• Nie Znaleziono Wyników

BFKL Pomeron loop contribution in diffractive photoproduction and inclusive hadroproduction of $J/\psi$ and $\Upsilon$

N/A
N/A
Protected

Academic year: 2022

Share "BFKL Pomeron loop contribution in diffractive photoproduction and inclusive hadroproduction of $J/\psi$ and $\Upsilon$"

Copied!
34
0
0

Pełen tekst

(1)

P u b l i s h e d f o r SISSA b y S p r i n g e r

Received: May 6, 2019 A ccepted: July 12, 2019 Published: July 23, 2019

B F K L Pomeron loop contribution in diffractive photoproduction and inclusive hadroproduction of J / ψ and Y

P io tr K o tko ,“ Leszek M o ty k a

,6

M ariusz Sadzikowski

6

and Anna M . S tastoc aIn stitu te o f N u c lear P h y s ic s P olish A c a d e m y o f Sciences,

E. Radzikowskiego 152, 3 1 -3 4 2 Kraków, P o la n d bIn stitu te o f Ph y sic s, Jagellonian University,

S. L o ja sie w ic za 11, 3 0 -3 4 8 Kraków, P o la n d

cD e p a r t m e n t o f Ph y sic s, The P e n n s y lv a n ia S ta te University, U n iversity P ark, P A 16802, U.S.A.

E - m a i l : piotr.kotko@ifj.edu.pl, leszekm@th.if.uj.edu.pl, ufsadzik@th.if.uj.edu.pl, ams52@psu.edu

A b s t r a c t : W e an a ly z e c o n trib u tio n s to th e h eav y v e c to r m eso n p ro d u c tio n w ith large tra n s v e rs e m o m e n tu m in p ro to n -p ro to n a n d d iffractiv e p h o to n -p ro to n s c a tte rin g d riv e n by a n ex ch an g e of tw o B a litsk y -F a d in -K u ra e v -L ip a to v P o m e ro n s in th e sq u a re d a m p litu d e s . T h e P o m e ro n s cou p le to a single p a r to n a n d fo rm a P o m e ro n lo op closed by th e v ec to r m eson im p a c t fa c to rs . F o r th e p h o to n -p ro to n case th e d iffractiv e c u t of th e P o m e ro n loo p c o n trib u te s , a n d for th e inclusive h a d ro p ro d u c tio n on e finds th e loo p w ith tw o c u t P o m e ro n s. W e c o m p u te b o th of th e s e P o m e ro n loop c o n trib u tio n s a n d s tu d y in d e ta il th e ir p ro p e rtie s. T h e re su lts a re th e n used to c a lc u la te th e cross sectio n s for d iffractiv e J / 0 p h o ­ to p ro d u c tio n w ith larg e tra n s v e rs e m o m e n tu m a t H E R A a n d th e c o rre la te d tw o P o m e ro n c o n trib u tio n for inclusive J / 0 a n d Y p ro d u c tio n cross sectio n s a t th e L H C . W ith in a unified a p p ro a c h a go o d d e s c rip tio n of th e p h o to p ro d u c tio n d a t a is fo un d, b u t c o rre la te d tw o P o m e ro n m ech an ism gives only a sm all c o n trib u tio n to h a d ro p ro d u c tio n of th e v e c to r m esons a t th e L H C .

K e y w o r d s : Q C D P h e n o m en o lo g y

A r X i v e P r i n t : 1905.00130

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(2)

C o n te n ts

1 I n t r o d u c t i o n 1

2 D i f f r a c t i v e h e a v y v e c t o r m e s o n p r o d u c t i o n 5 3 T w o P o m e r o n c o n t r i b u t i o n t o h e a v y v e c t o r m e s o n h a d r o p r o d u c t i o n 10

3.1 D ire c t a p p ro a c h 10

3.2 T h e color fa c to rs 12

3.3 V ecto r m eson h a d ro p ro d u c tio n in co n fo rm al re p re s e n ta tio n of th e B F K L

P o m e ro n 14

4 P r o p e r t i e s o f t h e P o m e r o n lo o p a t t h e p a r t o n le v e l 17

5 N u m e r i c a l r e s u l t s 19

6 D i s c u s s i o n 25

7 S u m m a r y a n d c o n c l u s i o n s 2 7

1 In tr o d u c tio n

T h e h eav y v e c to r m esons w ith n e g a tiv e C -p a r ity — c h a rm o n ia a n d b o tto m o n ia — are clas­

sical p ro b e s of th e Q C D ex ch an g e a t h ig h energies. T h e signals o f J / 0 , ^ a n d Y m esons in th e ir lep to n ic d ecay c h a n n els are cle a r a n d allow for a c c u ra te m e a su re m e n ts of th e co r­

re sp o n d in g d iffe ren tial cross sections. T h e u n d e rly in g p ro d u c tio n d y n a m ic s is d riv en by g luonic degrees o f freedom a n d th e ir Q C D ev o lu tio n . T h e c u rre n tly a c c e p te d p ic tu re s of th e h eav y v e c to r m eson p ro d u c tio n m ech an ism s in d iffractiv e p h o to n -h a d ro n a n d inclusive h a d ro n -h a d ro n collisions are, how ever, q u ite d ifferen t. T h e d iffractiv e p h o to p ro d u c tio n d a t a a t high energ ies a n d large tra n s v e rs e m o m e n tu m o b ta in e d by H1 [1] a n d ZE U S [2]

c o lla b o ra tio n s a t H E R A h ave b ee n successfully d esc rib ed [3- 7] assu m in g an ex ch an g e of th e n o n -fo rw ard B a litsk y -F a d in -K u ra e v -L ip a to v (B F K L ) P o m e ro n [8- 17] in th e d iffractive a m p litu d e . O n th e o th e r h a n d , in th e h ig h en e rg y inclusive h a d ro p ro d u c tio n o f J / 0 an d Y , a good d e sc rip tio n of d a t a from h a d ro n collid ers re q u ires a d o p tin g th e C olo r O c te t M odel (C O M ) [18- 25], see also refs. [2 6 , 27] for a review . In th e p re se n t p a p e r we shall in v e stig a te th e d iffractiv e p h o to p ro d u c tio n a n d a c o n trib u tio n to th e inclusive h ad ro p ro - d u c tio n o f h eav y v e c to r m esons assu m in g th e sam e u n d e rly in g Q C D d y n am ics of tw o B F K L P o m e ro n exchange.

T h e s ta n d a r d p ic tu re o f d iffractiv e p h o to p ro d u c tio n of v e c to r m esons a t H E R A a t large m o m e n tu m tra n s f e r assu m es ex ch an g e of g luo nic h a rd color sin g let across larg e ra p id ity

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(3)

d is ta n c e b etw e en th e in co m in g p h o to n — o u tg o in g m eson v e rte x a n d th e d iffractiv e re m ­ n a n t of th e p ro to n . T h e k in e m a tic s of th is p ro cess allow s to a p p ly th e h ig h en e rg y lim it in w h ich th e d o m in a n t c o n trib u tio n to th e color sin g let a m p litu d e is given by th e B F K L P o m e ro n [9- 14]. B y th e B F K L P o m e ro n one u n d e rs ta n d s th e sy ste m o f tw o R eggeized g luons in th e t-c h a n n e l in te ra c tin g by ex ch an g e of u su al glu on s. T h e p ro p a g a tio n of th e R eggeized g luons a n d th e effective in te ra c tio n s b etw e en th e m are deriv ed in Q C D in th e h ig h en e rg y lim it. In m ore d e ta il, th e ex c h ang e a m p litu d e is d e sc rib e d by th e B F K L evo­

lu tio n e q u a tio n t h a t fo rm a lly re su m s lo g a rith m ic a lly e n h a n c e d p e r tu r b a tiv e c o rre c tio n s to all o rd ers. In th e B F K L a p p ro a c h one re su m s lo g a rith m s of a ra tio o f a larg e collision en e rg y y / s a n d o th e r, m uch sm aller m ass scales e.g. th e m eso n m ass o r th e m o m e n tu m tra n s fe r. T h ese lo g a rith m s a re re la te d to th e ra p id ity d is ta n c e Y b etw e en th e p ro je c tile a n d th e ta r g e t in th e h ig h en e rg y s c a tte rin g process. So fa r th e B F K L re s u m m a tio n in Q C D w as p erfo rm ed a t th e lead in g lo g a rith m ic (LL) [9- 14] a n d n e x t-to -le a d in g lo g a rith ­ m ic (N L L) a p p ro x im a tio n [15, 16, 28- 32]. In th e LL a p p ro x im a tio n one re su m s te rm s

