been p e r f o r m e d a t r e l a t i v e l y l o w l i g a n d c o n c e n t r a t i o n s i n w a t e r . T h e r e f o r e , t h e use o f ^ O - e n r i c h e d compounds was r e q u i r e d . I n o r d e r t o o b t a i n l ^ C — e n r i c h e d m a t e r i a l s a number o f ^ O - e n r i c h e d p r o c e d u r e s were d e v e l o p e d and a p p l i e d ( C h a p t e r I I I ) . Of t h e l a n t h a n i d e c a t i o n s ^-^~La i s most f a v o u r a b l e f o r o b s e r v a t i o n by NMR. I n f a c t i t i s t h e o n l y l a n t h a n i d e c a t i o n o b s e r v e d i n s o l u t i o n by NMR so f a r . The i n f l u e n c e o f a number o f ( h y d r o x y ) c a r b o x y l a t e s on t h e ^-^La. r e s o n a n c e i s r e p o r t e d i n C h a p t e r i v ' .

I n C h a p t e r V the r e s u l t s o b t a i n e d from 1 3C r e l a x a t i o n r a t e measurements on t h e 13c n u c l e i o f t h e l i g a n d s a r e d e s c r i b e d 1°. I n t h i s s t u d y g a d o l i n i u m ( I I I ) i s t h e l a n t h a n i d e c a t i o n o f c h o i c e .

( C a r b o x y m e t h o x y ) s u c c i n a t e (CMOS), u n t i l r e c e n t l y a p o t e n t i a l c a n d i d a t e f o r u s e i n d e t e r g e n t s a s a phosphate s u b s t i t u t e , has been s u b j e c t o f an e x t e n s i v e s t u d y " , i n w h i c h a l l NMR t e c h n i q u e s , w h i c h a r e d i s c u s s e d i n t h i s t h e s i s have been a p p l i e d ( C h a p t e r V I ) . For t h e c o m p l e t e a s s i g n m e n t o f t h e *H NMR s p e c t r u m o f CMOS s p e c i f i c l a b e l e d CMOS was s y n t h e s i z e d . I n t h i s s y n t h e s i s t h e c o n f i g u r a t i o n o f t h e i n t e r m e d i a t e ( E ) - 2 - ( c a r b o x y m e t h o x y ) ( 3 -2H ) m a l e i c a c i d has been d e t e r m i n e d by X - r a y a n a l y s i s1 2 ( C h a p t e r V I I ) . C h a p t e r V I I I d e a l s w i t h the c h i r a l i n t e r a c t i o n s o f t h e e u r o p i u m ( I I I ) complex of t h e ( S ) - e n a n t i o m e r o f CMOS w i t h some o t h e r p o l y c a r b o x y l a t e s1 3_

(15)

R e f e r e n c e s

1. R.H. Wasserman, R.A. C o r r a d i n o , E. C a r a f o l i , R.H. K r e t s i n g e r , D.H. MacLennan and F.L. S i e g e l , " C a l c i u m B i n d i n g P r o t e i n s and C a l c i u m F u n c t i o n " , E l s e v i e r , New Y o r k , 1977.

2. J.R. N o o i , Chemisch Weekblad, 1972, 8 December,11. 3. M.M. C r u t c h f i e l d , J . Am. O i l Chemists Soc. _55, 58 ( 1 9 7 8 ) .

4. S. F o r s S n and B. Lindman, Ann. Rep. NMR S p e c t r o s c . 11A, 183 ( 1 9 8 1 ) . 5. J . Reuben, P r o g . N u c l . Magn. R e s . S p e c t r . _9_, 1 ( 1975).

6. J.A. P e t e r s and A.P.G. Kieboom, R e e l . T r a v . Chim. Pays-Bas 103, 1 ( 1 9 8 4 ) .

7. A.P.G. Kieboom, J.M. v a n d e r Toorn, J.A. P e t e r s , W.M.M.J. BovSe, A. Sinnema, C.A.M. V i j v e r b e r g and H. v a n Bekkum, R e e l . T r a v . Chim. Pays-Bas 97, 247 ( 1 9 7 8 ) .

8. C.A.M. V i j v e r b e r g , J.A. P e t e r s , A.P.G. Kieboom and H. v a n Bekkum, R e e l . T r a v . Chim. Pays-Bas 9 9 , 403 ( 1 9 8 0 ) .

9. C.A.M. V i j v e r b e r g , J.A. P e t e r s , A.P.G. Kieboom and H. v a n Bekkum, R e e l . T r a v . Chim. Pays-Bas _99_, 287 ( 1980).

10. A.P.G. Kieboom, C.A.M. V i j v e r b e r g , J.A. P e t e r s and H. v a n Bekkum, R e e l . T r a v . Chim. Pays-Bas _96_, 315 ( 1977).

11. C.A.M. V i j v e r b e r g , J.A. P e t e r s , W.M.M.J. BovSe, H. V r o o n , A.P.G. Kieboom and H. v a n Bekkum, R e e l . T r a v . Chim. Pays-Bas 102, 255 ( 1983).

12. H. v a n K o n i n g s v e l d , C.A.M. V i j v e r b e r g and J.C. J a n s e n , C r y s t . S t r u c t . Comm. _ U , 793 ( 1982).

13. J.A. P e t e r s , C.A.M. V i j v e r b e r g , A.P.G. Kieboom and H. v a n Bekkum, T e t r a h e d r o n L e t t . _24_, 3141 ( 1983).

(16)

4 I I

A STUDY OF DYSPROSIUM(III) HYDROXY- AND ETHERCARBOXYLATE COMPLEXES IN AQUEOUS MEDIUM USING LANTHANIDE INDUCED OXYGEN-17 NMR SHIFTS

A b s t r a c t

The c o m p l e x a t i o n of d y s p r o s i u m ( I I I ) , as a model c a t i o n f o r c a l c i u m ( I I ) , w i t h a s e r i e s of l70 - e n r i c h e d h y d r o x y - and e t h e r c a r b o x y l a t e s i n aqueous medium, has been s t u d i e d by *70 NMR s p e c t r o s c o p y . A c e t a t e , 3 - h y d r o x y b u t y r a t e , g l y c o l a t e , g l y c e r a t e , 3 - h y d r o x y g l u t a r a t e , m a l a t e , c i t r a t e , and e t h o x y a c e t a t e show f a s t l i g a n d exchange on the 1 70 NMR time s c a l e a t 73 °C. The D y ( I I I ) - i n d u c e d i 70 s h i f t s of b o t h the l i g a n d and the w a t e r , w h i c h a r e m a i n l y due t o c o n t a c t i n t e r a c t i o n , p r o v i d e v a l u a b l e i n f o r m a t i o n on the c o m p l e x a t i o n s i t e s of the l i g a n d s as w e l l as on the number of c o o r d i n a t e d w a t e r s i n the c o m p l e x e s . The r e s u l t s p o i n t t o a r a t h e r c o n s t a n t ^70 c o n t a c t s h i f t of around 1700 ppm upon the f o r m a t i o n of D y ( I I I ) - 0 bonds. On the o t h e r hand, o x y d i a c e t a t e (ODA), e t h y l e n e g l y c o l d i a c e t a t e (EGDA), ( c a r b o x y m e t h o x y ) s u c c i n a t e (CMOS), and

n i t r i l o t r i a c e t a t e (NTA) show s l o w l i g a n d exchange on t h e 1 70 NMR t i m e s c a l e a t 73 °C. I n t h e s e c a s e s - w i t h s t i l l f a s t w a t e r exchange - the D y ( I I I ) - i n d u c e d s h i f t of t h e ^7o w a t e r r e s o n a n c e p r o v i d e s i n f o r m a t i o n on the s t o i c h i o m e t r y o f t h e c o m p l e x e s , _i^e_. the number of c o o r d i n a t e d w a t e r s and the number of

l i g a n d s .

I n t r o d u c t i o n

C o m p l e x a t i o n phenomena of p o l y o x y g e n compounds w i t h c a l c i u m ( I I ) i n aqueous medium a r e of i n t e r e s t not o n l y because of the e s s e n t i a l r o l e p l a y e d by C a ( I I ) i n the r e g u l a t i o n of b i o l o g i c a l p r o c e s s e s but a l s o i n the s e a r c h f o r s u i t a b l e phosphate s u b s t i t u t e s i n d e t e r g e n t f o r m u l a t i o n s . I n a d d i t i o n t o our *H and *3C NMR s p e c t r o s c o p i c s t u d i e s i n t h i s f l e l d ^ we now p r e s e n t r e s u l t s based on the

(17)

use of 1 70 NMR as the a n a l y t i c a l t o o l2. The use of 1 70 NMR i n the s t u d y of c a t i o n c o m p l e x a t i o n b e h a v i o u r of oxygen compounds has the advantage t h a t t h e n u c l e u s s t u d i e d i s d i r e c t l y a t t a c h e d t o the c a t i o n .

