• Nie Znaleziono Wyników

On the existence of solutions of the differential equation with advanced argument

N/A
N/A
Protected

Academic year: 2022

Share "On the existence of solutions of the differential equation with advanced argument"

Copied!
4
0
0

Pełen tekst

(1)

ZOFIA MUZYCZKA

ON THE EXISTENCE OF SOLUTIONS

OF THE DIFFERENTIAL EQUATION WITH ADVANCED ARGUMENT

A b s t r a c t . In th is p a p e r th e d iffe re n tia l-fu n c tio n a l e q u a tio n

= /(t, tp), t e R+

9>(0) = n

w ith an u n b o u n d e d a d v a n c e d a rg u m e n t is discovered. U n d e r su ita b le assu m p tio n s, u sin g S c h a u d e r F ix e d P o in t P rin c ip le , a th e o re m on ex iste n c e of so lutions in

a sp ecial fu n c tio n a l-sp a c e is pro v ed .

1. I n t r o d u c t i o n . L et E denote a set of functions <p: R + -*• R n, w here R+ — [0, +0 0) and R n is the euclidean space w ith the norm |*|. Assume th a t the m apping / : R + X E -*■ R n is given and th a t rj e Rn- Consider the differential equation

(1) <p\t) = f ( t , y ) , t e R +

w ith the initial condition

(2) <p{ 0) = rj.

In m ost papers on the existence of a solution of th e Cauchy problem (1)—

(2) (e.g. see [2], [4], [7]) o r the Nicoletti type problem (e.g. see [3], [5], [6]) certain conditions are imposed w hich bound th e advance of th e a r ­ gum ent b y assum ing th a t th e re exists a function d : R + -*• R +, such th a t (3) f(t, q>) = f(t, yj) w henever <p(u) — y>{u) for u e [0, t+d.(t)],

th a t is by assum ing th a t the value of th e function f(t, tp) depends only on the value of th e function <p for u e [0, t+ d (t)]. Boundless advance of th e argum ent of th e function 95 was adm itted in papers [3] and [7] w here (under th e assum ption th a t the function 95 satisfies Lipschitz condition and basing on the Banach F ixed P oint Theorem) th e existence and uni-

Received. N ovem ber 06, 1979.

AMS (MOS) subject classification (1980). Primary 34K10.

(2)

queness of th e solution of th e equation under consideration w ere proved in appropriate classes of functions.

In th e presen t note w e prove by m eans of th e Sdhauder F ixed Point Theorem th e existence of a solution of th e problem (1)—(2), w ithout assum ing the restriction (3). We vise for th a t some ideas of p ap er [2] as w ell as of p aper 13].

2. A s s u m p t i o n s . Take on th e following assum ption:

( A ) There exists a locally integrable function L : R + -*• R + and constants

k > 1, X > 0 such th a t for a rb itra ry (t, <p) € R + X E w e have (4) |/{t, 9>)| ^ L(t) su p J|?j(s)| exp k J L(t) d t —Asj : s e R +,

P u t

> t \ .

(5) and (6)

M = sup | |9>(t)| exp k j L(r) d t—it j : t ^ 0

j,

<p G E

0 = 99€JS:|95<t)K a exp | k J L(t) dz w here th e constant a satisfies th e condition

(7) k —1*k M

Notice th a t 0 is a non-em pty, closed, 'bounded and convex set.

3 . T h e o r e m o n e x i s t e n c e .

THEOREM. If the assumption {A) is satisfied, then the problem (1)—(2) has at least one solution in the class 0.

P r o o f . Introduce the transform ation T defined for <p e 0 by the form ula

(8) (Tip) (t) = v + j f(s, tp) ds, t e R+.

0

We sh all show th a t th e transform ation T m aps th e s e t 0 in itself, i.e.

th a t T (0)<Z 0. Indeed, let < p € 0 , th e n following (8), (4), (6), (7) we have the estim ations

!(T*p) (t)l ^ M + { If(«, <P)\ ds ^

0

^ [17] + J L(s) sup \<p(r)\ exp k J L(t) d r —).r j : r e R +, r ^ s ds ^ \rj\ -f

+ J L(s) sup |a exp ^ k j L ( r ) d zj exp | —k j L(t) d r —Xr j : r e R +, r ^ s j d s ^

$0

(3)

M + J L(s) a exp |fc J £(T)drjsuip {exp (—Ar): r e R +, r ^ s } d s

|j?| + — J k L(s) exp J L ( t ) dt j ds ^ |j??| + exp |fc J L(r) dr

i a exp I k: j L(t) dr j.

We sh all show the com plete continuity of the transform ation T. L et us choose a num ber s > 0 and p u t

<9) M(e) = In ~ .

Then for t e ( /u(c), + °°), q>u 9 ^ 6 in v irtu e of (8), (4), (6) we obtain the estim ations

(TVl) ( t ) - ( T ^ ) ( t ) -

J /(*, <Pi) d s - j f(s, xp2) ds < J |f(s, 95,)| ds+ j |/(s, <p2)| ds <

2 J L(s) sup a exp I k J L(r) d r—Ar j : r e R +, r ^ s

— e x p / f c j L(r)diJ.