^ l l ~ a ^ Y ” w hile ~ a™+ l Y n te rm s are re su m m ed by th e N LL B F K L ev o lu tio n . T h e B F K L fo rm alism assu m es high en e rg y (or fcy) fa c to riz a tio n in w hich h a rd m a trix elem en ts a re fa cto rized in ra p id ity space from th e B F K L ev o lu tio n . In a d d itio n , m a trix elem en ts a re off-shell, w ith in itia l q u a rk s o r glu on s c a rry in g n o n -zero tra n s v e rs e m o m e n ta unlike in th e s ta n d a r d co llin ear a p p ro x im a tio n . H ence also th e B F K L P o m e ro n m ay c a rry n o n -zero tra n s v e rs e m o m e n tu m , a n d th e co rre sp o n d in g a m p litu d e is governed by th e no n -fo rw ard B F K L P o m e ro n . T h is fo rm alism w as ap p lied [5 , 6, 33- 35] som e tim e ago to th e d a t a from H E R A o n J / 0 , p a n d $ d iffractiv e m esons p h o to p ro d u c tio n [1, 2 , 36] w ith larg e tra n s v e rs e m o m e n tu m p T a n d w as show n to d e sc rib e th e d a t a well. In th is p a p e r we re v isit th e d iffrac­

tiv e J / 0 p h o to p ro d u c tio n a t H E R A a n d use th e e sta b lish e d d e s c rip tio n o f th is p rocess to e s tim a te th e B F K L P o m e ro n loop c o n trib u tio n to inclusive v e c to r m eson h a d ro p ro d u c tio n .

T h e C O M o f inclusive heav y m eso n h a d ro p ro d u c tio n assu m es n o n -zero a m p litu d e s for a ch an g e of th e q u a n tu m n u m b e rs (in p a r tic u la r color a n d a n g u la r m o m e n tu m ) b etw e en th e p a rto n ic p h a se a n d th e m eson [18- 20]. M o re specifically, in th e p a rto n ic su b p ro c ess heav y q u a r k -a n tiq u a rk p a ir Q Q is p ro d u c e d w ith a n a r b itr a r y color a n d a n g u la r m o m e n tu m q u a n tu m n u m b ers, a n d th e tra n s itio n to th e final s ta te m eson is govern ed by s e p a ra te m u ltip lic a tiv e coefficients for each set o f th e p a rto n ic q u a n tu m n u m b e rs. T h e v alu es of th e se coefficients are o b ta in e d by fittin g th e p re d ic te d cross sectio n s to e x p e rim e n ta l d a ta . T h e th e o re tic a l basis for th is m ech a n ism com es from tw o c o m p le m e n ta ry sources. F ir s t, w ith in h eav y q u a rk effective th e o ry on e finds no n -zero a m p litu d e s of h ig h er Fock s ta te s in th e h eav y v e c to r m eson wave fu n c tio n [18], for in s ta n c e a s ta te Q Q g w ith a n a d d itio n a l g lu o n g. O bviously, th e q u a n tu m n u m b e rs o f Q Q in th is s ta te do n o t m a tc h th e q u a n tu m n u m b e rs o f th e m eson. F ro m a n o th e r p e rsp e c tiv e , befo re th e p a rto n ic Q Q m akes th e m eson a pro cess of h a d ro n iz a tio n o ccu rs, in w hich th e q u a n tu m n u m b e rs m ay change.

T h is is a p ic tu re of fra g m e n ta tio n of th e p rim o rd ia l Q Q s ta te in to th e h ea v y m eso n [22].

T h e h a d ro n iz a tio n p rocess does n o t have s a tis fa c to ry p e r tu r b a tiv e d e s c rip tio n as it o ccurs a t low (h a d ro n ic ) scales a n d d e p e n d s on n o n -p e rtu rb a tiv e p ro p e rtie s of th e Q C D v acu u m . In b o th scenarios th e tra n s itio n a m p litu d e s o f Q Q to th e m eso n c a n n o t b e d eriv ed from th e o ry — o n ly o rd e r-o f-m a g n itu d e e s tim a te s c a n b e o b ta in e d . N ev erth eless th e C O M has

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(4)

a solid th e o re tic a l b asis, a n d it is s tro n g ly s u p p o rte d by th e successful fits of its p re d ic tio n s to th e b u lk of e x p e rim e n ta l d a ta . H ow ever, since th e p a ra m e te rs o f th e m od el are fitte d , th e re is still ro o m for o th e r th a n C O M po ssib le m ech a n ism s of th e inclusive v e c to r m eson h a d ro p ro d u c tio n .

T h e classical a lte r n a tiv e to th e C O M o f th e h ea v y m eso n p ro d u c tio n is th e C olor S ing let M ech an ism (C SM ) [37- 39]. In fa c t, th e C SM w as co n sid ered to b e th e s ta n d a r d Q C D p re d ic tio n before it w as c o n tra d ic te d by th e T e v a tro n d a t a [4 0 , 41]. In th is a p p ro a c h one assu m es th e e x a c t m a tc h in g o f th e q u a n tu m n u m b e rs o f th e p ro d u c e d p a rto n ic Q Q s ta te a n d th e final s ta te m eson. T h e m a in a d v a n ta g e of th is m ech a n ism is its co m p leten e ss w ith in p e r tu r b a tiv e Q C D a n d no need for a d d itio n a l p a ra m e te rs . F or th e C -o d d m esons V a t th e lead in g tw ist th e C SM is d riv en by th e g + g ^ V + g p a rto n ic s c a tte rin g . T h e p re d ic tio n s o f th e C SM , how ever, fail b a d ly in d esc rib in g th e J / 0 h a d ro p ro d u c tio n a t th e T e v a tro n a n d th e L H C , see e.g. [2 6 , 27]. F o r th e to ta l inclusive v e c to r m eson h a d ro p ro d u c tio n cross sectio n s th e C SM b o th a t th e lead in g o rd e r (L O ) a n d a t th e n e x t-to -le a d in g o rd e r (N L O ) are m ore th a n one o rd e r of m a g n itu d e below th e d a t a [2 6 , 27]. M oreover, th e C SM p re d ic tio n s lead to th e d is trib u tio n in th e m eson tra n s v e rs e m o m e n tu m p t w hich is m uch to o soft, w hile th e C O M is ab le to d esc rib e well th e p T d e p e n d e n c e o f th e m eson p ro d u c tio n cross sectio n . T h e C SM a n d C O M a p p ro a c h e s w ere also e x te n d e d from th e co llin ear a p p ro x im a tio n to th e k T-fa c to riz a tio n fram ew o rk [42- 48]. I t w as fo u n d t h a t also in th e k T-fa c to riz a tio n a p p ro a c h th e C SM m od el is m u ch below th e d a t a for th e d ire c t J / 0 p ro d u c tio n a t larg e tra n s v e rs e m o m en ta.

B ey o n d th e lead in g tw ist a p p ro x im a tio n th e C SM m ay be realized also w ith a fusion of th re e in itia l s ta te gluons. A t th e p a rto n ic level th e m eso n fo rm a tio n o ccu rs by g + g + g ^ V d ia g ra m s w ith th e co u p lin g th ro u g h th e h ea v y q u a rk loop. T h e T h re e G lu o n F u sio n (3 G F ) m ech a n ism w as co n sid ered in ref. [49] as a c o n trib u tio n to J / 0 h a d ro p ro d u c tio n , a n d in ref. [50] it w as p ro p o se d as a p o ssib le lead in g c o n trib u tio n to h ea v y v e c to r m eso n h ad ro p ro - d u c tio n . T h e n it w as fu r th e r stu d ie d in refs. [51- 53]. M oreover, re c e n tly c o n trib u tio n s of m u ltip le glu o n co u p lin g s in th e J / 0 p ro d u c tio n w ere co m b in ed w ith th e C O M [54, 55].

In th is a p p ro a c h a good d e sc rip tio n of th e J / 0 h a d ro p ro d u c tio n d a t a w as o b ta in e d , in ­ clu d in g th e m eson p o la riz a tio n . A lth o u g h th e u n c o rre la te d 3 G F m ech a n ism is a n im p licit c o n trib u tio n of th is fram ew ork, a t la rg e r p t th e cross sec tio n is d o m in a te d by th e C O M c o n trib u tio n s .

