• Nie Znaleziono Wyników

Production and radiative decay of heavy neutrinos at the Booster Neutrino Beam

N/A
N/A
Protected

Academic year: 2021

Share "Production and radiative decay of heavy neutrinos at the Booster Neutrino Beam"

Copied!
52
0
0

Pełen tekst

(1)

Production and radiative decay of heavy neutrinos at the Booster Neutrino Beam

Eduardo Sa´ ul Sala, Luis ´ Alvarez Ruso

Universidad de Valencia - IFIC

(2)

Index

1 Introduction

2 ν

h

production and decay Electromagnetic production Neutral current production Antineutrino production

Decay of the heavy sterile neutrino 3 Results

ν

h

production cross sections MiniBooNE

SBN

MicroBooNE LaR1-ND ICARUS

4 Conclusions

(3)

Section 1

Introduction

(4)

Neutrino paradigm

For massive neutrinos the flavor eigenstates do not coincide with the mass eigenstates

Mixing Ñ Pontecorvo–Maki–Nakagawa–Sakata matrix

α

y “ ÿ

i

U

αi

i

y

α “ e, µ, τ ; i “ 1, 2, 3

Oscillations

P pν

α

Ñ ν

β

q “ ÿ

k,j

U

αk˚

U

βk

U

αj

U

βj˚

exp

˜

´i

∆m

2kj

L 2E

¸

Questions

Dirac or Majorana

Neutrino absolute masses and Mass hierarchy Sterile neutrinos

Values of the parameters: θ

kj

, ∆m

2kj

and δ

CP

Anomalies

(5)

Anomalies in oscillation experiments

LSND was a short baseline experiment that searched for ν

e

appearance in a ν

µ

flux.

An excess of ν

e

was found.

A. Aguilar et al. PRD 64.112007 (2001)

(Originally) interpreted as ν

µ

Ñ ν

e

oscillations.

(6)

MiniBooNE was created to make a further analysis of the LSND signal, and found and excess at low energies

Aguilar-Arevalo et al. PRL110.161801 (2013)

ñ Reconstructed ν energy

E

νQE

“ 2m

n

E

e

´ m

2e

´ m

2n

` m

2p

2 pm

n

´ E

e

` p

e

cos θ

e

q

ñ e-like backgrounds

(7)

Oscillations: not explained by 1, 2, 3 families of sterile neutrinos.

J. Conrad et al., Adv. High Energy Phys. 2013, C. Giunti et al., PRD88 (2013)

The MiniBooNE low-energy anomaly is incompatible with neutrino oscillations

C. Giunti et al., PRD88 (2013)

(8)

Production and radiative decay of heavy neutrinos at the Booster Neutrino Beam 8 Introduction

Heavy neutrinos

Gninenko, PRL 103 (2009)

m

h

« 50MeV, |U

µh

|

2

« 10

´3

´ 10

´2

, τ

h

ă 10

´9

s

Simultaneous description of both MiniBooNE and LSND anomalies.

(9)

Heavy neutrinos

Gninenko, PRL 103 (2009) , Masip et al., JHEP01(2013)106

m

h

“ 50MeV, τ

h

“ 5 ˆ 10

´9

s, BR pν

h

Ñ ν

µ

γq “ 0.01

Alleviates tensions with other experiments (radiative µ capture at TRIUMF).

(10)

We have analyzed this scenario in order to compare with MiniBooNE

measurements. Also we have predicted the signal due to this kind of processes for SBN.

νµ

γ ν

A A

νh

γ,Z

On nucleons ν

µ

µ

q ` N Ñ ν

h

h

q ` N

On nuclei ν

µ

µ

q ` A Ñ ν

h

h

q ` A ð coherent ν

µ

µ

q ` A Ñ ν

h

h

q ` X ð incoherent ν

h

“ Dirac ν with m « 50 MeV, slightly mixed with ν

µ

A “

12

C (MiniBooNE, CH

2

),

40

Ar (SBN program: SBND, MicroBooNE, Icarus)

(11)

Section 2

ν h production and decay

(12)

Electromagnetic production

In general Broggini et al., Adv.High Energy Phys (2012) H

ef f

“ 1

2

!