The oxygen i s o t o p e 1 70 has a n a t u r a l abundance of o n l y 0.037%, an NMR

s e n s i t i v i t y of 2.9 x 1 0- 2 ( r e l a t i v e t o hydrogen) and a n u c l e a r s p i n o f 5/2. As a consequence of the e l e c t r i c q u a d r u p o l e moment3, the l i n e w i d t h of the ^70 r e s o n a n c e s i g n a l s i s dominated by q u a d r u p o l e r e l a x a t i o n . T h i s r e l a x a t i o n depends on the ( m o l e c u l a r ) r o t a t i o n a l c o r r e l a t i o n t i m e w h i c h i n t u r n i s c o r r e l a t e d t o s o l u t i o n v i s c o s i t y ^ . To be a b l e t o measure 170 r e s o n a n c e s o f oxygen c o n t a i n i n g compounds i n w a t e r , l70 - e n r i c h m e n t appeared t o be n e c e s s a r y . The l7C — e n r i c h m e n t p r o c e d u r e s used a r e d e s c r i b e d i n d e t a i l i n c h a p t e r I I I . C a ( I I ) d i d not i n d u c e any s h i f t of the c a r b o x y l a t e 1 70 r e s o n a n c e2. T h e r e f o r e , i n s t e a d of C a ( I I ) , w h i c h i s d i a m a g n e t i c , a p a r a m a g n e t i c l a n t h a n i d e ( I I I ) c a t i o n was u s e d . The use of L n ( I I I ) c a t i o n s as probes f o r C a ( I I ) can be j u s t i f i e d by

the f o l l o w i n g arguments:

( i ) the i o n i c r a d i u s of C a ( I I ) (0.99 A) i s w e l l w i t h i n the range of i o n i c r a d i i of the L n ( I I I ) (1.06 A - 0.85 A ) ;

( i i ) L n ( I I I ) can r e p l a c e C a ( I I ) i n p r o t e i n s ^ > 5) sometimes r e s u l t i n g i n a c o n c o m i t a n t enhancement of the b i o l o g i c a l a c t i v i t y ^ ;

( i i i ) m o l e c u l a r s t r u c t u r e s t u d i e s on the C a ( I I ) c o n t a i n i n g p r o t e i n t h e r m o l y s i n and i t s L n ( I I I ) a n a l o g u e s7 and on the C a ( I I ) and L n ( I I I ) s a l t s of the a m i n o c a r b o x y l a t e s E D T A8 - 1 1, n i t r i l o t r i a c e t a t e ( N T A ) 8 , 12 -1 4 a n d t t l e ether c a r b o x y l a t e o x y d i a c e t a t e (ODA)15-17 r e v e a l t h a t C a ( I I ) and L n ( I I I ) c a t i o n s c o o r d i n a t e w i t h the same s e t of donor atoms of the l i g a n d s . To t e s t the a p p l i c a b i l i t y of c a t i o n i n d u c e d 1 70 s h i f t s , the c o m p l e x a t i o n of d y s p r o s i u m ( I I I ) w i t h a s e r i e s o f 1 70 - e n r i c h e d sodium h y d r o x y - and

e t h e r c a r b o x y l a t e s i n aqueous medium has been i n v e s t i g a t e d . D y ( I I I ) , w i t h i o n i c r a d i u s 0.91 A, was chosen as the model c a t i o n f o r C a ( I I ) because t h i s L n ( I I I ) c a t i o n i n d u c e d , by f a r , the l a r g e s t ^70 s h i f t s ^ , 1 9 .

Approach t o d a t a a n a l y s i s

O r i g i n of i n d u c e d s h i f t s

G e n e r a l l y , the l a n t h a n i d e ( I I I ) - i n d u c e d s h i f t ( L I S , A) f o r a n u c l e u s , r e l a t i v e t o i t s d i a m a g n e t i c s t a t e i n an a x i a l l y symmetric complex a t a g i v e n

t e m p e r a t u r e , can be e x p r e s s e d as a sum of the c o n t a c t2^ and d i p o l a r2! c o n t r i b u t i o n s :

(18)

6 A = A . <S > + G . D ( 1 ) z where A i s t h e e l e c t r o n - n u c l e a r h y p e r f i n e c o u p l i n g c o n s t a n t , <S_> i s t h e p r o j e c t i o n o f t h e t o t a l e l e c t r o n s p i n m a g n e t i z a t i o n on t h e d i r e c t i o n o f t h e e x t e r n a l m a g n e t i c f i e l d , G i s t h e g e o m e t r i c a l f u n c t i o n (3 c o s2 8 - l ) / r 3 , and D i s a c o n s t a n t f o r a g i v e n l a n t h a n i d e . The r e l a t i v e v a l u e s o f <SZ> and o f D have been t a b u l a t e d by G o l d i n g and H a l t o n2^and by B l e a n e y e t a l .22,

r e s p e c t i v e l y . The v a l u e o f A and t h e <SZ>/D r a t i o o f D y ( I I I ) a r e r e l a t i v e l y h i g h2 3, s o , t h e o r e t i c a l l y , a l a r g e c o n t a c t c o n t r i b u t i o n t o t h e o b s e r v e d s h i f t i s e x p e c t e d . D y ( I I I ) i n d u c e d s h i f t s ( D y l S ) o f t h e 1 70 r e s o n a n c e s a r e i n d e e d p r e d o m i n a n t l y o f c o n t a c t o r i g i n2"1^ . The c o n t r i b u t i o n o f both p s e u d o - c o n t a c t and d i a m a g n e t i c s h i f t s may be n e g l e c t e d and so e q u a t i o n 1 i s r e d u c e d t o :

A - A . <Sz> ( 2 )

F a s t l i g a n d exchange

Under c o n d i t i o n s o f f a s t l i g a n d exchange on t h e NMR time s c a l e t h e o b s e r v e d L I S (A) i s a c o n c e n t r a t i o n - w e i g h t e d average o f t h e s h i f t s o f t h e i n d i v i d u a l s p e c i e s i n s o l u t i o n : a =

T l T

• * n i 'c i •A i (3) o 1=1 where [ L ]Q j .s t h e t o t a l l i g a n d c o n c e n t r a t i o n , n^ i s t h e number o f l i g a n d s i n a g i v e n complex, Cj[ i s t h e c o n c e n t r a t i o n o f s p e c i e s i , A^ i s t h e bound s h i f t o r c h e m i c a l s h i f t ( r e l a t i v e t o i t s d i a m a g n e t i c s t a t e ) o f s p e c i e s i , and N i s t h e number o f d i f f e r e n t t y p e s o f complexes p r e s e n t . R e u b e n2^ has shown t h a t f o r the d e s c r i p t i o n o f L n ( I I I ) - i n d u c e d s h i f t s i n an aqueous s o l u t i o n o f a c e t a t e a t w o - s t e p e q u i l i b r i u m model i s r e q u i r e d . P r e v i o u s l y , we have shown1 t h a t a number o f h y d r o x y c a r b o x y l a t e s c o o r d i n a t e i n a b i - o r t r i d e n t a t e f a s h i o n . I t may be a n t i c i p a t e d , t h e r e f o r e , t h a t t h e L n ( I I I ) complexes i n t h e p r e s e n t s t u d y c o n t a i n e i t h e r one, two o r t h r e e o r g a n i c l i g a n d s . T h i s i s s u p p o r t e d by

c r y s t a l l o g r a p h i c d a t a o f some o f t h e s e c o m p l e x e s . Thus, depending on t h e number o f l i g a n d s ( 4 ) , (5) and/or (6) a r e r e q u i r e d t o d e s c r i b e t h e o b s e r v e d s h i f t s . K j , K2 and K3 a r e t h e e q u i l i b r i u m c o n s t a n t s and A j , A2 and A3 a r e t h e bound s h i f t s o f t h e complexes LnL, LnL2 and LnL3> r e s p e c t i v e l y .

(19)

LnL + L :LnL (K , A„) 2 2 2

L n L2 + L k a L n L3 ( K3 > A )

(5)

( 6 )

A j , A2 and A3 a r e i n t r i n s i c f u n c t i o n s of the LnL, L n L2 and LnL3 s p e c i e s and a r e r e l a t e d d i r e c t l y t o the o b s e r v e d i n i t i a l s l o p e (X) o f

a A v e r s u s p ( [ L n ]Q/ [ L ] ) p l o t a t c o n s t a n t [ L ]0, where [ L n ]Q i s the t o t a l m o l a r L n ( I I I ) c o n c e n t r a t i o n and [ L ]Q i s the t o t a l l i g a n d m o l a r i t y . I f [ L ]0 »

[ L n ]0 the i n i t i a l s l o p e , X, i n a t w o - s t e p e q u i l i b r i u m model (LnL and LnL2) ^s a p p r o x i m a t e l y ^;

6(A) A

X = - + 2 . A (7) 6(p) [L] . K,

o L

I f Ko i s v e r y s m a l l b o t h terms i n t h e eqn. 7 a r e r e q u i r e d . However, when K2 i s l a r g e , the i n i t i a l s l o p e , X, i s s i m p l y l.h^. A n a l o g o u s l y , i n a t h r e e - s t e p e q u i l i b r i u m model the i n i t i a l s l o p e X i s g i v e n by:

6(A) A 2 . A

X - = i — ^ + ± + 3 . A ( 8 )

6(p) K.KJU K,[L]

2 3 o j o

When K3 i s l a r g e the f i r s t two terms (on the r i g h t hand s i d e of eqn. 8) can be n e g l e c t e d and so the i n i t i a l s l o p e , X, a t s m a l l p v a l u e s , o f a p l o t

of A v e r s u s p i s 3.A^.