In th e 3 G F m ech a n ism one of th e g luo ns com es from o ne h a d ro n ic b e a m (th e p ro ­ je c tile ), a n d tw o o th e r ones from th e o th e r b e a m (th e ta r g e t) . T h e se tw o glu on s in th e t-c h a n n e l c a n b e ta k e n e ith e r as co m p letely in d e p e n d e n t (u n c o rre la te d ) or as co m in g from a single p a r to n o f th e ta r g e t (c o rre la te d ). T h e tw o scenario s co rre sp o n d to a n u n c o rre la te d d o u b le glu o n d is trib u tio n in th e ta rg e t, a n d to th e c o rre la te d c o n trib u tio n in th e d o u b le g lu o n d is trib u tio n , respectively. A d e ta ile d s tu d y of th e u n c o rre la te d c o n trib u tio n to th e 3 G F m ech an ism show ed t h a t it m ay c o n trib u te to th e t o ta l J / 0 h a d ro p ro d u c tio n cross sec tio n as a fra c tio n of a b o u t 20-25% [51]. T h e o b ta in e d p T -d e p e n d e n c e of th e m eson p ro d u c tio n d iffe ren tial cross sec tio n d a / d p T w as fo u n d to be m u ch s te e p e r th a n th e e x p e ri­

m e n ta l d a ta . Specifically, a t la rg e r values o f p t th e e x p e rim e n ta l d a t a c a n b e a p p ro x im a te d w ith a pow er law: d a / d p T ~ 1 /P n w ith n ~ 5, w hile w ith th e u n c o rre la te d 3 G F m ech an ism

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(5)

n > 8 is o b ta in e d . T h is r a th e r ste e p p T d e p e n d e n c e is well u n d e rs to o d as th e u n c o rre la te d 3 G F c o n trib u tio n e n te rs a t a h ig h er tw ist, a n d it is su p p re sse d a t larg e p T by a n a d d itio n a l fa c to r o f ( A h / p T ) 2 w ith re sp e c t to th e lead in g tw ist, w h ere Ah is a sm all h a d ro n ic scale.

In th is p a p e r we an a ly z e in d e ta il th e c o rre la te d 3 G F m ech an ism . T h e tw o g luons t h a t e n te r th e v e c to r m eson p ro d u c tio n v e rte x from th e ta r g e t side are a ssu m ed to com e from a s p littin g of a single p a rto n : q u a rk o r glu o n in th e ta r g e t. Since th e p a re n t p a r to n is point-like, it do es n o t in tro d u c e an y a d d itio n a l h a d ro n ic scale a n d o ne e x p e c ts a h a rd e r d e p e n d e n c e of th e m eson p T -d is trib u tio n th a n it w as for th e u n c o rre la te d 3 G F . A t th e low est o rd e r th is m ech a n ism o ccu rs th ro u g h g + g ^ V + g (o r g + q ^ V + q) p a rto n ic p ro cess w ith an ex ch an g e of tw o g lu on s b etw e en th e g ^ V tra n s itio n v e rte x a t th e side o f th e p ro je c tile a n d th e g ^ g (o r q ^ q) s c a tte rin g a t th e ta r g e t side. A t th e a m p litu d e level th e tw o glu o n ex ch an g e in th e t-c h a n n e l c a rrie s th e sy m m e tric color o c te t. T h e im p o rta n t fe a tu re of th e p rocess a t th e low est o rd e r is a flat d e p e n d e n c e o n th e ra p id ity d is ta n c e Y b etw e en th e p ro je c tile g lu o n a n d th e ta r g e t gluon. B ey o n d th e low est o rd e r a p p ro x im a tio n th e a m p litu d e of th is su b p ro c ess is m odified by Q C D ra d ia tiv e co rrec tio n s.

T h ese c o rre c tio n s c a n be re su m m ed by a Q C D e v o lu tio n e q u a tio n . In th e high en e rg y lim it co rre sp o n d in g to Y » 1, th e cross sec tio n of c o rre la te d 3 G F cross sec tio n is d riv en by an ex ch an g e of fo u r R eggeized g lu ons in th e t o ta l color sin glet s ta te t h a t in te ra c t w ith B F K L kernels. T h is sy stem is d esc rib ed by B artels-K w ieciń sk i-P rasz ało w icz (B K P ) ev o lu tio n e q u a tio n [56- 58]. I t w as show n in ref. [59] t h a t in th e large N c lim it th e sy stem of fo u r R eggeized g luons in th e color singlet c h a n n e l m ay be a p p ro x im a te d by tw o in d e p e n d e n t B F K L P o m e ro n s. In con seq u en ce one e x p e c ts a s tro n g e n h a n c e m e n t ~ e x p (2 A p ) o f th e cross sec tio n a t large Y by th e d o u b le B F K L e v o lu tio n w ith th e B F K L P o m e ro n in te rc e p t A p ~ 0.3. In a d d itio n , th e an o m alo u s d im en sio n s of th e B F K L G re e n ’s fu n c tio n s could lead to a less ste e p p T d e p e n d en ce . So, d e s p ite th is c o n trib u tio n e n te rs a t th e O ( a ^ ) o rd e r a n d is a well defined p a r t of th e N N L O c o rre c tio n to th e C SM c o n trib u tio n , it m ay b e im p o rta n t d u e to s tro n g effects of th e B K P ev o lu tio n . T h e first e s tim a te of th is c o n trib u tio n [50]

su g g ested t h a t it m ay re p ro d u c e th e inclusive J/ 0 h a d ro p ro d u c tio n cross sec tio n d a t a from th e T e v a tro n . In th is p a p e r we p erfo rm a d e ta ile d c a lc u la tio n of th e c o rre la te d 3 G F cross sec tio n to verify its im p o rta n c e .

In th e an a ly sis we sh all use a c o n n e c tio n b etw e en th e c o rre la te d 3 G F m ech an ism an d th e d iffractiv e p h o to p ro d u c tio n of v e c to r m esons a t larg e p T . T h is c o n n e c tio n o rig in a te s from th e k in e m a tic a l id e n tity o f th e im p a c t fa c to rs co rre sp o n d in g to y + (2g) ^ V an d g + (2g) ^ V tra n s itio n s . A t th e lead in g o rd e r th e difference b etw e en th e s e tw o im p a c t fa c to rs com es o n ly from th e color fa c to rs a n d th e gau g e co u p lin g c o n s ta n ts . H ence, th e cross sectio n s for a v e c to r m eson p ro d u c tio n by glu o n s c a tte rin g off a p a rto n ic ta r g e t an d for th e m eson d iffractiv e p h o to p ro d u c tio n a re p ro p o rtio n a l to each o th e r. T h is re la tio n im poses im p o rta n t c o n s tra in ts on th e c o rre la te d 3 G F m ech an ism . W h e n th e B K P /B F K L e v o lu tio n is ta k e n in to ac c o u n t how ever, th e d iffractiv e p h o to p ro d u c tio n a n d th e 3 G F m ech a n ism are d ifferen t d u e to th e d ifferen t color flow. T h e d iffractiv e p h o to p ro d u c tio n cross sec tio n c o rre sp o n d s to th e d iffractiv e c u t of tw o B F K L P o m e ro n exch ang e, a n d th e c o rre la te d 3 G F cross sec tio n to a n ex ch an g e of tw o c u t B F K L P o m e ro n s. T h u s in d e p e n d e n t e v a lu a tio n is n ecessary for th e s e tw o pro cesses. In b o th cases, how ever, a t th e level o f cross

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(6)

sec tio n one finds th e to p o lo g y of th e B F K L P o m e ro n loo p sp a n n e d b etw e en th e m eson im p a c t fa c to rs a t th e p ro je c tile side a n d th e p a r to n im p a c t fa c to r a t th e ta r g e t side. So, b esid es e v a lu a tin g th e c o rre la te d 3 G F c o n trib u tio n w ith th e B K P /B F K L e v o lu tio n effects in clu d ed , we sh all also re v isit th e d iffractiv e p h o to p ro d u c tio n case a n d an a ly se in d e ta il th e p ro p e rtie s of th e B F K L P o m e ro n loop in th e t-ch a n n el.

T h e p a p e r is o rg a n iz ed as follows. In th e n e x t sec tio n we d esc rib e th e th e o re tic a l fra m e ­ w ork for th e d iffractiv e heav y v e c to r m eson p ro d u c tio n in D IS, a n d th e n o n -fo rw ard B F K L ev o lu tio n . In sec tio n 3 th e tw o -P o m e ro n c o n trib u tio n to th e v e c to r m eson h a d ro p ro d u c tio n is an a ly z ed . T h e d e ta ils o f th e color fa c to rs are d iscu ssed a n d th e B F K L P o m e ro n in th e co n fo rm al re p re s e n ta tio n is d esc rib ed . In sec tio n 4 th e p ro p e rtie s of th e P o m e ro n loop a t th e p a r to n level a re an a ly z ed , in p a r tic u la r th e d e p e n d e n c e o n th e tra n s v e rs e m o m e n tu m . In sec tio n 5 we p re se n t th e co m p a riso n o f o u r n u m eric al c a lc u la tio n s w ith th e v e c to r m eson p ro d u c tio n in d iffractiv e D IS as well as in h a d ro p ro d u c tio n , a n d we d iscuss th e re su lts in sec tio n 6. F inally, in sec tio n 7 we give su m m a ry a n d conclusions.