Hence

(10) K^Vi) (t)—(T<p2) (t)| exp k J L(t) d r - A t j 2a exp (-At).

B ut according to (9) for te(ju(e), + o o) we get inequality 2 a

k exp (—At) < s, which together w ith (10) gives the estim ation

(11) |(T^) (t)—(Ttp2) (t)| exp k J L(t) dr —It j < e, te(iu{e), +oo).

Assume now th a t t e [0, /<({)], then

| ( T ^ ) ( t ) - C Z > 2) ( t ) K J |/(s, p j - f t s , cp2)\ ds < g 0

if only | ! 9^21! is sufficiently small. Hence

(12) ICZVj) (t)—(T<p2) (t)| exp k j L(r) d r —At j < e, t e [0, ,u(e)].

91

(4)

From th e inequalities (11) and (12) it results th a t \T p i~ T p 2\ if only

\<Pt~<pA is sufficiently email. The last inequality m eans th a t T is con­

tinuous.

The compactness of the set T (^ ) rem ains to be dem onstrated. F ix a num ber /?, 0 < /? < + ° ° , th en for a rb itra ry t u t2 G [0, /3], such th a t t\ < t2, according to (8), (4), (6) we have

\(T<p) M - i T t p ) (tol < J |/(« , tp)I ds <

ti

^ ~ J k L(s) exp |/c J LĄr) d rj ds ■— exp ^fc J L(t) d tj (t2 — ti).

Using the above estim ation we get for p e<P and t e [0, /?],

|(Tp) (t)| < l(Tp) ( t) - ( T p ) (0)1 + \(T<p) (0)! < exp L(r) d t j + ]tJ\.

From the obtained estim ation and from Arzela Theorem for righthand open intervals (see [1]) the compactness of the set T (^ ) is concluded.

The proposition of th e theorem w hich is being proved resu lts di­

rectly from th e Schauder Fixed P o in t Theorem.

R EFER EN C ES

[1] A. B IE L E C K I, R ó w n a n ia ró żn ic zk o w e z w y c z a jn e i p e w n e ich u o gólnienia, W a r­

szaw a 1961.

[2] A. B IE L E C K I, C ertaines co n d itio n s su ffisa n te s p o u r V existen ce d’u n e solution d e I’eq u a tio n <p'(t) = f(t, q>(t), q>(v(t))), F o lia Soc. Sci L u b lin e n sis 2 (1962), 70—

73.

[3] A. B IE L E C K I, J . BŁA Ż, Vber eine V era llg e m e in e ru n g der N ic o le tti-A u fg a b e filr F u n k tio n a l-D iffe re n tia lg le ic h u n g e n m it v o r e ile n d e m A r g u m e n t, M o n atsh . M ath. 88 (1979), 287—291.

[4] J . BŁA Ż, S u r V existen ce d ’u n e solution d ’u n e eq u a tio n d iffe re n tie lle a a rg u ­ m e n t avance, A nn. Polon. M ath . 15 (1964), 1—8.

[5] J . BŁA Ż, Vber die N ic o le tti-A u fg a b e filr F u n k tio n a l-D iffe re n tia lg le ic h u n g e n m it v o re ile n d e m A rg u m e n t, Arch., M ath. 27 (1976), 529—534.

[6] J. BŁA Ż, W. W ALTER, Vber F u n k tio n a l-D iffe re n tia lg le ic h u n g e n m it v o r e ile n ­ d e m A r g u m e n t, M onatsh. M ath . 82 (1976), 1—16.

[7] T. D ŁOTK O, O istn ie n iu ro zw ią za ń p ew n eg o ró w n a n ia ró żn iczk o w eg o z w y ­ p rze d za ją c ym a rg u m e n te m , Z eszyty N au k o w e W S P w K ato w ic ac h n r 4 (1964), 79—83.

Cytaty

Powiązane dokumenty

Equip the harmonic oscillator with a damper, which generates the friction force proportional to the movement velocity F f = −c dx dt , where c is called the viscous damping

Di Blasio, Differentiability of spatially homogeneous solution of the Boltzmann equation in the non Maxwellian case, Comm.. Ehlers, Survey of general relativity theory,

MysTchis concernant un systeme d’ equations differentials ordinaire a'argument retarde, Folia

The author wishes to express his appreciation to the referee for his valuable suggestions concerning the material in this paper.... B ie le c k i, Une remarque

Periodic solutions — ordinary iterations... Periodic solutions — approximate

Moreover, some boundary problems for almost linear hyperbolic equations with deviated argument where this argument depends on the unknown function and these

Theorem 1.1 was proved for a variety of nonlinear differential equations under homogeneous Dirichlet boundary conditions in [2, 4, 7, 8] and for a system of differential equations

They are without proofs, but the Lemma 2.1 can be obtained from [5], Theorem XXII, p.123, where the local existence of extremal solutions were proved without sublinear estimation of