In t h e p r e s e n t s t u d y t h e D y ( I I I ) - i n d u c e d s h i f t s ( D y l S ) of t h e 1 70 r e s o n a n c e s were measured a t low D y ( I I I ) t o l i g a n d r a t i o s (p < 0.1) and so the c o n d i t i o n

[ L ]0 » [ L n ]0 i s a l w a y s f u l f i l l e d . In g e n e r a l K2 and K3 are l a r g e and so as a good a p p r o x i m a t i o n the i n i t i a l s l o p e of a D y l S v e r s u s p p l o t i n a two- o r t h r e e - s t e p e q u i l i b r i u m model i s 2.A^ o r 3.A^, r e s p e c t i v e l y . S i n c e t h e D y l S o f the ! ' 0 resonances are mainly of c o n t a c t o r i g i n , we f u r t h e r assume t h a t the bound s h i f t s of the i n d i v i d u a l complexes a r e about the same:

A j = A^ = A j ^ and A^ = A^ = A^ = f o r a two- and t h r e e - s t e p mechanism, r e s p e c t i v e l y .

Slow l i g a n d exchange

(20)

8

l i g a n d c o u l d be o b s e r v e d . P r o b a b l y , because o f e x t e n s i v e l i n e b r o a d e n i n g the 170 r e s o n a n c e s of the D y ( I I I ) complexes o f t h e l i g a n d were u n o b s e r v a b l e . However, t h e w a t e r exchange i n t h e s e systems was s t i l l f a s t .

Water exchange

So f a r , t h e o b s e r v e d D y l S o f t h e ^70 r e s o n a n c e s were d i s c u s s e d i n terms o f t h e bound s h i f t s of t h e complexes formed. Now t h e DylS o f t h e "q wat e r r e s o n a n c e i s c o n s i d e r e d . I n t h e D y ( I I I ) - a q u o complex and i n mixed D y ( I I I ) complexes water exchange i s f a s t . I n the absence o f o t h e r l i g a n d s n i n e w a t e r m o l e c u l e s a r e c o o r d i n a t e d t o D y ( I I I ) i n t h e f i r s t c o o r d i n a t i o n s p h e r e2^- 2^ . in t h a t c a s e , t h e DylS o f t h e l?o w a t e r r e s o n a n c e , e x t r a p o l a t e d t o [ D y ( I I I ) ] = 1 a t 73 °C, was found t o be 304 ppm t o h i g h f i e l d . In p r i n c i p l e , n i n e bound s h i f t s o f the d i f f e r e n t D y ( I I I ) - a q u o c o m p l e x e s , A^, A^ Ag, s h o u l d be t a k e n i n t o a c c o u n t , b u t as an a p p r o x i m a t i o n t h e v a l u e o f t h e i n d u c e d *70 NMR s h i f t of a bound w a t e r i s assumed t o be e s s e n t i a l l y i n d e p e n d e n t of the number and n a t u r e of o t h e r l i g a n d s p r e s e n t around the D y ( I I I ) c a t i o n . T h e r e f o r e , f o r each bound w a t e r t h e o v e r a l l w a t e r r e s o n a n c e s h i f t s 304/9 = 33.8 ppm ( a t [ D y ( I I I ) ] = 1 a t 73 °C).

Complex s t o i c h i o m e t r y

F u r t h e r m o r e , t h e c o o r d i n a t i o n number o f D y ( I I I ) i n o t h e r o r mixed complexes i s assumed t o have a c o n s t a n t v a l u e o f n i n e . The number of bound w a t e r s (q) i n t h e D y ( I I I ) complexes w i t h t h e g e n e r a l s t r u c t u r e D y Lp( H 2 0 ) q , i n w h i c h L denotes an o r g a n i c l i g a n d , can now be c a l c u l a t e d by d i v i d i n g t h e D y l S / p o f the w a t e r r e s o n a n c e (^„ „) i n the p r e s e n c e of a l i g a n d by 3 3 . 8 . [ L ]0. The r e m a i n i n g c o o r d i n a t i o n p o s i t i o n s of t h e D y ( I I I ) c a t i o n a r e o c c u p i e d by an o r g a n i c l i g a n d and hence t h e s t o i c h i o m e t r y , i n c l u d i n g t h e number o f w a t e r s o f t h e D y ( I I I ) complexes i n w a t e r , can be e v a l u a t e d . R e s u l t s and d i s c u s s i o n 1 70 c h e m i c a l s h i f t s V a r i o u s ^70 c h e m i c a l s h i f t d a t a have been r e p o r t e d i n t h e l i t e r a t u r e 3 0f i n c l u d i n g n a t u r a l - a b u n d a n c e *70 NMR of m o n o s a c c h a r i d e s i n aqueous medium^!. I n T a b l e I t h e c h e m i c a l s h i f t s and l i n e - w i d t h s of the 1 70 r e s o n a n c e s o f o u r s e r i e s o f sodium h y d r o x y - and e t h e r c a r b o x y l a t e s i n aqueous medium a r e summarized. I t may be n o t e d t h a t t h e use o f D2O i n s t e a d o f H£0 had no i n f l u e n c e on t h e 170 c h e m i c a l s h i f t s i . e . no i s o t o p e s o l v e n t e f f e c t was

(21)

T a b l e I . C h e m i c a l s h i f t s3 and l i n e w i d t h s " o f c a r b o x y l a t e , h y d r o x y - and e t h e r 170 r e s o n a n c e s . Compound C h e m i c a l s h i f t (ppm) L i n e w i d t h ( H z ) C a r b o x y l a t e s a c e t a t e 284 m a l o n a t e 282 110 s u c c i n a t e 277 150 1 , 2 , 3 - p r o p a n e t r i c a r b o x y l a t e 2 7 8e 280 g l u t a r a t e 279 165 n i t r i l o t r i a c e t a t e 275 240 H y d r o x y c a r b o x y l a t e sd C00 OH COO OH g l y c o l a t e 269 0 65 l a c t a t e0 263 — 90 g l y c e r a t e 271 18 (a-OH) 95 155 (a-OH) 0 (S-OH) 3 - h y d r o x y b u t y r a t ec 283 36 140 150 t a r t r o n a t ec 266 — 100 3 - h y d r o x y g l u t a r a t e 285 30 185 225 m a l a t e (HO-C-COO-) 267 25 140 155 m a l a t e (-CH2COO-) 284 — 135 c i t r a t e (HO-C-COO-) 264 37 230 340 c i t r a t e (-CH2C00-) 287 — 220 E t h e r c a r b o x y l a t e sd COO 0 COO 0 -o x y d i a c e t a t e ( 0 D A )c 272 0 200 e t h o x y a c e t a t e 273 13 120 250 ( c a r b o x y m e t h o x y ) s u c c i n a t e ( C M 0 S )c 2 7 2e -- 380 e t h y l e n e g l y c o l d i a c e t a t e (EGDA) 272 0 180 R e l a t i v e t o w a t e r ; + 3 ppm. b At h a l f - h e i g h t ; + 25 Hz. c As t h e sodium s a l t (0.35 M) i n H2o a t 73 °C and a t 13.56 MHz. d As t h e sodium s a l t (0.35 M) i n D20 a t 73 °C and a t 27.12 MHz, u n l e s s o t h e r w i s e s t a t e d . e C a r b o x y l a t e s i g n a l s c o i n c i d e .

(22)

10

o b s e r v e d . For convenience,- a l l complexes s t u d i e d w i l l be d e n o t e d as. $ r8 DyLp(H20)q, i r r e s p e c t i v e as t o whether H2O o r D2O was the s o l v e n t a p p l i e d . A c c o r d i n g t o t h e i r c a r b o x y l a t e *70 c h e m i c a l s h i f t s a t 73 °C the c a r b o x y l a t e s can be d i v i d e d i n t o two g r o u p s : a - a l k o x y - and a-hydroxy c a r b o x y l a t e s w i t h -a c h e m i c a l s h i f t range of 263-273 ppm and c a r b o x y l a t e s w i t h o u t an a - a l k o x y o r a-hydroxy group w i t h a w i t h a c h e m i c a l s h i f t range o f 274-287 ppm (re-lat±y& w a t e r ) . T h i s d i f f e r e n c e e n a b l e s us t o d i s t i n g u i s h between the two t y p e s o f c a r b o x y l a t e s . The l i n e w i d t h s were found t o d e c r e a s e w i t h i n c r e a s i n g

t e m p e r a t u r e because of d e c r e a s i n g t u m b l i n g t i m e s of the c a r b o x y l a t e a n i o n s . For t h a t r e a s o n , the 170 NMR measurements have been p e r f o r m e d a t 73 °C. C o n t r a r y t o p r e v i o u s2 measurements a t 35 °C, d i s t i n c t 1?0 c a r b o x y l a t e r e s o n a n c e s were o b s e r v e d f o r the two t y p e s of c a r b o x y l a t e groups of b o t h c i t r a t e and m a l a t e a t 73 °C ( s e e F i g . 1 ) . A —I I I I I I I 4 0 0 2 0 0 0 - 2 0 0 - 4 0 0 ppm ~ r - 4 0 0 ppm F i g . 1. 27.12 MHz 1 70 NMR s p e c t r a of ( a ) Na3 c i t r a t e and (b) N a2 m a l a t e ; 0.3! M i n D20 a t 73 °C; e n r i c h m e n t of the c a r b o x y l a t e and h y d r o x y ! 0

(23)

F a s t l l g a n d exchange

A d d i t i o n of D y ( I I I ) c h l o r i d e t o aqueous s o l u t i o n s (0.35 M) o f the Na s a l t s of a c e t a t e , g l y c o l a t e , g l y c e r a t e , 3 - h y d r o x y b u t y r a t e , 3 - h y d r o x y g l u t a r a t e , raalate, c i t r a t e o r e t h o x y a c e t a t e a t 73 °C r e s u l t e d i n a s h i f t t o h i g h f i e l d f o r b o t h t h e 17o r e s o n a n c e s of the l i g a n d and t h e ^0 w a t e r r e s o n a n c e . F o r t h e s e compounds the a v e r a g e s p e c t r a of the f r e e and complexed a n i o n s were o b s e r v e d , i . e . c o m p l e x a t i o n and d e c o m p l e x a t i o n a r e f a s t on the 170 NMR t i m e s c a l e . The D y ( I I I ) i n d u c e d s h i f t s ( D y l S ) of the c a r b o x y l a t e and h y d r o x y l r e s o n a n c e s as a f u n c t i o n of the m o l a r r a t i o D y ( I I I ) / l i g a n d (p) y i e l d e d s t r a i g h t l i n e s p a s s i n g t h r o u g h the o r i g i n , as shown i n F i g . 2 f o r a c e t a t e , g l y c o l a t e , and 3-hydroxy g l u t a r a t e . T h i s was a l s o found t o be the c a s e f o r the i n d u c e d w a t e r s h i f t s .