2 D iffra c tiv e h e a v y v e c to r m eso n p r o d u c tio n

W e b eg in w ith a s h o rt reco llectio n o f th e p e r tu r b a tiv e Q C D a p p ro a c h to th e h a rd color singlet ex ch an g e in th e d iffractiv e heav y v e c to r m eson V p h o to p ro d u c tio n off a p ro to n a t larg e m o m e n tu m tra n s f e r t. T h e p ro cess w as in v e stig a te d in d e ta il a t H E R A in e± p collisions w ith in v a ria n t c.m .s. en e rg y V S = 318 G eV . In th e m e a su re m e n t of th e process e± p ^ e ± V X , a larg e ra p id ity g a p dev oid o f p a rtic le s is re q u ired . I t s e p a ra te s th e p ro d u c e d v e c to r m eson V a n d th e d isso c ia te d p ro to n re m n a n t X . T h e e ± p cross sec tio n m ay b e fa cto rized in to a u n iv ersa l flux fu n c tio n o f q u a si-re a l p h o to n s in th e e le c tro n an d th e cross sec tio n for th e d iffractiv e p h o to p ro d u c tio n su b p ro cess,

YP ^ V X , (2.1)

w ith th e ra p id ity gap. In th is p rocess th e p h o to n -p ro to n in v a ria n t m ass, y f s = V z S , is assu m ed to b e m uch la rg e r th a n all th e o th e r scales p re s e n t in th e process, hence s » |t|

a n d s » My , w h ere M y is th e m eso n m ass. T h e a p p lic a b ility o f th e p e r tu r b a tiv e Q C D is e n su re d by th e c o n d itio n s |t| » AQc d a n d M y » AQc d . T h e d iffractiv ely p ro d u c e d C -o d d s ta te V is a ssu m ed to b e a h ea v y v e c to r q u a rk o n iu m . In th is w ork we focus o n th e J / 0 m eson. Since in th e available d a t a th e p h o to n flux is s tro n g ly d o m in a te d by v ery low v irtu a litie s —q2 = Q2 we ta k e th e lim it Q2 ^ 0 in c a lc u la tio n s of th e Q C D a m p litu d e s .

W ith in th e k in e m a tic regim e specified above, th e color sin g let ex ch an g e in th e t-c h a n n e l o f th e p rocess (2.1) m ay b e d e sc rib e d in Q C D as th e p e r tu r b a tiv e P o m e ro n exch an g e (figure 1) , t h a t is governed by th e n o n -fo rw ard B F K L e q u a tio n [9- 11, 13, 14]. D u e to th e larg e m o m e n tu m tra n s fe r, th e cross sec tio n c a n b e fa cto rized in to a p a rto n ic cross sectio n (d o m in a te d by th e P o m e ro n ex ch ang e) a n d th e co llin ear p a r to n d is trib u tio n fu n c tio n s (P D F s ), t h a t d esc rib e th e s tru c tu r e of th e p ro to n ta rg e t:

d a = ^ J d x f i ( x , ^ ) d a Yi ( s , t , ^ ) , (2.2) i=g,q,q

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(7)

F ig u r e 1. Diffractive photoproduction of a vector meson V . The zigzag line corresponds to a perturbative Pomeron coupling to individual partons inside the proton.

w h ere s = x s is th e p h o to n -p a r to n in v a ria n t m ass sq u ared , a n d f i is th e P D F for th e p a r to n i w hich m ay b e a q u a rk (a n ti-q u a rk ) o r a gluon . A n a tu r a l choice for th e fa c to riz a tio n scale is p ~ vTt"- H ere x is th e lo n g itu d in a l fra c tio n of th e p ro to n lig ht co ne m o m e n tu m c a rrie d by th e q u a rk o r gluon. In w h a t follows, th e tra n s v e rs e tw o -v ecto rs in th e lig ht cone basis a re d e n o te d by th e b o ld c h a ra c te rs; for ex a m p le, we d e n o te th e v e c to r m eson tra n s v e rse m o m e n tu m as p . In th e h ig h en e rg y k in em atics we have t ~ — |p|2 = —p 2. In eq. (2.2) th e co u p lin g of th e h ig h -t P o m e ro n to th e p ro to n is a ssu m ed to o c c u r th ro u g h co u p lin g to th e in d iv id u a l p a rto n s . T h is a p p ro x im a tio n w as stu d ie d in d e ta il a n d m o tiv a te d in [3 5 , 6 0 , 61].

In th e h ig h en e rg y lim it, th e k in e m a tic p a r t of th e B F K L P o m e ro n co u p lin g to q u a rk s a n d g luons is th e sam e. T h e o n ly difference b etw e en th e q u a rk a n d g lu o n p a rto n ic ta rg e t com es from th e color fa cto rs,

d a Yi = C Yi d a l - p , (2.3)

w h ere C Yi, i = q , g , is th e color fa c to r an d

d a i _p = 1

1 6 n s 2 |A ( = t = —p2 )|2 d2P (2.4)

w ith A b ein g th e a m p litu d e to p ro d u c e th e v e c to r m eson th ro u g h a single P o m e ro n ex ­ ch a n g e (figure 2) . T h e a m p litu d e is d o m in a te d by th e im a g in a ry p a r t, a n d th e co rre c tio n co m in g from th e re al p a r t e n te rs o n ly a t a s u b le a d in g o rd e r in th e lo g a rith m ic e x p a n sio n a n d m ay b e neg lected . T h e im a g in a ry p a r t of th e a m p litu d e re ad s

Irn A ( M = —p2) = s

/

d2k i ( k i , p ) ( y , k i , p )

2n ( k2 + so) [(p — k i) 2 + so] (2.5) w h ere k i a n d p — k i = k2 are tra n s v e rs e m o m e n ta o f th e ex c h an g ed glu on s, a n d p is th e tra n s v e rs e m o m e n tu m c a rrie d by th e P o m e ro n . $ y , are th e im p a c t fa c to rs for th e v e c to r m eson a n d for th e q u a rk , respectively. T h e y are s trip p e d off th e color fa cto rs. In a d d itio n , th e q u a rk im p a c t fa c to r is evolved to ra p id ity y usin g th e B F K L ev o lu tio n .

t

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(8)

F ig u re 2 . The diagram s contributing to the cross section for diffractive vector meson V photopro­

duction off a parton: a gluon (left) and a quark (right). The non-forward BFKL G reen’s function G is evolved along the rapidity gap between the vector meson and the proton rem nants.

T h e e x a c t form o f th e im p a c t fa c to rs will b e d e sc rib e d below in th is section . T h e ra p id ity e v o lu tio n le n g th y o f th e q u a rk im p a c t fa c to r is defined by th e re la tio n

(2 .6) y = loM

w h ere we set A = E t = \ JMV + p 2 • T h is choice is d ifferen t th a n th e choice m a d e in ea rlie r stu d ie s [4- 7], w h ere A = M V w as used. T h e la t t e r value w as selected as a re s u lt of fits d riv en m o stly by th e light v e c to r m eson h ig h -t p h o to p ro d u c tio n d a ta . T h e J / 0 d a ta , how ever, w ere well d esc rib ed b o th w ith A = E t a n d A = M V. H ence in th is p a p e r we use A = E t , th e value w ith a s tra ig h tfo rw a rd k in e m a tic m o tiv a tio n . T h is choice w as used e.g.

in ref. [3].

T h e sm all p a r a m e te r s 0 is a p h en o m en o lo g ical in fra re d cu to ff t h a t m im icks th e ef­

fects of th e color confinem ent; th e re su lts are, how ever, fin ite for s 0 ^ 0. W e in tro d u c e th is p a r a m e te r follow ing th e a p p ro a c h p ro p o se d in ref. [62]. T h e a m p litu d e does n o t d e­

p e n d on th e p ro d u c e d m eson d ire c tio n in th e tra n s v e rs e p lan e, h en ce th e p h a se space d 2p in (2 .4 ) m ay be triv ia lly in te g ra te d over th e a z im u th a l angle. W e p re se n t th e re su lts in th is form to keep th e n o ta tio n u n ifo rm w ith th e m ore c o m p lic a te d case of th e v e c to r m eson h a d ro p ro d u c tio n , w h ich we sh all d e sc rib e in sec tio n 3 .

In th e c a lc u la tio n s we ta k e th e n o n -re la tiv istic a p p ro x im a tio n for th e m eson wave fu n c tio n . W ith th is a s s u m p tio n th e low est o rd e r p h o to n to v e c to r m eson im p a c t fa c to r re a d s [33 , 6 3 , 64]

5ab

$av (ki, p)

= (k u p ) - ^ , (2.7) w h ere a, b are color indices of th e ex c h an g ed gluons, a n d th e k in e m a tic p a r t o f th e im p a c t fa c to r re ad s

w here

(2.8)

(

2

.