ν

h

Λ

µ

ν

α

` ν

α

γ

0

“Λ

µ

:

γ

0

ν

h

)

A

µ

α “ e, µ, τ Imposing Lorentz and gauge inv.

Λ

µ

“ ˆ

γ

µ

´ q

µ

q { q

2

˙

“f

Q

pq

2

q ` f

A

pq

2

qq

2

γ

5

´ iσ

µν

q

ν

“f

M

pq

2

q ` if

E

pq

2

5

Choice of Masip et al., JHEP 1301 (2013)

Λ

µ

“ ´iσ

µν

q

ν

µ

αtr

p1 ´ γ

5

q

if µ

αtr

P R ñ CP conserved

(13)

Electromagnetic production

Effective lagrangian of the interaction, Masip et al., JHEP01(2013)106:

L

ef f

“ 1

2 µ

itr

h

σ

µν

p1 ´ γ

5

q ν

i

` ν

i

σ

µν

p1 ` γ

5

q ν

h

s B

µ

A

ν

, Inclusive process ν

i

pkq ` Appq Ñ ν

h

pk

1

q ` Xpp

1

q

νipkq νhpk1q

Appq

γpqq

Xpp1q

iM “ i e µ

itr

2 pq

2

` iq upk

1

q q

α

σ

αµ

p1 ´ γ

5

qupkq xX|J

µ

|N y .

(14)

General expression for the inclusive cross section:

dk

10

dΩ “ | ~ k

1

|

|~ k|

α pµ

itr

q

2

16 π q

4

L

µν

W

µν

Leptonic tensor

L

µν

“ 1 4 Tr “

p { k

1

` m

h

µα

p1 ´ γ

5

q { k p1 ` γ

5

νβ

‰ q

α

q

β

Hadronic tensor

W

µν

” 1 2M

˜ ź

i

ż d

3

p

1i

p2πq

3

2E

i1

¸

p2πq

3

δ

p4q

pk ` p ´ k

1

´ p

1

qH

µν

H

µν

“ ÿ

polar.

xX|J

ν

|N y

˚

xX|J

µ

|N y

(15)

QE scattering on nucleons

νµpkq νhpk1q

N ppq N pp1q

γpqq

dt “ α pµ

itr

q

2

4 ps ´ M

2

q

2

t

2

1 1 ´

4Mt2

`G

2E

R

E

´ G

2M

R

M

˘ , G

E

, G

M

are the Sachs form factors

R

E

“ ´ t `2s ` t ´ 2M

2

˘

2

` m

2h

t p4s ` tq ´ 4m

4h

M

2

R

M

“ t

4M

2

´4t

´ `M

2

´ s ˘

2

` s t

¯

` 2m

2h

t `2s ` t ´ 2M

2

˘

´2m

4h

`t ´ 2M

2

˘‰

(16)

Coherent scattering on scalar nucleus

νµpkq νhpk1q

Appq App1q

γpqq

dt “ α pµ

itr

q

2

4 ps ´ M

A2

q

2

t

2

F

2

R

E

R

E

“ ´t `2s ` t ´ 2M

A2

˘

2

` m

2h

t p4s ` tq ´ 4m

4h

M

A2

F pq

2

q “ ż

d

3

r e

i~q¨~r

ρp~rq

(17)

Incoherent scattering on scalar nucleus

Case of QE interaction with the nucleons forming the nucleus.

νµ νh

A X

γ

νµpkq

νhpk1q

νµpkq N1pp ` qq

N ppq

γpqq γpqq

Nieves, Amaro, Valverde, PRC70.055503 (2004)

With the local density approximation.