F i g . 2. D y ( I I I ) i n d u c e d s h i f t s ( D y l S ) of the c a r b o x y l a t e and h y d r o x y l i c 170 r e s o n a n c e s of a c e t a t e ( A ) , 3 - h y d r o x y g l u t a r a t e (C00~,»; OH, 9 ) and g l y c o l a t e (COO-, • ; OH, • ) v e r s u s the m o l a r r a t i o D y ( I I I ) / ( h y d r o x y ) -c a r b o x y l a t e (p) i n D 20 a t 27.12 MHz and 73 °C; p o s i t i v e DylS i n d i c a t e u p f i e l d s h i f t s ; [ ( h y d r o x y ) c a r b o x y l a t e ] = 0.35 M.

The o b s e r v e d s l o p e s of the s t r a i g h t l i n e s [X(COO), X(0H), and X(H2°)1 are g i v e n i n T a b l e I I .

I n o r d e r t o e v a l u a t e the number of l i g a n d s (p) i n the DyLp(H20)q complexes the number of bound w a t e r s (q) was c a l c u l a t e d , as o u t l i n e d i n t h e a p p r o a c h t o d a t a a n a l y s i s .

I f i t i s assumed t h a t t h e c o o r d i n a t i o n number of D y ( I I I ) has a c o n s t a n t v a l u e of n i n e , t h e r e a r e (9 - q) c o o r d i n a t i o n p o s i t i o n s l e f t f o r the o r g a n i c l i g a n d . The number of donor atoms i n the l i g a n d s ( d ) , o b t a i n e d from p r e v i o u s ^H and 13c NMR s t u d i e s , was t h e n used t o c a l c u l a t e the number of l i g a n d s i n t h e f i r s t c o o r d i n a t i o n s p h e r e of D y ( I I I ) : p = (9 - q ) / d .

(24)

12 T a b l e I I . E x p e r i m e n t a l DyIS/p v a l u e s o f t h e c a r b o x y l a t e [ X ( C O O ) ] , h y d r o x y l [ X ( O H ) ] and w a t e r [ X ( H20 ) 1 170 r e s o n a n c e s3. L i g a n d ( L )b X ( C O O )C X ( O H )C X ( H2o )c a c e t a t e 1 7 6 5 — 5 0 g l y c o l a t e 2 2 8 5 4 6 4 5 2 8 g l y c e r a t e ( H C - C - C O O - ) 2 4 8 5 5 0 4 5 3 5 g l y c e r a t e ( - C H2o h ) — 4 6 0 3 5 3 - h y d r o x y b u t y r a t e 1 9 3 5 6 0 0 4 6 3 - h y d r o x y g l u t a r a t e 1 0 2 0 1 0 2 0 4 2 m a l a t e ( H O - C - C O O-) 1 3 4 5 2 6 8 5 1 8 m a l a t e ( - C H2C O O ~ ) 1 4 9 0 — 1 8 c i t r a t e ( H O - C - C O O-) 1 3 8 0 2 3 5 5 2 3 c i t r a t e ( - C H2C 0 0 ~ ) 9 9 0 — 2 3 EGDA 5 6 0 — 1 0 a E x t r a p o l a t e d t o p = 1; u p f l e l d i n d u c e d s h i f t s a r e d e n o t e d p o s i t i v e . b As t h e i r Na s a l t s , 0 . 3 5 M i n D20 a t 7 3 °C. c C a l c u l a t e d a c c o r d i n g t o t h e l e a s t s q u a r e s method w i t h c o r r e l a t i o n c o e f f i c i e n t s b e t t e r t h a n 0 . 9 9 . On t h e b a s i s o f t h e p v a l u e s and l i t e r a t u r e d a t a c o n c e r n i n g t h e c o m p l e x a t i o n of t h e s e l i g a n d s a d e c i s i o n c a n be made as t o t h e p r e s e n c e o f two o r t h r e e o r g a n i c l i g a n d s i n t h e D y ( I I I ) complexes ( T a b l e I I I ) . The r e s u l t f o r a c e t a t e i s i n agreement w i t h t h e f i n d i n g s o f R e u b e n - ^ showed t h a t a t t h e c o n c e n t r a t i o n used i n t h e p r e s e n t s t u d y a t w o - s t e p

mechanism i s v a l i d , w h i c h i n d i c a t e s D y ( O A c ) 2 ( H 2 0 ) T t o be t h e main s p e c i e s . The e x p e r i m e n t a l d a t a i n d i c a t e t h a t g l y c o l a t e and g l y c e r a t e form 3 : 1 complexes w i t h D y ( I I I ) . 3 - h y d r o x y b u t y r a t e , 3 - h y d r o x y g l u t a r a t e , m a l a t e and c i t r a t e and

EGDA form 2 : 1 c o m p l e x e s .

The ^0 bound s h i f t o f t h e c a r b o x y l a t e group o f a l i g a n d c a n be d e f i n e d as t h e a v e r a g e D y l S o f t h e oxygen atoms o f t h e c a r b o x y l a t e group o f t h i s l i g a n d . As shown b e f o r e1, t h e c a r b o x y l a t e group o f g l y c o l a t e c o o r d i n a t e s t o D y ( I I I ) i n a monodentate f a s h i o n and so t h e o b s e r v e d DylS o f t h e c a r b o x y l a t e group o f t h i s l i g a n d i s t h e a v e r a g e o f t h e D y l S o f a c o o r d i n a t e d and a n o n - c o o r d i n a t e d oxygen atom.

(25)

T a b l e I I I . ^0 bound s h i f t s3 o f c a r b o x y l a t e [X(COO)/p ] and h y d r o x y l g r o u p s [X(OH)/p ] as d e r i v e d f o r t h e D y Lp( H20 ) q c o m p l e x e s . L i g a n d ( L ) qb dc pd X(COO)/p X(OH)/p a c e t a t e 4.2 2 2 880

g l y c o l a t e 2.4 2 3 760 1550 g l y c e r a t e (HO-C-COO-) 2.9 2 3 830 1680 g l y c e r a t e (-CH2OH) 2.9 2 3 155 3 - h y d r o x y b u t y r a t e 3.9 2 2 965 300 3 - h y d r o x y g l u t a r a t e 3.5 - 2 510 510 m a l a t e (HO-C-COO-) 1.5 3 2 670 1340 m a l a t e (-CH2COO~) 1.5 3 2 745

c i t r a t e (HO-C-COO-) 1.9 3 2 690 1175 c i t r a t e (-CH2COO~) 1.9 3 2 495

EGDA 0.8 4 2 280

a I n ppm; q = X ( H2o ) / ( 3 3 . 8 . [ L ]D) . k C a l c u l a t e d number o f c o o r d i n a t e d w a t e r s ( s e e t e x t ) .

c T o t a l number o f c a r b o x y l a t e and h y d r o x y l i c oxygen atoms p e r l i g a n d c o o r d i n a t e d t o d y s p r o s i u m ( I I I ) . d C a l c u l a t e d number o f l i g a n d s ( s e e t e x t ) . Dy HO H2C 1

A l t h o u g h a c e t a t e c o o r d i n a t e s D y ( I I I ) i n a s p e c i a l mode, t h e bound s h i f t has about t h e same v a l u e as t h e bound s h i f t o f g l y c o l a t e . I n t h e case o f

a c e t a t e ^-^C r e l a x a t i o n measurements! showed t h a t t h e c a t i o n i s p o s i t i o n e d on the e x t e n s i o n o f t h e C -C ( c a r b o x y l a t e ) bond:

(26)

C H . C

3 \

Dy

S i n c e t h e 13c r e l a x a t i o n measurements g i v e t h e a v e r a g e p o s i t i o n o f t h e c a t i o n , the complex f o r m a t i o n may a l s o be c o n s i d e r e d as a f a s t e q u i l i b r i u m between two i d e n t i c a l complexes as i l l u s t r a t e d b e l o w . O / C H3C Dy C H . C 3 \ Dy

The 1'0 bound s h i f t of the h y d r o x y l group of g l y c o l a t e , i n w h i c h t h e

c a r b o x y l a t e and t h e C-OH groups a r e a l m o s t c o p l a n a r w i t h D y ( I I I ) p o s i t i o n e d i n the same p l a n e3 2» 3 3t ±s t w i c e as l a r g e as the 1 7o bound s h i f t of t h e

c a r b o x y l a t e g r o u p . T h i s i s a l s o t r u e f o r t h e a - h y d r o x y l group o f g l y c e r a t e . A p p a r e n t l y , t h e 1 7o c o n t a c t s h i f t due t o t h e f o r m a t i o n of a D y ( I I I ) - 0 bond seems t o be r a t h e r c o n s t a n t . I n a d d i t i o n , t h e 1 70 bound s h i f t of the oxygen atoms o f w a t e r i n t h e D y ( I I I ) complex, i n t h e absence of o t h e r l i g a n d s was (55.5/9) . 304 = 1875 ppm, w h i c h i s of about the same magnitude as t h e 1 70 bound s h i f t s of t h e a - h y d r o x y l groups o f g l y c o l a t e and g l y c e r a t e . I n

c o n c l u s i o n , the 1 70 c o n t a c t s h i f t i s r a t h e r c o n s t a n t (1700 + 200 ppm). T h i s p r o v i d e s a b a s i s f o r a s t r a i g h t f o r w a r d i n t e r p r e t a t i o n o f the o b s e r v e d I'O bound s h i f t s of t h e i n d i v i d u a l compounds.