9

)

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(9)

w ith eq b ein g th e ch a rg e of th e q u a rk in th e m eso n in u n its of th e e le m e n ta ry ch a rg e e, My

— th e m ass of th e v e c to r m eson, a n d r y its le p to n ic d ecay w id th . T h e p h o to n to v ec to r m eson im p a c t fa c to r (2.8) is valid for th e tra n sv e rs e p o la riz a tio n s o f th e p h o to n a n d of th e v e c to r m eson. T h e inco m ing p h o to n is q u a si-re a l h ence its p o la riz a tio n is c o n s tra in e d to b e tra n sv e rse . T h e a m p litu d e of th e tra n s v e rs e p h o to n to lo n g itu d in a ly p o lariz ed v e c to r m eson w as e s tim a te d in ref. [33] to b e sm all. T h erefo re th e a m p litu d e d e sc rib e d by (2 .8) p ro v id es th e d o m in a n t c o n trib u tio n to d iffractiv e v e c to r m eson p h o to p ro d u c tio n .

T h e q u a rk im p a c t fa c to r in th e color sin glet ch a n n el <fe\’ab (y, k i , p ) is also fa cto rized in to th e color p a r t a n d th e k in e m a tic p a r t,

( 2 . 10)

w h ere th e n o ta tio n is th e sam e as in th e case o f th e p h o to n -v e c to r m eson im p a c t fa cto r.

T h e d iffractiv e glu o n im p a c t fa c to r differs from th e d iffractiv e q u a rk im p a c t fa c to r o n ly by th e color fa cto r,

(2.11) T h e k in e m a tic p a r t of th e q u a rk im p a c t fa c to r $q (y, k i , p ) in (2.5) is th e so lu tio n of th e n o n -fo rw ard B F K L e q u a tio n w ith th e in itia l c o n d itio n given by th e lead in g o rd e r q u a rk im p a c t fa c to r [62]

$q,o (k i, p ) = as . (2.12)

A t a given m o m e n tu m tra n s f e r p th ro u g h th e P o m e ro n , th e evolved q u a rk im p a c t fa c to r

$q (y, k i , p ) m ay b e re p re se n te d as co n v o lu tio n of th e lead in g o rd e r im p a c t fa c to r $q,0 w ith th e n o n -fo rw ard B F K L G re e n ’s fu n c tio n Gy:

$q (y, k i, p ) = J d 2k'i $q,o ( k, p ) Gy ( k i, k[ ; p ) . (2.13) In w h a t follows, we sh all use tra n s v e rs e m o m e n tu m v aria b les k , k ' t h a t reflect th e s y m m e try of th e p ro b lem : k = ( k 2 k i ) / 2 , k ' = (k? — k ' ) / 2 . T h e tra n s v e rs e m o m e n ta of g luons ta k e th e form

k i = — — k , k 2 = p + k , k ' = — — k ', k? = + k '.

i 2 ’ 2 2 i 2 ’ ? 2 (2.14)

T h e ex p licit form of th e lead in g lo g a rith m ic B F K L e q u a tio n t h a t defines th e q u a rk im p a c t fa c to r $ q (y, k i , p ) is th e follow ing

w ith a s = a sN c/ n .

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

Sab T la b { y , k h p ) = T q { y , k h p ) 2 N ,

< q a‘ ( v ,k i , p ) = T q ( y , k ! ,p ) N N n ja ‘ .

f y f d ? k ' 1

T q (V, k U p ) = T q,0 ( k l> p ) + a s dv ' / 772 ,---- J0 J ( k ' — k ) 2 + so

\ \ k 2 k% 2 ( k ' — k ) 2 + so 1 i , , , )

( [fci^T + so + H f + io —p (k i'2 + so) (*22 -+ » o )J T q ( y , k l , p )

k 2 k2 1 1

— — 7--- 1---2---1--- 5--- 2--- 2--- T q (y ', k ! , p ) >, (2.15) k '2 + ( k ' — k ) 2 + so k22 + ( k ' — k ) 2 + so_ q VV’ ’^ J ’ v ;

(10)

T h e n o n -fo rw ard B F K L e q u a tio n given in ( 2.15) is solved n um erically, using an a p ­ p ro x im a tio n in tro d u c e d in [62]. T h e id ea is to use th e F o u rie r d e c o m p o sitio n o f th e im p a c t fa c to r w .r.t. th e an gle b etw e en k a n d p ,

$q(y, k i , p) = Y ^

$im)(y,k2,P2)cos(m^fc)

m = 0

w h ere th e F o u rie r coefficients

(2.16)

$ i 0)( y , k 2,P 2) = J 2 k $ q ( y , k i , P ) , (2.17)

an d

$qm )(y,fc2, p 2) = [ $q (y, k i , p )c o s(m ^ fc) J 0 n

(2.18)

for m > 0. W e have checked t h a t th e full so lu tio n $ q(y, k i , p ) is well a p p ro x im a te d by th e lead in g co m p o n e n t T^0)(y, k 2, p 2), in ac co rd a n c e w ith re s u lts [5 , 62]. Since th is a p p ro x im a ­ tio n leads to m uch g re a te r n u m eric al efficiency, w ith a n egligible effect o n accuracy , we use it in th e e stim a te s of th e cross section . T h e lead in g F o u rie r co m p o n e n t w ith m = 0 o beys th e e q u a tio n ,

(2.19)

T h e in d e p e n d e n c e o f th e lead in g o rd e r q u a rk im p a c t fa c to r o n th e angles allow s to set

$q,0( k 2, p 2) = $q,0(k , p ) = Os. A nalo g o u sly we define $ ( ° ( k 2, P 2) = / 02n[ d ^ k/(2 n )] $ y ( k i , p ).

O ne finds t h a t $ ( ° ( k 2 , p 2) = $ y ( k i , p ) | fcl=p/ 2-fc.

F inally, let us n o te t h a t th e cross sec tio n (2.2) c a n b e w ritte n in te rm s o f ( 2 .4) as follows:

d a = j d x j C i q ^ [ f q ( x , p ) + f g ( x , p)] + C i g f g ( x , p ) \ d a — (x s, t) (2.2 0)

U sin g eqs. (2.7) , (2.10) a n d (2.11) it is s tra ig h tfo rw a rd to o b ta in th e color fa c to rs for th e d iffractiv e p ro d u c tio n off th e q u a rk a n d gluo n. T h e re su lts re ad

(2 .2 1 )

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

< > (y , k V ) = ¢ ,,0 ( k k J ? ) - < X , / ^ l ' dy’ j ^ k )2 + s ,

{ [ + k f c - p 2 ( 5 5 ^ + - ¾ ¾ ] ^ ( y ' k ’ 2,p 2)

- _fc;2 + ( k '- k ) 2 + so + k'22 + ( k ' - k ) 2 + S0_ ^ ' (y ,k ,p ) } •

/ N 2 — 1 \ 2

C Y, = ( N nT ) , C ’ “ = 1 •

(11)

3 T w o P o m e r o n c o n tr ib u tio n to h e a v y v e c to r m eso n h a d ro p ro d u c tio n

3 .1 D i r e c t a p p r o a c h

L e t us now co n sid er th e heav y v e c to r m eso n h a d ro p ro d u c tio n th ro u g h th e (c u t) d o u b le P o m e ro n exchange. W e focus on a h a d ro n ic an a lo g u e of th e d iffractiv e v e c to r m eson p h o to p ro d u c tio n — w h ere th e p ro je c tile is a gluon, a n d th e tw o P o m e ro n s cou ple to a single p a r to n in th e ta rg e t. T h e g en e ral d ia g ra m s c o n trib u tin g to th e p a rto n ic cross section , d a 2 -p, a re d e p ic te d in figure 3 . N o te t h a t a t th e low est o rd ers, th e top o lo g ies o f th e co n sid ered p a rto n ic p rocesses are th e sam e as for th e d iffractiv e p h o to p ro d u c tio n . A fte r inclu sio n of th e ev o lu tio n , how ever, th e tw o processes co rre sp o n d to d ifferen t c u ts th ro u g h th e tw o P o m e ro n s; one finds th e d iffractiv e c u t in th e p h o to p ro d u c tio n , a n d th e d o u b le c u t P o m e ro n s in th e h a d ro p ro d u c tio n . T h e v e c to r m eson im p a c t fa c to r d esc rib es th e fusion of th re e g luons in to th e m eson. T h e co u p lin g o f b o th P o m e ro n s to th e single p a r to n in th e ta r g e t leads to a c o rre la tio n o f th e g lu o n d is trib u tio n s in th e ta r g e t, t h a t e n te r th e m eson im p a c t fa c to r. T h is sh o u ld b e c o n tra s te d w ith a n o th e r p o ssib le c o n trib u tio n , w h ere th e g luons in th e ta r g e t are u n c o rre la te d , see [51].