Wµν“ 1 α

ż d3r 4π2Θpq0qe2

ż d3p

2Aµνδ`p0` q0´ E p~p ` ~qq˘ np~pq p1 ´ n p~p ` ~qqq 4p0pp0` q0` Ep~p ` ~qqqΘpp0q

Aµν“ Tr

"„

γνF1´ i

2MσναqαF2

`

p ` {q ` M{ N

˘

γµF1` i

2MσµβqβF2

` {p ` MN

˘

*

Fj“ FjpGE, GMq

(18)

Incoherent scattering on scalar nucleus

Case of QE interaction with the nucleons forming the nucleus.

νµ νh

A X

γ

νµpkq

νhpk1q

νµpkq N1pp ` qq

N ppq

γpqq γpqq

Nieves, Amaro, Valverde, PRC70.055503 (2004)

With the local density approximation.

Wµν“ 1 α

ż d3r 4π2Θpq0qe2

ż d3p

2Aµνδ`p0` q0´ E p~p ` ~qq˘ np~pq p1 ´ n p~p ` ~qqq 4p0pp0` q0` Ep~p ` ~qqqΘpp0q

Occupation number:

np~ pq “ Θ pk

F

´ |~ p|q ; k

NF

prq “ `3π

2

ρ

N

prq ˘

1{3

(19)

Neutral current production

Effective lagrangian of the interaction:

L

I

“ ´ g 2 cos θ

W

j

µ

Z

µ

; j

α

“ 1

2 ν

µ

γ

α

p1 ´ γ

5

µ

, Inclusive process ν

i

pkq ` Appq Ñ ν

h

pk

1

q ` Xpp

1

q,

νipkq νhpk1q

Appq

Uµh

Zpqq

Xpp1q

ν

h1

“ cos θ ν

h

` sin θ ν

µ

, ν

µ1

“ ´ sin θ ν

h

` cos θ ν

µ

, with sin θ “ U

µh

iM “ ´i U

µh

G

F

? 2 upk

1

µ

p1 ´ γ

5

qupkq xX|J

µ

|N y .

(20)

General expression for the inclusive cross section:

dk

10

dΩ “ | ~ k

1

|

|~ k|

|U

µh

|

2

G

2F

32 π

2

L

µν

W

µν

Leptonic tensor

L

µν

“ Tr “

p { k

1

` m

h

µ

p1 ´ γ

5

q { k γ

ν

p1 ´ γ

5

q ‰ Hadronic tensor

W

µν

” 1 2M

˜ ź

i

ż d

3

p

1i

p2πq

3

2E

i1

¸

p2πq

3

δ

p4q

pk ` p ´ k

1

´ p

1

qH

µν

H

µν

“ ÿ

polar.

xX|J

ν

|N y

˚

xX|J

µ

|N y

(21)

QE scattering on nucleons

Process ν

µ

` N Ñ ν

h

` N dσ

dt “ |U

µh

|

2

G

2F

16 π M

2

k

20

“F

12

R

1

` F

22

R

2

` F

1

F

2

R

1 2

` F

A2

R

A

` F

P2

R

P

`F

A

F

1

R

A 1

` F

A

F

2

R

A 2

` F

A

F

P

R

A P

s ,

F

1

, F

2

, F

A

, F

P

are the weak nucleon form factors for neutral currents.

R1“ ´ m2hp2s ` tq ` 2pM2´ sq2` 2st ` t2

R2“ 1 8M2

“´4m4hM2` t2pm2h` 8M2´ 4sq ´ tpm2h` 2M2´ 2sq2

R1 2“2t2´ m2hpm2h` tq

RA“m2hp4M2´ 2s ´ tq ` 2M4´ 4M2ps ` tq ` 2s2` 2st ` t2

RP“m2ht pt ´ m2hq 2M2

RA 1“RA 2“ 2tp2s ` t ´ m2h´ 2M2q RA P“2m2hpt ´ m2hq

(22)

Coherent scattering on scalar nucleus

νµpkq νhpk1q

Appq App1q

Zpqq

dt “ |U

µh

|

2

G

2F

32 π M

A2

k

02

F

W2

´

m

4h

´ m

2h

p4s ` tq ` 4

” `M

A2

´ s ˘

2

` st ı¯

F

W

is te weak form factor of the nucleus,

F

W

pQ

2

q “ F

p

pQ

2

q `1 ´ 4 sin

2

θ

W

˘ ´ F

n

pQ

2

q 2

F

N

pq

2

q “ ż

d

3

r e

i~q¨~r

ρ

N

p~ rq

(23)

Incoherent scattering on scalar nucleus

Case of QE interaction with the nucleons forming the nucleus.