I n t e r p r e t a t i o n of 17Q DylS of i n d i v i d u a l compounds

3 - H y d r o x y b u t y r a t e c o o r d i n a t e s p r e d o m i n a n t l y w i t h i t s c a r b o x y l a t e group i n a b i d e n t a t e way. However, t h e 1 70 bound s h i f t o f t h e 8 - h y d r o x y l group i n d i c a t e s a c o n t r i b u t i o n o f about 15% (= ( 3 0 0 / ( 2 . 9 6 5 ) ) . 100) o f a complex i n w h i c h

(27)

t h e h y d r o x y l and the c a r b o x y l a t e group ( i n a monodentate way) a r e c o o r d i n a t e d . OH I C H , C C H , C Dy I \ / / \ • \ HO O I I HC C ^CH,' H,C V u 7 O 6 The r e s u l t s f o r g l y c e r a t e c l e a r l y p o i n t t o the s i m u l t a n e o u s c o o r d i n a t i o n o f t h e a - h y d r o x y l and t h e c a r b o x y l a t e group t o D y ( I I I ) , the l a t t e r i n a monodentate way, whereas the 8 - h y d r o x y l group c o n t r i b u t e s f o r o n l y 10% (= ( 1 5 5 / ( 2 . 830)) . 100) t o the c o m p l e x a t i o n o f D y ( I I I ) . Dy Dy

/ I \

/ s ' I \ HO O _ HO I O \ / I OH I HC C H,C I C / \ \ I / \ H O C H , O xc ' C H

In the c a s e of 3 - h y d r o x y g l u t a r a t e a f a s t e q u i l i b r i u m between s e v e r a l complexes may e x i s t as i s shown s c h e m a t i c a l l y below.

C O O COOs COO C O O Dy

~-Dy Cf C Dy ^=-^- C

\ / \ \ / \

COO COO COO COO 9 10 11 12

I n the complexes 9, 10, and 11 t h e c a r b o x y l a t e group c o o r d i n a t e s i n a monodentate f a s h i o n , whereas the c a r b o x y l a t e group of 12 c o o r d i n a t e s i n a b i d e n t a t e way. W i t h a D y ( I I I ) - 0 bound s h i f t of 1700 ppm, t h e r e l a t i v e

i m p o r t a n c e of the complexes can be e s t i m a t e d t o d e c r e a s e i n the o r d e r 12 > 9, 10 > 11.

The e x p e r i m e n t a l d a t a f o r m a l a t e showed t h a t complex 13 p r e d o m i n a t e s , i n w h i c h s i m u l t a n e o u s c o o r d i n a t i o n of the h y d r o x y l and b o t h c a r b o x y l a t e groups o c c u r .

(28)

16

As found f o r g l y c o l a t e , t h e 1 70 bound s h i f t o f the h y d r o x y l group i s about t w i c e as l a r g e as t h a t o f b o t h c a r b o x y l a t e g r o u p s .

H 'c \ > ~ V

H C ^ /

coo'

13

The 170 bound s h i f t s o f c i t r a t e may be e x p l a i n e d by a f a s t e q u i l i b r i u m between f o u r complexes (14-17) o f w h i c h 14 and 15 a r e t h e main s p e c i e s , i n a c c o r d a n c e w i t h o u r e a r l i e r r e s u l t s * "2. The e x p e r i m e n t a l d a t a a l s o i n d i c a t e t h e g r e a t e r i m p o r t a n c e o f 16 as compared t o 17. I n t h i s c a s e t h e d i f f e r e n c e i n t h e 1 70 bound s h i f t s o f t h e c a r b o x y l a t e groups i s c l e a r l y a t t r i b u t e d t o t h e s m a l l e r r e s i d e n c e time o f D y ( I I I ) a t one o f t h e - C H 2C 0 0~ g r o u p s . C O ON C O O / \ / H j C

\ g--~?

y

"*\ g

,CH2COON C H2C O O K / <=£ H O - C - C O O — D y --=5= O O C - C - S - - - 6 y /NC O o ' / NC O O - - - D y \ / \ / H2C X H2<=x / C H2C O O ' C H j C O O C O O C O O ' ' 16 17 14 15 U n f o r t u n a t e l y , a d d i t i o n o f D y ( I I I ) c h l o r i d e t o an aqueous s o l u t i o n (0.35 M) o f e t h o x y a c e t a t e r e s u l t e d i n p r e c i p i t a t i o n o f D y ( I I I ) e t h o x y a c e t a t e . However, i n t h e p r e s e n c e o f a s m a l l amount o f ODA ([ODA] = 0.008 M and [ e t h o x y a c e t a t e ] = 0.15 M) no p r e c i p i t a t i o n o c c u r r e d and so t h e DylS o f t h e !'0 r e s o n a n c e s o f e t h o x y a c e t a t e c o u l d be measured. The r a t i o o f t h e D y l S o f t h e e t h e r and c a r b o x y l a t e 1 70 r e s o n a n c e s (^ ( - C — ) /A (COO)) was o n l y 0.8. Assuming a c o n s t a n t 1 70 c o n t a c t s h i f t upon t h e f o r m a t i o n o f a D y ( I I I ) - 0 bond, i r r e s p e c t i v e o f t h e n a t u r e o f t h e oxygen atom, t h i s r e s u l t p o i n t s t o a f a s t e q u i l i b r i u m between two c o m p l e x e s , o f w h i c h 18 a p p e a r s t o be t h e main s p e c i e s . Comparison o f t h e s t a b i l i t y c o n s t a n t s3^ o f t h e C a ( I I ) complexes o f a c e t a t e , g l y c o l a t e and

(29)

r e s p e c t i v e l y , s u p p o r t s t h i s i n t e r p r e t a t i o n . / ^ ' \ C H . C H j O C H . C ^ D y ^ CH,CH,—o" S0 H,C C 2 \ o 18 19

The l o w 1 70 bound s h i f t o f t h e c a r b o x y l a t e groups o f EGDA i n d i c a t e a r e l a t i v e l y s m a l l r e s i d e n c e time o f D y ( I I I ) a t t h e s e c a r b o x y l a t e g r o u p s . U n f o r t u n a t e l y , a d d i t i o n a l i n f o r m a t i o n about t h e c o m p l e x e s , w h i c h may be formed i n aqueous s o l u t i o n , c o u l d n o t be o b t a i n e d , because t h e exchange o f D y ( I I I ) appeared t o be s l o w f o r t h e 170 e t h e r r e s o n a n c e o f EGDA ( v i d e i n f r a ) .

Slow l i g a n d exchange

The 1^0 c a r b o x y l a t e r e s o n a n c e s o f t h e r e l a t i v e l y s t r o n g l y c o m p l e x i n g compounds ODA, CMOS and NTA and t h e 1 70 e t h e r r e s o n a n c e s o f ODA and EGDA d i d n o t show any i n d u c e d s h i f t upon a d d i t i o n o f D y ( I I I ) c h l o r i d e . The i n t e n s i t i e s o f t h e 170 c a r b o x y l a t e r e s o n a n c e s o f ODA, CMOS and NTA, however, were r e d u c e d p r o p o r t i o n a l l y t o t h e amount o f D y ( I I I ) added. A f t e r a d d i t i o n o f s m a l l amounts of D y ( I I I ) t h e l 70 e t h e r r e s o n a n c e s o f ODA and EGDA were s e v e r e l y b r o a d e n e d . O b v i o u s l y , c o m p l e x a t i o n and d e c o m p l e x a t i o n o f D y ( I I I ) i n t h e s e c a s e s a r e s l o w on t h e 170 NMR time s c a l e a t 73 °C, 'i»,e» s e p a r a t e s i g n a l s o c c u r f o r t h e f r e e and complexed l i g a n d s . A t 90 °C t h e l i n e w i d t h o f t h e above m e n t i o n e d 1 70 c a r b o x y l a t e r e s o n a n c e s was i n c r e a s e d s u b s t a n t i a l l y . C l e a r l y , t h e l i g a n d exchange r a t e i s enhanced, r e s u l t i n g i n b r o a d e r ^70 r e s o n a n c e s o f t h e f r e e l i g a n d , b u t i s s t i l l r e l a t i v e l y s l o w on t h e l7o NMR time s c a l e . U n f o r t u n a t e l y , t h e complexed l i g a n d s c o u l d n o t be o b s e r v e d . T h i s i s p r o b a b l y due t o e x t e n s i v e l i n e b r o a d e n i n g o f t h e 1 7o r e s o n a n c e s o f t h e D y ( I I I ) c o m p l e x e s . G f e l l e r and M e r b a c h3^ have shown t h a t t h e NTA exchange f o r a s e r i e s o f L n ( I I I ) - N T A complexes i s s l o w a t 35 °C on t h e NMR time s c a l e . On t h e o t h e r hand, t h e ODA and CMOS exchange were found t o be f a s t a t 35 °C on t h e lB NMR time

s c a l e ^ l j a p p a r e n t l y due t o t h e s m a l l e r c h e m i c a l s h i f t d i f f e r e n c e s between f r e e and complexed l i g a n d s f o r NMR w i t h r e s p e c t t o 170 NMR. These d a t a i n d i c a t e t h a t t h e r a t e o f exchange o f NTA i s s m a l l e r t h a n t h a t o f ODA and CMOS. The w a t e r exchange i n t h e above m e n t i o n e d systems appeared t o be f a s t ; no, o r a r a t h e r s m a l l , i n d u c e d s h i f t o f t h e 1 70 w a t e r r e s o n a n c e was o b s e r v e d a t low p v a l u e s ( F i g . 3 and 4 ) .