In th e c a lc u la tio n s, th e in com ing p a rto n s fro m th e p ro je c tile a n d ta r g e t p ro to n s are tr e a te d as co llin ear a n d c a rry lo n g itu d in a l m o m e n tu m fra c tio n s x1 a n d x 2, w h e reas th e g lu o n ex ch an g e in th e t-c h a n n e l is d e c rib e d in th e fcy -facto rizatio n fram ew ork, a ssu m in g th e h ig h en e rg y lim it. H ence th e v e c to r m eso n im p a c t fa c to r t h a t e n te rs th e c a lc u la tio n d esc rib es th e tra n s itio n from th e co llin ear p ro je c tile g lu o n to th e v e c to r m eson by co u plin g o f tw o t-c h a n n e l g luo ns w ith no n -zero tra n s v e rs e m o m e n ta . T h is im p a c t fa c to r m ay be o b ta in e d from th e im p a c t fa c to r d esc rib in g th e fu sio n of th re e g luo ns in to th e v e c to r m eson t h a t w as d eriv e d in [64] by ta k in g th e co llin ear lim it for th e p ro je c tile g lu on . B ecau se of th e o d d C -p a r ity o f th e m eson, th e im p a c t fa c to r is fully sy m m e tric in color indices o f th e gluons, a n d th e fu n c tio n a l d e p e n d e n c e o n th e e x te rn a l b o so n m o m e n ta is th e sam e as in th e d iffractiv e im p a c t fa c to r for th e exclusive v e c to r m eson p h o to p ro d u c tio n . Specifically, in th e co llin ear lim it for th e p ro je c tile gluon, th e th re e -g lu o n im p a c t fa c to r for inclusive v e c to r m eson h a d ro p ro d u c tio n re ad s

g da i“2C

* a r c ( k i, p ) = -gs- ( k i, p ) , (3.1)

q 2 —c

w h ere g s is th e s tro n g co u p lin g c o n s ta n t ( a s = g 2s / 4 n ) , d aia2C is th e fully sy m m e tric color te n so r, a n w ith n = 1,2, a re th e co lo r indices of th e t-c h a n n e l glu on s, a n d c is th e color in d ex of th e p ro je c tile gluon.

T h e co rre sp o n d in g lead in g o rd e r im p a c t fa c to rs of th e ta r g e t q u a rk (i = q) a n d g lu o n (i = g ) m ay b e ex p ressed in th e follow ing way:

( k i , p ) = $ q,0 ( k i , p ) T R1 % , (3.2) w h ere m a tric e s tR ) are th e g e n e ra to rs of th e co lo r g ro u p in th e color ch a rg e re p re s e n ta tio n R i of th e ta r g e t p a rtic le . N o te t h a t a fte r th e p ro je c tio n o n th e co lo r sing let ch a n n el p erfo rm ed by T ^ T r2T % ) /d im ( R i ), th e sin glet color im p a c t fa c to rs ¢^0^ 62 a re recovered.

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(12)

F ig u r e 3. Correlated contributions of 1 + 2 gluons fusion to hadroproduction cross section of a heavy vector meson V w ith partonic targets: a gluon (left) and a quark (right). The blobs w ith G denote the BFKL gluon G reen’s functions. The two BFKL G reen’s functions are evolved independently. Gluons 14 and 23 are projected onto color singlet states.

U sin g th e n o ta tio n from th e p re v io u s sec tio n we c a n ex p ress th e cross sec tio n for th e inclusive v e c to r m eson p ro d u c tio n in th e co n sid ered tw o P o m e ro n m ech an ism as

d a = I d x i d x 2 | f g ( x i , ^ ) d a2 - p ( x ix 2S , t , y )

x (yCgq ^ [fq ( x2, ^ ) + f (x2,ju)] + Cgg f g ( x 2 , v ^ + [xi o x2] j , (3.3)

w h ere S is th e h a d ro n ic collision en e rg y sq u ared , th e color fa c to rs C gq a n d C gg acco m m o ­ d a te th e color s tr u c tu r e of th e v e c to r m eson im p a c t fa c to r a n d th e color p ro je c tio n o n to th e tw o -P o m e ro n s ta te . T h e ir c a lc u la tio n is stra ig h tfo rw a rd , b u t re q u ires c e rta in a ssu m p tio n s o n how th e p ro je c tio n is m ad e. W e shall d iscuss th is issue la te r in th is sec tio n a n d give th e values of th e color fa cto rs.

T h e d ia g ra m s in figure 3 , s trip p e d off th e color fa cto rs, give th e follow ing ex p re s­

sion for th e p a rto n ic cross sec tio n for th e v e c to r m eson p ro d u c tio n w ith th e tra n s v e rse m o m e n tu m p :

(3.4) w h ere we set th e ra p id ity e v o lu tio n le n g th to y = lo g (x i x 2S / ( M y + p 2)), a n d th e re m a in in g n o ta tio n is th e sam e as in th e p rev io u s section . In fa c t, th e ab ov e e q u a tio n d esc rib es th e B F K L P o m e ro n loop w ith c u t th ro u g h b o th P o m e ro n s, a n d th e u p p e r a n d lower P o m e ro n co u p lin g s given by th e m eson a n d q u a rk fo u r-g lu o n im p a c t fa cto rs. T h e color p a r t of th e m eson im p a c t fa c to r fo rb id s th e co u p lin g of th e g lu o n p a ir in th e color sin glet s ta te to th e m eson, so th e P o m e ro n s are fo rm ed o n ly b etw e en th e g lu on s a t th e o p p o site sides

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

d a 2 -p ( x i x 2 S ,t ,^ ) a s f d 2k i f d 2k 2 f 2 & n , 1 ^ d p--- = 1 6 ^ 0 ^ / - 2 n d ] - 2 n d ] d q 8 ( k i + k 2 - P )

w ( k i , k i +k2) $ y ( q -k i , - k i - k 2) (y, k i , q ) ( y , k2, - q )

X r n r n ,

( k i — q)2 + s 0 ( k 2 + q)2 + s 0 (¾2 + s o) (k 2 + So)

(13)

o f th e u n ita r ity c u t. T h e tra n s v e rse m o m e n tu m of th e P o m e ro n s in th e loop is ± q . In

N o te t h a t we a p p ly in eq. (3.4) th e v e c to r m eson im p a c t fa c to r $ V co rre sp o n d in g to a tra n s itio n o f a tra n s v e rse ly p o la riz e d g lu o n to a tra n sv e rse ly p o lariz ed m eson. T h e glu o n is tr e a te d w ith in th e co llin ear a p p ro x im a tio n so it c a n n o t c a rry th e lo n g itu d in a l p o la riz a tio n . As in th e d iffractiv e p h o to p ro d u c tio n case th e tra n s itio n of a tra n s v e rs e ly p o lariz ed glu on to a lo n g itu d in a ly p o lariz ed m eson is s tro n g ly su p p re sse d [33].

S pecial a tte n tio n sh o u ld be p a id to th e ta r g e t q u a rk a n d g lu o n im p a c t fa cto rs. A t th e lead in g o rd e r th e p a r to n fo u r-g lu o n im p a c t fa c to r is a c o n s ta n t fu n c tio n of th e gluo n m o m e n ta , as it is for th e tw o -g lu o n im p a c t fa c to r. T h is follows d ire c tly fro m th e p o in t-lik e n a tu r e of th e p a rto n s . As a re su lt, th e fo u r-g lu o n p a r to n im p a c t fa c to r is p ro p o rtio n a l to th e p ro d u c t of tw o -g lu o n im p a c t fa cto rs. N e x t, in o u r a p p ro a c h we a p p ro x im a te th e full B a rte ls - K w ieciń sk i-P raszało w icz (B K P ) [56- 58] e v o lu tio n of th e fo u r g lu o n t-c h a n n e l s ta te in th e a m p litu d e sq u a re d by th e in d e p e n d e n t e v o lu tio n o f tw o P o m e ro n s. T h is a p p ro x im a tio n is valid in th e larg e N c lim it, as color re c o n n e c tio n b etw e en tw o P o m e ro n s is su p p re sse d by 1 /N c2 [59]. H ence, w ith th e fa cto rized fo rm of th e p a r to n im p a c t fa c to r, a n d w ith th e in d e p e n d e n t P o m e ro n ev o lu tio n s, also th e evolved fo u r-g lu o n p a r to n im p a c t fa c to r m ay b e fa cto rized (u p to a c o n s ta n t fa c to r) in to a p ro d u c t o f tw o -g lu o n evolved im p a c t fa cto rs. T h u s, in eq. (3.4) b o th q u a rk im p a c t fa c to rs are evolved in d e p e n d e n tly acco rd in g to eq. (2.19) .