νµ νh

A X

Z

νµpkq

νhpk1q

νµpkq N1pp ` qq

N ppq

Zpqq Zpqq

Nieves, Amaro, Valverde, PRC70.055503 (2004)

With the local density approximation.

Wµν “ 1 4π

ż

d3r θpq0q ż d3p

2Aµνδ`p0` q0´ E p~p ` ~qq˘ nppq p1 ´ n p~p ` ~qqq p0pp0` q0` Ep~p ` ~qqqθpp0q

Aµν“Tr

"„

γνF1´ i

2MσναqαF2` γνγ5FA´qν5FP

`

{p ` {q ` MN

˘

ˆ

γµF1` i

2MσµβqβF2` γµγ5FA`qµ5FP

` p ` M{ N

˘

*

(24)

Antineutrino production

Electromagnetic production

The antisymmetric part of L

µν

changes sign but W

µν

is symmetric Ñ same results as neutrino electromagnetic interaction.

Neutral current production

The antisymmetric part of L

µν

changes sign:

QE scattering with nucleons Ñ change of sign in the antisymmetric terms.

Coherent scattering with scalar nucleus Ñ same result as neutrino neutral current scattering.

Incoherent scattering with scalar nucleus Ñ change of sign in the antisymmetric

terms.

(25)

Decay of the heavy sterile neutrino

νh

ν

γ

m

h

„ 50 MeV τ „ 5 ˆ 10

´9

s

dΓ d cos θ

γ

“ pµ

itr

q

2

m

3h

32π p1 ˘ cos θ

γ

q ;

"

EM ` N C´

θ

γ

is the angle of the photon respect the ν

h

spin direction.

Electromagnetic production flips quirality Ñ ν

hR

Neutral current production keeps quirality Ñ ν

hL

At high energies („ 1 GeV) contributions of other helicity components are

negligible.

(26)

Number of photons inside the detector,

Nγ“ Mdet

Vdet

NANP OT

ÿ

t

ft

ż

dEνφpEνq ż

dk01d cos θhh

dσ dk10d cos θhh

ż d3r P

P pk10, r, θ, ϕ, θh, ϕhq “ 1 ´ e´∆lλ

λ “ τ0c k01 mh

d 1 ´ m2h

pk01q2; τ0“ 1 Γ

We can calculate the energy and the angular distributions of the photons:

νµ νh

νµ νh

Detector

γ νi

γ νi

(27)

Section 3

Results

(28)

Parameters

Choice of parameters from M. Masip et al, JHEP 1301 (2013):

Mass of the heavy neutrino, m

h

“ 50 MeV Mixing angle, |U

µh

|

2

“ 3 ˆ 10

´3

Lifetime, τ

h

“ 5 ˆ 10

´9

s Branching ratio, BR

i

i trq2 ř

i

itrq2

Ñ BR

µ

“ 10

´2

(29)

ν h production cross sections

EM: dominated by the coherent mechanism

QE on proton Coherent on12C Incoherent on12C Total on12C

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0 1 2 3 4 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0 1 2 3 4 5

Eν(GeV) σ10-40cm2)

NC: dominated by the incoherent mechanism

QE on proton Coherent on12C Incoherent on12C Total on12C

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.70.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Eν(GeV) σ10-40cm2)

(30)

MiniBooNE

Fermi National Accelerator Laboratory is a with 149 m of diameter.

A 8 GeV protons beam is generated in FNAL and focused to a beryllium target.

A secondary beam of mesons is produced and filtered with magnetic fields

(31)

MiniBooNE

Cherenkov detector.

Spherical tank with 12.2 m of diameter.

806 tons of mineral oil, CH

2

.

MiniBooNE measurements were made with:

6.46 ˆ 10

20

POT in neutrino mode.