(30)

18

In t h e c a s e o f ODA t h e o b s e r v e d D y l S o f water i s n o t e w o r t h y : f o r p < 0.3 the 1^0 w a t e r r e s o n a n c e d i d n o t s h i f t a t a l l , whereas f o r p > 0.3 a s h i f t t o h i g h f i e l d o c c u r s t o t h e same e x t e n t as i n the absence o f ODA ( F i g . 3 ) . T h i s

3-p i c t u r e c l e a r l y r e f l e c t s the 3-p r e s e n c e o f t h e 3:1 c o m 3-p l e x , Dy(0DA).j , a t 3-p < 0.3, _i_._e. t h e t h r e e t r i d e n t a t e ODA l i g a n d s p r o h i b i t any c o o r d i n a t i o n o f w a t e r i n a c c o r d a n c e w i t h a c o o r d i n a t i o n number o f n i n e f o r D y ( I I I ) . The b e h a v i o u r o f the 1'0 w a t e r r e s o n a n c e i n t h e case o f NTA and CMOS i s d i f f e r e n t .

A l t h o u g h NTA and CMOS form more s t a b l e D y ( I I I ) c o m p l e x e s , a d d i t i o n o f D y ( I I I ) r e s u l t e d i n a s m a l l s h i f t t o h i g h f i e l d o f t h e *70 w a t e r r e s o n a n c e ( F i g . 4 ) . A p p a r e n t l y , NTA and CMOS a r e i n c a p a b l e o f removing a l l t h e w a t e r s from t h e D y ( I I I ) c a t i o n . A t l o w p v a l u e s t h e r e s u l t s p o i n t t o t h e f o r m a t i o n of DylS a F i g . 3 F i g . 4 F i g . 3. The D y ( I I I ) - i n d u c e d s h i f t s ( D y l S ) o f t h e 1 70 w a t e r r e s o n a n c e i n t h e p r e s e n c e o f o x y d i a c e t a t e (ODA) v e r s u s t h e m o l a r r a t i o D y ( I I I ) / 0 D A ( p ) at 73 "C; [ODA] = 0.35 M. F i g . 4. The D y ( I I I ) - i n d u c e d s h i f t s ( D y l S ) o f t h e 170 w a t e r r e s o n a n c e i n t h e p r e s e n c e o f ( a ) CMOS and (b) NTA v e r s u s t h e m o l a r r a t i o s

(31)

[ D y ( N T A )2( H 2 0 ) ] and [Dy(CM0S)2(H20) ] c o m p l e x e s , w h i c h c o r r e s p o n d s t o f o u r donor atoms per l i g a n d . C o n s e q u e n t l y , the NTA and CMOS l i g a n d s c o o r d i n a t e t o D y ( I I I ) i n aqueous s o l u t i o n i n the f o l l o w i n g way:

Dy

2 0

~-o

21

In the case of NTA t h e 1 70 w a t e r s h i f t a t p > 0.5 i s one t h i r d of the v a l u e 3+

e x p e c t e d f o r t h e a d d i t i o n a l f o r m a t i o n of Dy(H20)g . T h i s p o i n t s t o t h e

f o r m a t i o n of a complex w i t h a g r o s s f o r m u l a [ D y ( N T A ) ( H 2 0 ) 3 ln a t p > 0.5, w h i c h 36 may be due t o the t e n d e n c y of NTA t o form d i m e r i z e d hydroxy-NTA complexes and/or t o the f o r m a t i o n of i n t e r m o l e c u l a r a c e t a t e b r i d g e s such as t h o s e found

1 o i n the c r y s t a l s t r u c t u r e of Dy(NTA).2H2° •

C o n c l u s i o n s

The r e s u l t s d e m o n s t r a t e the a p p l i c a b i l i t y of 1 70 NMR s p e c t r o s c o p y t o the s t u d y of c o m p l e x a t i o n phenomena between p o l y o x y g e n compounds and c a t i o n s i n aqueous medium.

The D y ( I I I ) i n d u c e d 1 70 s h i f t s of b o t h the l i g a n d and the w a t e r p r o v i d e v a l u a b l e i n f o r m a t i o n on the c o m p l e x a t i o n s i t e s of the l i g a n d , t h e

s t o i c h i o m e t r y of the D y ( I I I ) complexes formed and the number of c o o r d i n a t e d w a t e r s . The D y l S d a t a s u g g e s t a r a t h e r c o n s t a n t 1 70 c o n t a c t s h i f t upon f o r m a t i o n of D y ( I I I ) - 0 bonds, w h i c h o f f e r s a s t r a i g h t f o r w a r d i n t e r p r e t a t i o n of t h e D y ( I I I ) i n d u c e d *70 s h i f t d a t a i n terms of O - c o o r d i n a t i o n s i t e s of the l i g a n d . E x p e r i m e n t a l The 170 NMR s p e c t r a were r e c o r d e d on e i t h e r a V a r i a n XL-100-15 s p e c t r o m e t e r i n the p u l s e FT mode or on a N i c o l e t NT-200 WB s p e c t r o m e t e r .

(32)

20

t o p r o v i d e t h e 13.56 MHz o b s e r v e f r e q u e n c y . ( F o r 10 kHz s p e c t r a l w i d t h 410 d a t a p o i n t s were u s e d ) . The number of t r a n s i e n t s was i n t h e range o f 10^ -2 . 10^ w i t h an a c q u i s i t i o n time o f 0.0-2 s and a p u l s e w i d t h o f 70 ys

( c o r r e s p o n d i n g t o a 90° p u l s e ) . 1 70 c h e m i c a l s h i f t s were measured w i t h r e s p e c t t o t h e 13.56 MHz o b s e r v e f r e q u e n c y . The D y l S o f t h e ^0 r e s o n a n c e o f ^ 0 was c o r r e c t e d f o r t h e DylS o f t h e *H r e s o n a n c e o f H2O, w h i c h was used f o r i n t e r n a l l o c k . T h i s c o r r e c t i o n c o u l d be n e g l e c t e d f o r t h e r e l a t i v e l y l a r g e D y l S o f t h e

c a r b o x y l a t e r e s o n a n c e .

The N i c o l e t NT-200 WB o p e r a t e d a t 27.12 MHz. The number o f t r a n s i e n t s was i n the range 300-2.10^ w i t h an a c q u i s i t i o n time o f 0.04 o r 0.05 s, a p u l s e w i d t h of 35 us ( c o r r e s p o n d i n g t o a 90° p u l s e ) and a s p e c t r a l w i d t h o f 20 o r 27 kHz. The 2H r e s o n a n c e o f D20 was used f o r i n t e r n a l l o c k .

The w a t e r c o n t e n t o f t h e 1 ' 0 - e n r i c h e d sodium c a r b o x y l a t e s was d e t e r m i n e d by 60 MHz XH NMR ( s e e T a b l e I V ) .

T a b l e I V . Moles o f w a t e r p r e s e n t p e r mole o f *70 - e n r i c h e d sodium s a l t .

a c e t a t e 0.3 g l y c o l a t e 1.0 g l y c e r a t e 0.5 3 - h y d r o x y b u t y r a t e 0.0 3 - h y d r o x y g l u t a r a t e 1.8 m a l a t e c i t r a t e EGDA e t h o x y a c e t a t e ODA 1.7 2.6 1.2 0.2 1.9 R e f e r e n c e s

1. A.P.G. Kieboom, C.A.M. V i j v e r b e r g , J.A. P e t e r s and H. v a n Bekkum, R e e l . T r a v . Chim. Pays-Bas 96, 315 ( 1 9 7 7 ) , and r e f e r e n c e s c i t e d t h e r e i n . 2. A.P.G. Kieboom, J.M. v a n d e r T o o r n , J.A. P e t e r s , W.M.M.J. Bovée, A.

Sinnema, C.A.M. V i j v e r b e r g and H. van Bekkum, R e e l . T r a v . Chim. Pays-Bas 97, 247 ( 1 9 7 8 ) ; C.A.M. V i j v e r b e r g , J.A. P e t e r s , A.P.G. Kieboom and H. van Bekkum, R e e l . T r a v . Chim. Pays-Bas 99, 403 ( 1 9 8 0 ) .