L e t us now d iscu ss th e low est o rd e r c o n trib u tio n to th e c o rre la te d cross sec tio n ( 3.3) , o b ta in e d by s e ttin g (y, kj , ± q ) ^ $ q,0(k j, ± q ) in eq. (3.4) . T h e co rre sp o n d in g d ia g ra m s a re d e p ic te d in figure 4 . W e see t h a t th e se d ia g ra m s a re v irtu a lly th e sam e as for th e d iffractiv e p h o to p ro d u c tio n a t th e low est o rd e r, ex c ep t for th e v e c to r m eso n v erte x , w hich h ere c o n ta in s a n in co m in g g lu o n in ste a d o f a p h o to n . G iv en th e s y m m e try o f th e color p a r t o f th e im p a c t fa c to r, th e low est o rd e r gq ^ V q a n d g g ^ V g cross section s m ay b e o b ta in e d from th e Yq ^ V q a n d yg ^ V g cross sectio n s by s u ita b le m o d ificatio n s of th e color fa c to rs a n d th e co u p lin g c o n s ta n ts , w hile th e m o m e n tu m d e p e n d e n t p a r t re m a in s th e sam e. T h e ex p licit re s u lt re ad s

T h is re su lt is a useful b e n c h m a rk for th e cross sec tio n ( 3.4) w ith th e B F K L ev o lu tio n in clu d ed .

3 .2 T h e c o l o r f a c t o r s

In te rm s of th e B K P e q u a tio n e ig e n sta te s, eq. (3.4) re p re se n ts ex ch an g e of th e lead in g tw o P o m e ro n s ta te (w h ere th e larg e N c lim it is im p licitly a ssu m ed ). T h e B K P e q u a tio n for n u m eric al e s tim a te s o f (3.4) we shall use th e a p p ro x im a tio n o f th e q u a rk im p a c t fa c to rs by th e lead in g F o u rie r co m p o n en ts, (y, k j, q ) ^ $^0) (y, ( k j — q / 2 )2, q2) , a n d $ V (k j, q ) ^

$V0) ((k j — q /2)2, q2) , cf. th e discu ssio n p erfo rm ed for th e d iffractiv e p h o to p ro d u c tio n .

(3.5)

w here

(3.6)

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(14)

F ig u r e 4. The lowest order diagram s for the am plitude squared for the production of the heavy vector meson through the coupling of 1 + 2 gluons off a quark (left) and off a gluon (right).

fo u r gluons, how ever, allow s also for o th e r so lu tio n s, like e.g. a single P o m e ro n exchan ge, in w hich th e e le m e n ta ry gluons a re p a ire d in to g lu o n R eggeons. In o rd e r to p ro p e rly p ro je c t th e im p a c t fa c to rs on th e tw o P o m e ro n B K P eig e n sta te s, we a p p ly th e follow ing p ro c ed u re . W e s t a r t from th e B ose s y m m e try p ro p e rtie s o f th e B K P e ig e n sta te s. G iv en th e sy m m e tric k in e m a tic p a r t of th e im p a c t fa cto rs, it im po ses th e color s y m m e try b etw e en th e p a irs of g luons a t th e sam e side o f th e u n ita r ity c u t. Also, th e color p a r t sh o u ld b e in v a ria n t u n d e r th e in te rc h a n g e of th e g luons a t th e left a n d rig h t side o f th e u n ita r ity c u t. E m p lo y in g th e re la tio n s b etw e en in v a ria n t te n s o rs of Q C D , we find t h a t po ssib le co lo r te n so rs for th e t-c h a n n e l g luons are

P o ( K } ) = Óaia2634, P2({fln}) = 6a i“35 a2a4 + 5 a ia 45 a2a3, P d ( { a n } ) = d aia2cd a3a4c, (3.7) w h ere a n , n = 1 , . . . , 4, a n d c a re co lo r indices in th e a d jo in t re p re s e n ta tio n , a n d esc rib e th e t-c h a n n e l g luons in th e n a tu r a l o rd e r. T h e sc a la r p ro d u c t o n th e sp ace of th e color te n so rs m ay b e defined as

( P a \P b ) = E P a ({an } ) Pb ({ a n } ), A , B = 0,2,d . (3.8) {an}

I t is co n v en ien t to use th e n o rm alize d color te n s o rs Pa({an } ) P A ({an }) =

V ( Pa\Pa)

(3.9)

T h e color te n so rs P0({ a n }), P2({ a n }) a n d P d({ a n }) are n o rm alize d to one, a n d o rth o g o n a l u p to 1/N ,2 c o rrec tio n s, ( P a \ P b ) = 6aB + O Q /N ,2). Since th e an a ly sis is p erfo rm ed a t th e lead in g o rd e r in A c, th e te n s o rs i^A({ai }) m ay b e tr e a te d as a n o th o n o rm a l basis. T h erefo re th e p ro je c to rs m ay b e d efined on th e co lo r te n so rs, co rre sp o n d in g to th e B K P eig en sta te s:

Pa ({an }) Pa ({bn})

Pa ({ a n }, {bn}) = (3.10)

(Pa\Pa)

In o u r c a lc u la tio n we p ro je c t th e im p a c t fa c to rs o n th e color s ta te P2 co rre sp o n d in g to th e ex ch an g e of tw o c u t P o m e ro n s. T h e color te n s o rs a sso c ia te d w ith th e u p p e r a n d lower im p a c t fa c to r a re d e n o te d by C a ({ a n }) a n d C g({bn }) co rresp o n d in g ly , an d we define th e color fa c to r by

C a g = E E C a ( { a n } ) P2({an}, {bn})C g({bn}) , (3.11) {an } {bn }

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(15)

w h ere th e color p ro je c to r ta k e s th e follow ing form

P ( { a 4 , {bn}) = ---^ r (ba i“3b“ 2“ 4 + ba i“4b“2“3) ( 4 lb34 2&4 + 4 lb4bb2b3) . (3.12) 2 A C2 ( A C2 - 1)

T h e color te n so rs e n te rin g th e cross sectio n s a re th e following:

1____ _ da1a2c da3a4C

C'a ( a i , a 2, a 3, a 4) = A 2 _ 1 ^ ---4A 2--- , (3 ' 13) for th e color av erag ed g lu o n to m eso n tra n s itio n a m p litu d e sq u a re d , an d

^ 1.62. ^ 4) =

4 ^

14 ( ¾ ¾ ¾ ¾ ) ■ (3 4 4 )

for th e color av erag ed s c a tte rin g a m p litu d e sq u a re d of th e p a r to n in color re p re s e n ta tio n R j. T h e ex p licit form of color fa c to rs C ^g follows fro m eqs. (3.11) , (3.13) , (3.14) a n d re ad s

C ( A 2 _ 4 ) ( A ? _ 2 ) C 3 N 2 _ 4

= 1 6 N J . Cgg = 8 (A ? _ 1) N | ' ( )

3 .3 V e c t o r m e s o n h a d r o p r o d u c t i o n i n c o n f o r m a l r e p r e s e n t a t i o n o f t h e B F K L P o m e r o n

In w h a t follows we shall recall th e L ip a to v so lu tio n to th e n o n -fo rw ard lead in g lo g a rith m ic B F K L e q u a tio n by m ean s of th e co n fo rm al eig en fu n ctio n s [14], a n d th e a p p lic a tio n to d iffractiv e s c a tte rin g . T h e n we shall em ploy th e fo rm alism to d e sc rib e th e v e c to r m eson h a d ro p ro d u c tio n in th e tw o P o m e ro n ex ch an g e m ech an ism . T h e so lu tio n to th e n o n ­ fo rw ard B F K L e v o lu tio n e q u a tio n c a n be p re se n te d in th e m o m e n tu m o r in th e c o o rd in a te space. To th is en d , for a gen eric 2 -d im en sio n al tra n s v e rs e m o m e n tu m k = (k x ,k y) we in tro d u c e th e com plexified m o m e n ta (k,fc), w here

k = kx + ik y, fc = kx _ ik y . (3.16)

Sim ilarly, for th e tra n s v e rs e c o o rd in a te space, th e 2 -d im en sio n al c o o rd in a te s p = (px , p y) w ill be tra d e d for th e co m p lex v aria b les

p = px + ip y. p = px _ ip y . (3 .17)

In w h a t follows we set s 0 = 0 a n d use th e o rig in al form o f th e n o n -fo rw ard B F K L e q u a tio n . I t w as show n by L ev L ip a to v [14, 17] t h a t th e B F K L e q u a tio n in th e lead in g lo g a rith ­ m ic a p p ro x im a tio n is in v a ria n t u n d e r th e co n fo rm al tra n s fo rm a tio n s of th e com plexified tra n s v e rs e p o sitio n s of th e R eggeized gluons,

a p + 6 ,

P ; , (3.18)