11.27 ˆ 10

20

POT in antineutrino mode.

ν mode νμ

νμ

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

×10-11/cm2/POT/50MeV)

ν mode νμ

νμ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5

Eν(GeV) ×10-11/cm2/POT/50MeV)

Aguilar-Arevalo et al, PRD 79 (2009)

(32)

MiniBooNE

Cherenkov detector.

Spherical tank with 12.2 m of diameter.

806 tons of mineral oil, CH

2

.

MiniBooNE measurements were made with:

6.46 ˆ 10

20

POT in neutrino mode.

11.27 ˆ 10

20

POT in antineutrino mode.

http://www-boone.fnal.gov/for_

physicists/data_release

(33)

Neutrino mode

Energy and angular distributions

Total QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

0 100 200 300

0.0 0.5 1.0 1.5 2.0

0 100 200 300

Eγ(GeV)

dN dEγ[Events/(0.1GeV)] Total

QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800

Cos(θγ) dN dCosγ)(Events/0.2)

Energy and angular distributions with efficiency

Total

MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total

MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60 70

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60 70

Cos(θγ) dN dCosγ)(Events/0.2)

(34)

Neutrino mode

Energy and angular distributions

Total QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

0 100 200 300

0.0 0.5 1.0 1.5 2.0

0 100 200 300

Eγ(GeV)

dN dEγ[Events/(0.1GeV)] Total

QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800

Cos(θγ) dN dCosγ)(Events/0.2)

Energy and angular distributions with efficiency

Total

MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

Eγ(GeV)

dN dEγ[Events/(0.1GeV)] Total

MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60 70

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60 70

Cos(θγ) dN dCosγ)(Events/0.2)

(35)

Neutrino mode

Energy and angular distributions

Total QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

0 100 200 300

0.0 0.5 1.0 1.5 2.0

0 100 200 300

Eγ(GeV)

dN dEγ[Events/(0.1GeV)] Total

QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800

Cos(θγ) dN dCosγ)(Events/0.2)

Energy and angular distributions with efficiency

Total

MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total

MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60 70

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60 70

Cos(θγ) dN dCosγ)(Events/0.2)

(36)

Antineutrino mode

Energy and angular distributions

Total QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

0 100 200 300 400 500

0.0 0.5 1.0 1.5 2.0

0 100 200 300 400 500

Eγ(GeV)

dN dEγ[Events/(0.1GeV)] Total

QE on protons Coherent on12C Incoherent on12C MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800 1000

-1.0 -0.5 0.0 0.5 1.0

0 200 400 600 800 1000

Cos(θγ) dN dCosγ)(Events/0.2)

Energy and angular distributions with efficiency

Total

MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

-10 0 10 20 30

0.0 0.5 1.0 1.5 2.0

-10 0 10 20 30

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total

MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 20 40 60

-1.0 -0.5 0.0 0.5 1.0

0 20 40 60

Cosγ) dN dCosγ)(Events/0.2)

(37)

Parameters

Choice of parameters from M. Masip et al, JHEP 1301 (2013):

Mass of the heavy neutrino, m

h

“ 50 MeV Mixing angle, |U

µh

|

2

“ 3 ˆ 10

´3

Lifetime, τ

h

“ 5 ˆ 10

´9

s Branching ratio, BR

i

i trq2 ř

i

itrq2

Ñ BR

µ

“ 10

´2

does not explain the MiniBooNE excess of events ñ χ

2

{DoF “ 127{54

(38)

Production and radiative decay of heavy neutrinos at the Booster Neutrino Beam 33 Results

MiniBooNE

Parameters and limits

LSND compatible limits for the parameters by Gninenko, PRD 83, 015015 (2011):

Mass of the heavy neutrino, m

h

:

Lower bound: m

h

ě 40 MeV Ñ KARMEN experiment.

Upper bound: m

h

ď 80 MeV Ñ LSND ν

h

production suppressed by phase space factor.

Mixing angle:

Lower bound: |U

µh

|

2

ě 10

´3

Ñ muon lifetime.

