• Nie Znaleziono Wyników

Aortic stenosis evaluation: Novel tools to define the complexity

N/A
N/A
Protected

Academic year: 2022

Share "Aortic stenosis evaluation: Novel tools to define the complexity"

Copied!
2
0
0

Pełen tekst

(1)

Address for correspondence: Dr Raveen S. Pal, Kingston General Hospital, Kingston, ON, 76 Stuaft St. AW3, K7L 4N6, Canada, tel/fax: 613-549-6666, x 6245, e-mail: rs.pal@queensu.ca

Received: 29.08.2015 Accepted: 09.11.2015

Aortic stenosis evaluation:

Novel tools to define the complexity

Raveen S. Pal

Kingston General Hospital, Kingston, ON, Canada

Article p. 613

Aortic valve stenosis (AS) is the most common valvular disease pathology in developed countries affecting over 5% of the population over the age of 75 [1]. Age is also the most significant risk fac- tor in the development of aortic stenosis. As the global population ages [2], AS rates will continue to increase around the world. Some of the chal- lenges that have surfaced in AS management are appropriate diagnosis of stenosis severity and tim- ing of intervention. Patients who develop severe AS are monitored closely for the development of symptoms or the development of left ventricle (LV) function decline. International guidelines [3, 4]

currently recommend intervention for severe AS once symptoms develop or when there is a decline in LV ejection fraction (LVEF). As the LV faces an increasing load from the fixed valve obstruction, it is critical that a decline in LV systolic function is not missed. Once missed, the risk of intervention for severe AS rises sharply.

In the present study, Hita et al. [5] demon- strate the use of LV diastolic function and increase in LV end-diastolic pressure (LVEDP) as mark- ers of LV systolic function decline in patients with symptomatic AS. Twenty-six symptomatic patients with severe AS were evaluated prior to cardiovascular surgery with echocardiography and invasive catheterization. Patients with normal LVEDP (less than 15 mm Hg) were compared to patients with elevated LVEDP (over 15 mm Hg).

Patients with elevated LVEDP were further subdi- vided into without coronary artery disease (CAD) or with CAD. Their data show that patients with increased LVEDP also had LV stiffness, measured

as a ratio of LV pressure to LV end diastolic vol- ume, and lower systolic longitudinal strain. They also showed that these hemodynamic changes were associated with histologic changes includ- ing a higher myocyte cross sectional and collagen volume. These findings suggest that severe AS with compensated LV function, defined by normal LVEDP, is hemodynamically and structurally dif- ferent from decompensated severe AS.

This work has limitations including the small patient sample size. The study had 26 patients with 7 patients in two groups and 12 in the third group.

Further, there were significant differences in the aortic valve gradient between the groups, which may independently account for the differences observed in LVEDP and LV stiffness or diastolic function.

This paper supports the concept that using LVEF to monitor LV systolic function may be too blunt a tool to guide the timing of intervention for severe AS. This study’s findings are in keeping with the work of other researchers who have proposed the use of 2-dimensional (2D) longitudinal LV strain [6, 7] as a marker of future systolic dysfunction, in patients with severe AS, when LVEF is still pre- served. Early identification of declining LV function is an important concern that is necessary in many areas of current medical care. These findings may be generalized to the monitoring of LV function in a wide range of conditions such as other valvular heart disease, like mitral regurgitation, side effects of chemotherapeutic agents, and degenerative cardiomyopathies.

This work raises the interesting question of whether we need to shift our focus to earlier diagnosis of impending LV dysfunction, instead of waiting for LV dysfunction to occur, prior to inter-

601 www.cardiologyjournal.org

EDITORIAL

Cardiology Journal 2015, Vol. 22, No. 6, 601–602

DOI: 10.5603/CJ.2015.0083 Copyright © 2015 Via Medica ISSN 1897–5593

(2)

ventions. The most appropriate tools to diagnose impending LV dysfunction are still to be defined.

The use of LVEDP, LV diastolic function, and 2D strain have all been explored in this setting. Fur- ther work is being done on the added value of 3D echocardiography for LV volume and function as- sessments. With this paper, authors Hita et al. [5]

have added an interesting layer to this discussion.

Conflict of interest: None declared

References

1. Baumgartner H, Hung J, Bermejo J et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr, 2009; 22: 1–23.

2. WHO update. http://www.who.int/ageing/en/. Visited July 13, 2015.

3. Nishimura R, Otto C, Bonow R et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease.

J Am Coll Cardiol, 2014; 63: e67–e185.

4. Vahanian A, Alfieri O, Andreotti O et al. Guidelines on the man- agement of valvular heart disease (version 2012). Eur Heart J, 2012; 33: 2451–2496.

5. Hita A, Baratta S, Vaccarino G et al. Severe aortic stenosis with preserved ejection fraction and evidence of impairment in structure, myocardial strain and ventricular function: A new contribution to clinical decision making. Cardiol J, 2015; 22:

613–621.

6. Lancellotti P, Magne J, Donal E et al. Clinical outcome in asymp- tomatic severe aortic stenosis insights from the new proposed aortic stenosis grading classification. J Am Coll Cardiol, 2012;

59: 235–243.

7. Delgado V, Tops L, VanBommel R et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejec- tion fraction undergoing surgical valve replacement. Eur Heart J, 2009; 30: 3037–3047.

602 www.cardiologyjournal.org

Cardiology Journal 2015, Vol. 22, No. 6

Cytaty

Powiązane dokumenty

In this study, we aimed to evaluate the subclinical left ventricular (LV) systolic dysfunction and contraction of short and long axial circumferential and longitudinal fibers

Background: We aimed to assess the relation of fractional pulse pressure (PPf) to aortic stiffness index and their impact on coronary flow reserve (CFR) and left ventricular

From the remaining exams we analyzed all the diastolic function parameters readily available from pulse Doppler and tissue Doppler imaging (TDI) (E wave velocity, A wave

Results: Although systolic blood pressure, diastolic blood pressure, LV end-diastolic diameter, LV end-systolic diameter, serum B-type natriuretic peptide, and serum

The aim of our study was to investigate the use of L without a load- ing dose in a cohort of end-stage CHF patients ad- mitted to our institution for acute decompensation HF compared

The following subjects were also excluded from this study: patients with diabetes mellitus, hypertension, severe morbid obesity [body mass index (BMI) > 35], stage > three

Relationship between left ventricular ejection fraction (LVEF) values on the first day after myocardial infarction and left ventricular (LV) filling pattern three months later;

Background: The impact of radiofrequency current ablation (RFCA) on left ventricular (LV) systolic and diastolic function in patients with atrioventricular nodal re-entrant