3. W.G. K l e m p e r e r , Angew. Chem. 9Q_, 258 ( 1 9 7 8 ) .

4. T.L. B l u n d e l l and J.A. J e n k i n s , Chem. Soc. Rev. _6_, 139 ( 1 9 7 7 ) .

5. " C a l c i u m B i n d i n g P r o t e i n s and C a l c i u m F u n c t i o n " , R.H. Wasserman, R.A. C o r r a d i n o , E. C a r a f o l i , R.H. K r e t s i n g e r , D.H. MacLennan and F.L. S i e g e l , New Y o r k , E l s e v i e r N o r t h - H o l l a n d 1977, pp. 21-28.

6. D.W. D a r n a l l and E.R. Birnbaum, J . B i o l . Chem. 245, 6484 ( 1 9 7 0 ) . 7. B.W. Matthews and L.H. Weaver, B i o c h e m i s t r y J_3, 1719 ( 1 9 7 4 ) .

(33)

8. B.L. B a r n e t t and V.A. Uchtman, I n o r g . Chem. _L8_, 2674 ( 1 9 7 9 ) . 9. J . L . H o a r d , Byungkook Lee and M.D. L l n d , J . Am. Chem. Soc. 87, 1612

( 1 9 6 5 ) .

10. M.D. L i n d , Byungkook Lee and J . L . Hoard, J . Am. Chem. Soc. 87, 1611 ( 1 9 6 5 ) .

11. L.R. N a s s i m b e n i , M.R.W. W r i g h t , J.C. van N i e k e r k and P.A. M c C a l l u m , A c t a C r y s t a l l o g r . B 35, 1341 ( 1 9 7 9 ) .

12. L.L. M a r t i n and R.A. J a c o b s o n , I n o r g . Chem. 11, 2785 ( 1 9 7 2 ) . 13. L.L. M a r t i n and R.A. J a c o b s o n , I n o r g . Chem. _U_, 2789 ( 1 9 7 2 ) .

14. C.F. B e l y a e v a , M.A. P o r a i - K o s h i t s and T . I . M a l i n o w s k y , E u r . C r y s t a l l o g r . M e e t i n g 1974, 346.

15. V.A. Uchtman and R.P. O e r t e l , J . Am. Chem. Soc. _9_5, 1802 ( 1 9 7 3 ) . 16. J . A l b e r t s s o n , A c t a Chem. Scand. _22_, 1563 ( 1 9 6 8 ) .

17. I . E l d i n g , A c t a Chem. Scand. A 30, 649 ( 1 9 7 6 ) .

18. W.B. L e w i s , J.A. J a c k s o n , J . F . Lemons and H. Taube, J . Chem. Phys. 36, 694 ( 1 9 6 2 ) .

19. J . Reuben and D. F i a t , J . Chem. Phys. _51_, 4909 ( 1 9 6 9 ) .

20. R.M. G o l d i n g and M.P. H a l t o n , A u s t r . J . Chem. 25_, 2577 ( 1 9 7 2 ) . 21. B. B l e a n e y , J . Magn. Res._8_, 91 ( 1 9 7 2 ) .

22. B. B l e a n e y , C M . Dobson, B.A. L e v i n e , R.B. M a r t i n , R.J.P. W i l l i a m s and A.V. X a v i e r , J . Chem. S o c , Chem. Commun. 1972, 7 9 1 .

23. C.N. R e i l l e y , B.W. Good and R.D. A l l e n d o e r f e r , A n a l . Chem. _48_, 1446 ( 1 9 7 6 ) .

24. J . Reuben and G.A. E l g a v i s h , J . Am. Chem. Soc. _98_, 4755 ( 1 9 7 6 ) .

25. B.L. S h a p i r o and M.D. J o h n s t o n , J r . , J . Am. Chem. S o c . 94, 8185 ( 1 9 7 2 ) . 26. L.O. Morgan, J . Chem. Phys. 38, 2788 ( 1 9 6 3 ) .

27. J . Reuben, B i o c h e m i s t r y 10, 2834 ( 1 9 7 1 ) .

28. Y. Haas and G. S t e i n , J . Phys. Chem. 75_, 3677 ( 1 9 7 1 ) .

29. I . G r e n t h e , G. H e s s l e r and H. O t s , A c t a Chem. Scand. _27_» 2543 ( 1 9 7 3 ) . 30. See e_.£.

a. H.A. C h r i s t , P. D i e h l , H.R. S c h n e i d e r and H. Dahn, H e l v . Chim. A c t a 44, 865 ( 1 9 6 1 ) ;

b. C. D e l s e t h and J . P . K i n t z i n g e r , H e l v . Chim. A c t a _59_, 466 ( 1 9 7 6 ) ; c. T. Sugawara, Y. Kawada and H. Iwamura, Chem. L e t t . 1978, 1371; d. P.A.J. G o r i n and M. Mazurek, C a r b o h y d r . R e s . 67, 479 ( 1 9 7 8 ) ; e. J.K. C r a n d e l l and M.A. Centeno, J . O r g . Chem. 44, 1183 ( 1 9 7 9 ) ; f . J.K. C r a n d e l l , M.A. Centeno and S. BjSrresen, J . O r g . Chem. 44, 1184

(34)

22

31. I . P . G e r o t h a n a s s i s , J . L a u t e r w e i n and N. Sheppard, J . Magn. Res. 48, 431 ( 1 9 8 2 ) .

32. I . G r e n t h e , A c t a Chem. Scand. _23, 1752 ( 1 9 6 9 ) . 33. I . G r e n t h e , A c t a Chem. Scand. 26, 1479 ( 1 9 7 2 ) .

34. A.E. M a r t e l l and R.M. S m i t h , C r i t i c a l S t a b i l i t y C o n s t a n t s , V o l . 3: Other o r g a n i c l i g a n d s 1977, 3, 24, 69.

35. Y. G f e l l e r and A. Merbach, I n o r g . Chem. A c t a 2% 217 ( 1 9 7 8 ) .

36. N . I . Snezhko, L.V. Anan'eva, N . I . P e c h u r o v a , L . I . Martynenko and V . I . S p i t s y n , Russ. J . I n o r g . Chem. 17, 1539 ( 1 9 7 2 ) .

(35)

I I I

SYNTHESIS OF 1 70-ENRICHED SODIUM SALTS OF HYDROXY- AND ETHERCARBOXYLATES

A b s t r a c t

For the s t u d y of d y s p r o s i u m ( I I I ) h y d r o x y - and e t h e r c a r b o x y l a t e complexes I n w a t e r by 1 70 NMR s p e c t r o s c o p y a number o f 1 70 - e n r i c h m e n t p r o c e d u r e s have been a p p l i e d .

C a r b o x y l a t e groups were e n r i c h e d e i t h e r by d i r e c t i s o t o p i c oxygen exchange w i t h 1 70 - e n r i c h e d w a t e r u s i n g the c o r r e s p o n d i n g c a r b o x y l l c a c i d s o r by a l k a l i n e h y d r o l y s i s of the c o r r e s p o n d i n g m e t h y l o r e t h y l e s t e r s .

1 70 - e n r i c h m e n t of a l d e h y d e s and k e t o n e s was r e a d i l y a c h i e v e d by a c i d c a t a l y z e d oxygen exchange w i t h l70 - e n r i c h e d w a t e r .

1 70 - e n r i c h m e n t of h y d r o x y l groups was a c h i e v e d by: ( i ) r e a c t i o n o f bromo compounds w i t h 1 70 - e n r i c h e d w a t e r i n the p r e s e n c e of Ag20, ( i i ) a c i d h y d r o l y s i s of d l a z o compounds i n 1 70 - e n r i c h e d w a t e r , ( i i i ) NaBHz, o r L i A l H ^ r e d u c t i o n of l 70 - e n r i c h e d a l d e h y d e s or k e t o n e s , and ( i v ) c y a n o h y d r i n s y n t h e s i s u s i n g l70 - e n r i c h e d k e t o n e .

"^O-enrichment of e t h e r groups was a c h i e v e d by a W i l l i a m s o n s y n t h e s i s u s i n g an 1 70 - e n r i c h e d a l c o h o l or by c a r b o x y m e t h y l a t i o n of an 1 70 - e n r i c h e d a l c o h o l u s i n g e t h y l d i a z o a c e t a t e .

I n t r o d u c t i o n

Of the t h r e e s t a b l e oxygen i s o t o p e s ^ 0 , 170 , and 18o, o n l y 170 can be s t u d i e d by n u c l e a r m a g n e t i c r e s o n a n c e s p e c t r o s c o p y . However, the NMR c h a r a c t e r i s t i c s o f t h i s n u c l e u s a r e r a t h e r u n f a v o u r a b l e : ( i ) t h e n a t u r a l abundance i s 0.037%, ( i i ) the NMR s e n s i t i v i t y i s 2.9 x 1 0- 2 r e l a t i v e t o *H and ( i i i ) the n u c l e a r s p i n i s 5/2. These c h a r a c t e r i s t i c s i n c o m b i n a t i o n w i t h t h e w i s h t o o b t a i n 1 70

(36)

- C G

2

H 2£=? - CCT

2

H - " C O > a

H , 0 *

- C O , R — - — C O , N a

NaOH

2

•OH

NaH

— C

Br

— C — O

R

OH

B F

3

. O E t

2

H — C — O R

— C

Br

H

2

0

A g

2

0

— C — O H

X N ,

H

2

0

H — C — O H

Scheme I . l ^ O - e n r i c h m e n t p r o c e d u r e s used

(37)

r e s o n a n c e s at low c o n c e n t r a t i o n s i n w a t e r , r e q u i r e d l70 - e n r i c h m e n t of the compounds s t u d i e d . For the l70 - e n r i c h m e n t p r o c e d u r e s w a t e r c o n t a i n i n g a b o u t 20% 1'0 i s c o m m e r c i a l l y a v a i l a b l e .