Upper bound: |U

µh

|

2

ď 10

´2

Ñ LEP experiments Z Ñ νν

h

decay Lifetime:

Upper bound: τ

h

ď 10

´8

s Ñ Gninenko LSND results

m

h

“ 68.6 MeV

|U

µh

|

2

“ 10

´2

τ

h

“ 2.5 ˆ 10

´9

s

BR

µ

“ 8.4 ˆ 10

´4

ô EM ν

h

production strongly suppressed

(39)

Parameters and limits

LSND compatible limits for the parameters by Gninenko, PRD 83, 015015 (2011):

Mass of the heavy neutrino, m

h

:

Lower bound: m

h

ě 40 MeV Ñ KARMEN experiment.

Upper bound: m

h

ď 80 MeV Ñ LSND ν

h

production suppressed by phase space factor.

Mixing angle:

Lower bound: |U

µh

|

2

ě 10

´3

Ñ muon lifetime.

Upper bound: |U

µh

|

2

ď 10

´2

Ñ LEP experiments Z Ñ νν

h

decay Lifetime:

Upper bound: τ

h

ď 10

´8

s Ñ Gninenko LSND results Our fit: χ

2

{DoF “ 101{54

m

h

“ 68.6 MeV

|U

µh

|

2

“ 10

´2

τ

h

“ 2.5 ˆ 10

´9

s

BR

µ

“ 8.4 ˆ 10

´4

ô EM ν

h

production strongly suppressed

(40)

Fitted parameters

Neutrino mode

Total

MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

0.0 0.5 1.0 1.5 2.0

-20 0 20 40 60 80

Eγ(GeV)

dN dEγ[Events/(0.1GeV)] Total

MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60

-1.0 -0.5 0.0 0.5 1.0

0 10 20 30 40 50 60

Cos(θγ) dN dCosγ)(Events/0.2)

Antineutrino mode

Total

MiniBooNE excess

0.0 0.5 1.0 1.5 2.0

-10 0 10 20 30

0.0 0.5 1.0 1.5 2.0

-10 0 10 20 30

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total

MiniBooNE excess

-1.0 -0.5 0.0 0.5 1.0

-10 0 10 20 30 40

-1.0 -0.5 0.0 0.5 1.0

-10 0 10 20 30 40

Cosγ) dN dCosγ)(Events/0.2)

(41)

SBN

(42)

MicroBooNE

LArTPC detector (large liquid argon time projection chamber).

TPC of 2.3 m ˆ 2.6 m ˆ 10.4 m.

Cylindrical deposit with 170 tons of liquid argon (active mass: 86.6 tons).

Same L{E as MiniBooNE approx.

Run plan of 6.6 ˆ 10

20

POT.

ν

μ

ν

μ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Eν(GeV) ×10-11/cm2/POT/50MeV)

Zarko Pavlovic, private communication.

(43)

MicroBooNE, parameters of Masip et al.

Neutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 20 40 60 80 100 120

0.0 0.5 1.0 1.5

0 20 40 60 80 100 120

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250 300 350

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250 300 350

Cosγ) dN dCosγ)(Events/0.2)

Antineutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 20 40 60 80 100 120 140

0.0 0.5 1.0 1.5

0 20 40 60 80 100 120 140

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250 300 350

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250 300 350

Cosγ) dN dCosγ)(Events/0.2)

(44)

MicroBooNE, fitted parameters

Neutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 20 40 60

0.0 0.5 1.0 1.5

0 20 40 60

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150

Cos(θγ) dN dCosγ)(Events/0.2)

Antineutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 5 10 15 20 25 30 35

0.0 0.5 1.0 1.5

0 5 10 15 20 25 30 35

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 20 40 60 80 100 120

-1.0 -0.5 0.0 0.5 1.0

0 20 40 60 80 100 120

Cosγ) dN dCosγ)(Events/0.2)

(45)

Neutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 20 40 60

0.0 0.5 1.0 1.5

0 20 40 60

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150

Cos(θγ) dN dCosγ)(Events/0.2)

Prediction for SM predominant photon emission from ∆p1232q Ñ nγ, Wang,

Alvarez-Ruso, Nieves, PRC89.015503 (2014)

(46)

LaR1-ND

LArTPC detector (large liquid argon time projection chamber).