' cp + d v 7

for a r b itr a r y co m p lex p a ra m e te rs a, 6, c, d. In an a ly se s of h ig h en e rg y s c a tte rin g a m p litu d e s A ( s , t ) it is c u s to m a ry to use th e M ellin m o m en ts w c o n ju g a te to s [17],

A ( s , t ) = |s| / -dW A ( w ,f ) s w. (3.19)

J 2 n i

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

(16)

T h e so lu tio n for th e glu o n G re e n ’s fu n c tio n is th e n re p re se n te d as

X f d 2P0 (Pl'Bi P'2'o) , (3.20)

J W - W n ( v)

w h ere wn (v) is th e LL B F K L eigenvalue

(3.21)

a n d ^ a re p o ly g a m m a fu n c tio n s, th e fu n c tio n s E n ,v are co n fo rm al eig en fu n ctio n s defined as

E n v ( P li'>2) = ( p p 2) ( P i t ) 1 (3 '22)

w h ere th e pow ers h - h a re th e co n fo rm al w eights

1 n ~ 1 n , ,

h = 2 + 2 + iV| h = 2 - 2 + i v ' ( )

T h e abo v e form o f th e B F K L G re e n ’s fu n c tio n m ay b e F o u rie r tra n sfo rm e d to th e tra n s v e rs e m o m e n tu m re p re s e n ta tio n , a n d in v erse -M ellin -tran sfo rm ed in w to th e ra p id ity space

n n k > ) = 1 + « f + « d v 2 + n 2/ 4

V( 1 - 11 q ) ( 2 n )6 n^ o 7 - « V (v 2 + (n - 1)2/ 4 ) ( v 2 + (n + 1)2/4 )

x ex p (w n (v )y ) E ,v(k i , q) E ,v(k , q ) , (3.24) w here

E n v (k i, q ) = d 2p i d 2p2 e x p ( i k i p i + i ( q — k ) p2) , (3.25) a re th e co n fo rm al eig en fu n ctio n s in th e m o m e n tu m re p re s e n ta tio n . T h e a n a ly tic form of th e eig en fu n ctio n s E nv ( k i , q) w as d eriv e d in [65]. It is r a th e r lengthy, so in s te a d o f listin g it h ere we refer th e re a d e r to th e o rig in al p a p e r. In th e lim it y ^ 0, on e finds

^ k/, q) ^ ^ ) 2 • (3.26)

T h e d o m in a n t im a g in a ry p a r t of th e a m p litu d e for th e B F K L P o m e ro n ex ch an g e b e ­ tw ee n lead in g o rd e r im p a c t fa cto rs $A ,0( k i , q) a n d $ B)0( k / , q) re ad s

/

d 2 k i d 2 k /

— ^ $ A,0 ( k i , q ) Gy ( k i , k i , q ) ¢ B,0 ( k i , q ) • (3.27)

I t is co n v en ien t to define th e p ro je c tio n of th e im p a c t fa cto rs on th e co n fo rm al eigen ­ fu n c tio n s

/

d2 k ¢ A,o( k l , q ) E nv ( k l , q ), (3 .28)

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

, , f + « V 2 + n 2/ 4

G " (Pl 1 P2; P l - P2) = n £ 2 - ~ dV ( v 2 + ( n - 1)2/ 4 ) ( v 2 + ( n + 1)2/ 4 )

, , N c a s I" . . / |n| 1 \ , / Ini 1 \ Wn (v) = 2t (1) - ^ 2 ^ + 2 + w ) - T + 2 - %v) 1

(17)

a n d an a lo g o u sly for th e in d ex B . T h is leads to th e follow ing form of th e P o m e ro n exch an g e a m p litu d e

_ 2\ - 1 f v 2 + n 2/ 4

m A ( s , t = - q ) = d v ( v 2 + ( n - 1)2/ 4 ) ( v 2 + ( n + 1)2/4 )

x ex p (wra(v )y ) I A V ( q ) [ I Bv (q )]- . (3.29) T h e im p a c t fa cto rs I q v (q) a n d I y v(q ) w ere c o m p u te d in th e a n a ly tic form in refs. [3 , 5 , 35 , 60]. In th e c a lc u la tio n of v e c to r m eson h a d ro p ro d u c tio n we sh all need th e q u a rk im p a c t fa c to r, w hich is tr e a te d w ith in th e M u eller-T an g schem e [3 5 , 60]. I t ta k e s th e form

4 n a si n ( ł Y V p -in4>v r ( 1 / 2 + n / 2 — i v) (3 30)

n q \ 4 J r ( 1 / 2 + ( / 2 + i v ) , (3 ' 30)

w h ere Gq is th e p o la r an g le of th e v e c to r q in th e tra n s v e rs e p lane.

T h e fo rm alism m ay b e also ap p lied to th e tw o -P o m e ro n ex ch an g e process, assu m in g in d e p e n d e n t B F K L e v o lu tio n o f th e P o m e ro n s. H ence, we re w rite eq. ( 3.4) as

d a 2- p (X1X2S , t , i B ) a s f d 2k i d 2k [ f d 2k 2 d 2k'2 [ 2 ,-2/, , , n

d p — = 1 6 ^ 2 ^ / - 2 T - y - 2 r - y d q * <k i + k2 - p

x $ y ( k 1, k 1 + k 2) $ y (q — k 1, —k 1 — k 2)

x G y( k y k [ , q ) G y( k2, k 2 , —q ) $q,o ( k , q) $q,o (k 2 , —q ) . (3.31) U sin g th e re p re s e n ta tio n of th e B F K L G re e n ’s fu n c tio n s by th e co n fo rm al eig en fu n ctio n s in th e m o m e n tu m space th is m ay b e re w ritte n as,

d a 2 - p ( x 1x 2S , t , p ) d 2p

A new n o n -triv ia l o b je c t t h a t a p p e a rs in th is e q u a tio n , l y ' ^ n2,V2 (p, q) is a p ro je c tio n of a p a ir o f th e v e c to r m eson im p a c t fa c to rs (co m ing from th e a m p litu d e a n d its co m p lex c o n ju g a te ) on th e co n fo rm al eigenfunction s:

/ d2kq f cfik-q

( 2 ^ 7 (2 n )2 * 2 ( k 1 + k 2 — P ) E ni,V1 ( k1, q ) E^n2,V2 ( k2, —q )

x $ y ( k 1, p ) $ y (q — k 1, p ) . (3.33) N o te t h a t in c o n tra s t to th e d iffractiv e s c a tte rin g , in th is ex p ressio n th e v e c to r m eson im p a c t fa c to rs $ y a re co u p led to tw o d ifferen t co n fo rm al eig en fu n ctio n s each. In o th e r

J H E P 0 7 ( 2 0 1 9 ) 1 2 9

= a s f d 2q + ^ f _d)1_______________ v i2+ « 1 / 4 ___________

1 6 n 2a e m e 2q J n ~ - (XJ - ™ (2^ ) 3 (v 2 + («1 — 1)2/ 4 ) ( v 2 + (( 1 + 1 )2/4 )

f dv2 v2 + « 2 /4 , , , ,

X n ( 2 ^ + (( 2 — 1 ) 2 / 4 ) 0 2 + (( 2 + 1 )2 /4 ) ^ '+ (Vq))]

x i n i 'U n„ . 2 (p , q) [I?.1,V1 (q ) I?.„V2 ( —q ) ] - . (3.32)

Cytaty

Powiązane dokumenty

Z przeprowadzonych badań wynika, że zdeponowane w in- stalacjach kopalnianych osady składają się głównie ze związ- ków parafinowo-asfaltenowych (osady nr 1, 2, 3 oraz 5), które

Hogarth więc nie mógł się był urodzić po Byronie, a dziś urodzony wcale byłby inaczej malował.. Sztuka stała się dziś surowszą: wstąpił w nią duch namysłu, duch

Visitors, city centre and adjacent neighbourhood residents use these public spaces and destinations that provide high spatial quality (pedestrians stay here the longest as measured

The Author begins with a description of a fundamental qualitative difference which obtains already with respect to the form of philosophical questions concerning knowledge between

It follows that the uncorrelated color singlet triple- gluon contribution is unable to explain the large excess of the J /ψ hadroproduction cross section over the collinear

The dominant uncertainty for the particle- level cross-section is the large-R jet energy scale, in particular its components due to the topology uncertainty at low p T and

The aim of the paper was to determine the influence of transverse shear deformation and rotatory inertia on the natural frequencies and on the values of displacements of beams made

They are de ter - mined as the Dubno 1 palaeosols and cor re spond to the youn - gest mid-loess interstadials of the last gla ci ation: Moershoofd, Hengelo and Denekamp (£anczont