Most of the i n v e s t i g a t i o n s of the i s o t o p i c exchange of oxygen d e s c r i b e d i n l i t e r a t u r e r e f e r t o 1^0 l a b e l i n g . However, the p r o c e d u r e s w h i c h have been d e v e l o p e d f o r l ^ O - l a b e l i n g l >2 of o r g a n i c compounds c a n , of c o u r s e , a l s o be a p p l i e d f o r l ^ O - l a b e l i n g . The methods used i n t h i s i n v e s t i g a t i o n f o r 'o-e n r i c h m 'o-e n t of c a r b o x y l a t 'o-e , h y d r o x y l and 'o-e t h 'o-e r oxyg'o-ens ar'o-e summariz'o-ed i n Scheme I .

L a b e l i n g of c a r b o x y l i c a c i d s can be a c h i e v e d by i s o t o p i c oxygen exchange w i t h w a t e r . S i n c e the exchange at room t e m p e r a t u r e i s s l o w , g e n e r a l l y e l e v a t e d t e m p e r a t u r e s (80-90 °C) a r e a p p l i e d . M o r e o v e r , the exchange i s c a t a l y z e d by m i n e r a l a c i d s . Sodium c a r b o x y l a t e s u s u a l l y do not exchange w i t h w a t e r .

I n the case of e s t e r s i s o t o p i c exchange of oxygen competes w i t h h y d r o l y s i s . On the o t h e r hand, the a l k a l i n e h y d r o l y s i s of m e t h y l o r e t h y l e s t e r s can be a p p l i e d t o o b t a i n l a b e l e d a l k a l i s a l t s of c a r b o x y l i c a c i d s .

A p a r t from the exchange of some t e r t i a r y a l c o h o l s3 t the d i r e c t oxygen exchange o f a l c o h o l s i s s l o w and r e q u i r e s extreme c o n d i t i o n s ^1. T h e r e f o r e , l a b e l i n g of the h y d r o x y l group needs s e v e r a l s y n t h e t i c s t e p s .

A l d e h y d e s and k e t o n e s may undergo oxygen exchange r e a d i l y . Both a c i d and base c a t a l y z e d exchange have been o b s e r v e d , but g e n e r a l l y the exchange i s a c i d c a t a l y z e d . The w i d e l y a c c e p t e d mechanism f o r exchange i s the r e v e r s i b l e h y d r a t i o n of the c a r b o n y l g r o u p e- 7.

*70 - e n r i c h m e n t l e v e l s of 5-10% were o b t a i n e d by t h e s e p r o c e d u r e s , or c o m b i n a t i o n s t h e r e o f , as d e s c r i b e d below i n more d e t a i l f o r a number o f p o l y o x y g e n compounds. The p r o c e d u r e s d e s c r i b e the r e a c t i o n s by w h i c h the i n d i c a t e d oxygen atoms were e n r i c h e d . Other oxygen atoms w i t h i n the same compound may a l s o be e n r i c h e d , however, t o a much s m a l l e r e x t e n t , by accompanying exchange r e a c t i o n s .

S y n t h e s i s of ^ O - e n r i c h e d compounds

E t h y l [ 2 - 1 7 p ] g l y c o l a t e ( 1 ) was p r e p a r e d by a c i d i c h y d r o l y s i s of e t h y l

d i a z o a c e t a t e i n l ^ O - e n r i c h e d w a t e r . S m a l l amounts of d i e t h y l [ l70 ] o x y d i a c e t a t e a r e formed by the r e a c t i o n of e t h y l d i a z o a c e t a t e and 1. P u r i f i c a t i o n of 1 was r e a d i l y a c h i e v e d by d i s t i l l a t i o n i n v a c u o .

(38)

26 H , 0 * r— H O C H , C O O E t [ 2 , 3 -1 70 ] g l y c e r i c a c i d ( 2 ) was p r e p a r e d by r e a c t i o n o f l ^ C — e n r i c h e d w a t e r and 2 , 3 - d i b r o m o p r o p i o n i c a c i d i n t h e p r e s e n c e o f Ag20« P u r i f i c a t i o n was a c h i e v e d v i a r e p e a t e d c r y s t a l l i z a t i o n of t h e c a l c i u m s a l t of 2. C H , — C H C O O H - - C H , — C H — C O O H I I A9 2 ° J I B r Br * O H OH 2 E t h y l 3 - [i /O l h y d r o x y b u t v r a t e ( 3 ) was s y n t h e s i z e d by NaBH^ r e d u c t i o n o f e t h y l 3 - [1 70 ] o x o b u t y r a t e , w h i c h was o b t a i n e d from t h e c o r r e s p o n d i n g u n l a b e l e d compound by a c i d c a t a l y z e d exchange w i t h 1 70 - e n r i c h e d w a t e r i n e t h a n o l . Compound 3 was p u r i f i e d by d i s t i l l a t i o n i n vacuo.

C O O E t I C H , I c = o I C H , COOEt I C H , I „ • C = o I C H , C O O E t NaBH^ HC — O H I C H , 3 - [1 7O l h v d r o x y g l u t a r i c a c i d ( 4 ) was o b t a i n e d by NaBIfy r e d u c t i o n of d i e t h y l [1 70 ] a c e t o n e d i c a r b o x y l a t e f o l l o w e d by a c i d i c h y d r o l y s i s . l70 - e n r i c h m e n t o f d i e t h y l a c e t o n e d i c a r b o x y l a t e was a c h i e v e d by a c i d c a t a l y z e d exchange w i t h 1 70 -e n r i c h -e d wat-er i n -e t h a n o l . Compound 4 was p u r i f i -e d by c r y s t a l l i z a t i o n .

C O O E t I CH2 H2O* c = o H+ I C H2 I C O O E t C O O E t CH 2 NaBH, COOEt I C H , C O O H I C H , C = 0 I C H , I C O O E t HC- * O H AG 50W —X 8 C H , C O O E t C H , I C O O H 4

(39)

D i m e t h y l [1 7Q ] h y d r o x y s u c c i n a t e ( 5 ) . R e a c t i o n o f 1 70 - e n r i c h e d w a t e r and b r o m o s u c c i n i c a c i d i n t h e p r e s e n c e o f Ag2° f o l l o w e d by e s t e r i f i c a t i o n w i t h diazomethane y i e l d e d 5 c o n t a m i n a t e d w i t h d i m e t h y l f u m a r a t e . P u r i f i c a t i o n was a c h i e v e d by p r e p a r a t i v e HPLC. C O O H C O O H C O O C H , 1 1 x H C - B r H , 0 * H C — O H C H , N , HC — O H C H , A3 2 ° C H , C H , I I I C O O H C O O H C O O C H3 5 [ H y d r o x y -1 70 ] c i t r i c a c i d ( 8 ) was p r e p a r e d by a c y a n o h y d r i n s y n t h e s i s s t a r t i n g from d i m e t h y l [ ^0] a c e t o n e d i c a r b o x y l a t e f o l l o w e d by m e t h a n o l y s i s o f t h e c o r r e s p o n d i n g c y a n o h y d r i n . A l k a l i n e h y d r o l y s i s and i o n - e x c h a n g e y i e l d e d 8. P u r i f i c a t i o n o f 8 was a c h i e v e d by p r e p a r a t i v e HPLC. C O O C H , I 3 C H , I 2 c = o I C O O C H , H , 0 C O O C H I C H , c = o C O O C H , HCN C O O C H , C H2 NC — C — O H I C O O C H3 6 C O O C H , I 3 C H , O O C — C—*OH I C H , I 2 C O O C H , 2. A G 5 0 W - X 8 C O O H I l "2 H O O C - C — O H I C H2 C O O H [ 170 ] e t h a n o l ( 1 1 ) was s y n t h e s i z e d by t h e a c i d c a t a l y z e d h y d r o l y s i s o f 1,1-d i p r o p o x y e t h a n e y i e l 1,1-d i n g [1 70 ] a c e t a l d e h y d e , w h i c h was r e d u c e d w i t h L1A1H4 t o t h e c o r r e s p o n d i n g a l c o h o l . P r O PrO \ H C C H , / 3 LiAIH, 10

Cytaty

Powiązane dokumenty

First, it cancelled the process of the promised increasing of the contribution rate for the second pillar of the system; second, the regulations that were prepared for

Ujawniło się przede wszystkim jak słabo jest zakorzeniona w ludzkich postawach zasada solidarności, która wydawała się być nadrzędnym kryterium wyborów

Apart from the aforementioned issues, the extensive programme of the conference included talks on collocates of the words prejudice and discrimination in British news- papers

The implementation of social integration consists in creating opportunities for the disabled to par- ticipate in normal life, providing access to all public institutions and

wiście, same zewnętrzne cechy budżetu nie mogą jeszcze przesądzać zna­ czenia klasyfikacji ustaw budżetowych w realizacji funkcji budżetu. Uwzględnić trzeba także

U podstaw tego paradygmatu badawczego le&amp;y za o&amp;enie, &amp;e krótszy czas detekcji punktu jest wska'- nikiem zatrzymania uwagi wzrokowej przez bodziec

Wskazywano najpierw na Melchizedecha, który był królem Szalemu (Jerozolimy) i kapłanem Boga Najwyższego (Rz 14, 18-20), a następnie na króla Dawida, którego auto- rytet

The essay deals w ith associations between historiography and literature (particularly historiography and literature o f early ages) in the context o f changeable