TPC of 5 ˆ 4 ˆ 4 m.

Active mass: 112 tons.

Run plan of 6.6 ˆ 10

20

POT.

ν

μ

ν

μ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0 20 40 60 80

Eν(GeV) ×10-11/cm2/POT/50MeV)

Zarko Pavlovic, private communication.

(47)

LaR1-ND, fitted parameters

Neutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 500 1000 1500 2000 2500 3000

0.0 0.5 1.0 1.5

0 500 1000 1500 2000 2500 3000

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 1000 2000 3000

4000-1.0 -0.5 0.0 0.5 1.0

0 1000 2000 3000 4000

Cosγ) dN dCosγ)(Events/0.2)

Antineutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 200 400 600 800 1000 1200

0.0 0.5 1.0 1.5

0 200 400 600 800 1000 1200

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 500 1000 1500 2000 2500

-1.0 -0.5 0.0 0.5 1.0

0 500 1000 1500 2000 2500

Cosγ) dN dCosγ)(Events/0.2)

(48)

ICARUS

LArTPC detector (large liquid argon time projection chamber).

TPC of 18 ˆ 3 ˆ 2 m.

2 TPC of 238 tons.

Run plan of 6.6 ˆ 10

20

POT.

ν

μ

ν

μ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5

Eν(GeV) ×10-11/cm2/POT/50MeV)

Zarko Pavlovic, private communication.

(49)

At each TPC of ICARUS, fitted parameters

Neutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 50 100 150

0.0 0.5 1.0 1.5

0 50 100 150

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250 300 350

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250 300 350

Cosγ) dN dCosγ)(Events/0.2)

Antineutrino mode

Total Coherent on40Ar Incoherent on40Ar

0.0 0.5 1.0 1.5

0 10 20 30 40 50 60 70

0.0 0.5 1.0 1.5

0 10 20 30 40 50 60 70

Eγ(GeV) dN dEγ[Events/(0.1GeV)]

Total Coherent on40Ar Incoherent on40Ar

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250

-1.0 -0.5 0.0 0.5 1.0

0 50 100 150 200 250

Cosγ) dN dCosγ)(Events/0.2)

(50)

Section 4

Conclusions

(51)

Conclusions

The origin of MiniBooNE anomaly is still not understood.

Production and radiative decay of heavy sterile neutrino could be a solution.

We have made an analysis of this scenario using our understanding about neutrino interactions with matter.

In the range of parameter values consistent with LSND anomaly this scenario does not fully describe MiniBooNE anomaly, but could be sizable contribution.

We can predict the impact in SBN measurements and test the model.

(52)

Thank for your attention!

Cytaty

Powiązane dokumenty

In the present work we discussed the possible influence of physics beyond the S tan d ard Model in the future neutrino oscillation experim ents, where these

100% compatibility of nuclear kinetics and spectral neutrino emission now possible pathway to neutrino spectra computed directly within stellar evolution code now open (vast area

• Spectra of neutrinos from stars at late stages of thermonuclear burning (presupernovae) are found.. • This allows us to predict counting rates in various

As we have shown, even the simplest model, which is based on the almost commutative geometry with the finite part de- scribed by a spectral triple, leads to the appearance of

M easurem ent of th e Solar pp-n eu trin o flux com pleted th e m easurem ent of Solar neu trin o fluxes from th e pp-chain of reactions in Borexino

Read operations are synchronous; write operations are usually asynchronous. When an application writes to a file, the data enters the cache, and the filesystem manager

If we assume that threads “A” and “B” are READY, and that thread “C” is blocked (perhaps waiting for a mutex), and that thread “D” (not shown) is currently executing,

Real-time systems are a complex subdiscipline of computer systems engineering that is strongly influenced by control theory, software engineering, and operations research (via