• Nie Znaleziono Wyników

For a positive integer n let P (n) be the measure of the set of irrational numbers x ∈ (0, 1) such that the best approximation of x with denominator

N/A
N/A
Protected

Academic year: 2021

Share "For a positive integer n let P (n) be the measure of the set of irrational numbers x ∈ (0, 1) such that the best approximation of x with denominator"

Copied!
6
0
0

Pełen tekst

(1)

VOL. 77 1998 NO. 1

ON THE METRIC THEORY OF CONTINUED FRACTIONS

BY

I. A L I E V (WARSZAWA), S. K A N E M I T S U (FUKUOKA)

AND

A. S C H I N Z E L (WARSZAWA)

For a positive integer n let P (n) be the measure of the set of irrational numbers x ∈ (0, 1) such that the best approximation of x with denominator

≤ n is a convergent of the continued fraction expansion (in the sequel c.f.e.) of x. We shall show

Theorem.

P (n) = 1 2 + 6

π 2 (log 2) 2 + O  1 n

 .

This answers a question proposed to A. Schinzel by M. Deleglise. The proof is based on several lemmas. We let

0 1 = p 0

q 0

< p 1

q 1

< . . . < p N

q N

= 1 1 be the Farey sequence of order n.

Lemma 1. For each i < N we have

(1) p i+1

q i+1

− p i

q i

= 1

q i q i+1

and q i + q i+1 > n.

P r o o f. See [4], Chapter 2, §1.

Lemma 2. For each pair of coprime positive integers a, b such that a ≤ n, b ≤ n and a + b > n there exists one and only one i < N such that

q i = a, q i+1 = b.

P r o o f. See [3], Lemma 1, or [1], Lemma 4.1.

Lemma 3. An irreducible fraction p/q, where q > 1, is a convergent of the c.f.e. of an irrational number x if and only if

|p − xq| < |p 0 − xq 0 |

for all pairs hp 0 , q 0 i ∈ Z 2 , where 0 ≤ q 0 ≤ q, hp 0 , q 0 i 6= h0, 0i, hp, qi.

1991 Mathematics Subject Classification: Primary 11K50.

[141]

(2)

P r o o f. See [4], Chapter 2, Theorem 10.

Lemma 4. Let x ∈ (0, 1) be irrational and for i = 0, 1, . . . , N − 1, m i = p i + p i+1

q i + q i+1

, c i = 1 2

 p i

q i

+ p i+1

q i+1

 .

(i) If x ∈ (p i /q i , m i ), then p i /q i is a convergent of the c.f.e. of x.

(ii) If x ∈ (m i , c i ), then p i /q i is not a convergent of the c.f.e. of x.

(iii) If x ∈ (c i , m i ), then p i+1 /q i+1 is not a convergent of the c.f.e. of x.

(iv) If x ∈ (m i , p i+1 /q i+1 ), then p i+1 /q i+1 is a convergent of the c.f.e.

of x.

P r o o f. It suffices to prove (i) and (ii), the proof of (iii) and (iv) is analogous.

Assume that x ∈ (p i /q i , m i ). Then

0 < q i x − p i < q i m i − p i = 1 q i + q i+1

.

Hence, if hp 0 , q 0 i ∈ Z 2 , 0 ≤ q 0 ≤ q i , hp 0 , q 0 i 6= h0, 0i, hp i , q i i we have either q 0 = 0, p 0 6= 0 and

|p 0 − q 0 x| = |p 0 | ≥ 1, or hp 0 , q 0 i = hp i+1 , q i+1 i and

|p 0 − q 0 x| = |p i+1 − q i+1 x| > p i+1 − q i+1 m i = 1 q i + q i+1

, or q 0 > 0, hp 0 , q 0 i 6= hp i , q i i, hp i+1 , q i+1 i and

|p 0 − q 0 x| ≥ q 0 min



p 0 q 0 − p i

q i

,

p 0

q 0 − p i+1

q i+1



≥ 1

max{q i , q i+1 } .

In any case |p 0 − q 0 x| > |p i − q i x| and by Lemma 3, p i /q i is a convergent of the c.f.e. of x if q i > 1. If q i = 1 then p i /q i = 0 and obviously the same is true.

Assume now that x ∈ (m i , c i ). Then m i < c i , hence q i > q i+1 by (1).

We have

0 < p i+1 − q i+1 x < p i+1 − q i+1 m i = 1 q i + q i+1

< q i x − p i

and, by Lemma 3, p i /q i is not a convergent of the c.f.e. of x.

Lemma 5. We have P (n) = 1

2 +

N −1

X

i=0

1

(q i + q i+1 ) max{q i , q i+1 } .

(3)

P r o o f. Denoting the Lebesgue measure by m we have P (n) =

N −1

X

i=0

m(S i ),

where S i is the set of irrational numbers in the interval (p i /q i , p i+1 /q i+1 ) for which the best approximation with denominator ≤ n is a convergent of the c.f.e. of x. Clearly, p i /q i is the best approximation in question for x ∈ (p i /q i , c i ), and p i+1 /q i+1 for x ∈ (c i , p i+1 /q i+1 ). Hence, by Lemma 4,

S i =  p i q i

, min{m i , c i }





max{m i , c i }, p i+1

q i+1



 Q, and

m(S i ) = min{m i , c i } − p i

q i

+ p i+1

q i+1

− max{m i , c i }.

Using (1) we obtain m(S i ) = 1

q i q i+1

− |q i − q i+1 |

q i q i+1 (q i + q i+1 ) = 1 2q i q i+1

+ 1

(q i + q i+1 ) max{q i q i+1 } . Therefore, by (1),

P (n) = 1 2

N −1

X

i=0

 p i+1

q i+1

− p i

q i

 +

N −1

X

i=0

1

(q i + q i+1 ) max{q i , q i+1 }

= 1 2 +

N −1

X

i=0

1

(q i + q i+1 ) max{q i , q i+1 } . Lemma 6. For n > 1 we have

P (n) = 1

2 + 2 X ∗ 1 bc , where the sum P ∗

is taken over all pairs hb, ci ∈ N 2 such that b ≤ n < c < 2b and (b, c) = 1.

P r o o f. By Lemmas 1 and 2 we have

N −1

X

i=0

1

(q i + q i+1 ) max{q i , q i+1 } =

n

X

a,b=1 a+b>n (a,b)=1

1

(a + b) max{a, b} .

For n > 1 the conditions a + b > n, (a, b) = 1 imply a 6= b. Hence

n

X

a,b=1 a+b>n (a,b)=1

1

(a + b) max{a, b} = 2

n

X

a,b=1 a<b, a+b>n

(a,b)=1

1

(a + b)b .

(4)

The conditions 1 ≤ a < b, (a, b) = 1 are equivalent to b < a + b < 2b, (a + b, b) = 1. Replacing a + b by c and using Lemma 5 we obtain the lemma.

Lemma 7. For arbitrary positive numbers A < B we have X

B≥i>A

1

i = log B A − 1

B ψ(B) + 1

A ψ(A) + O

 1 A 2

 , X

B≥i>A

log i i = 1

2 log B

A log BA − log B B ψ(B) + log A

A ψ(A) + O  log + A A 2

 , X

B≥i>A

1 i 2 = 1

B − 1 A + O

 1 A 2

 , X

B≥i>A

log i = B log B − A log A + O(B),

where ψ(x) = {x} − 1/2 and log + x = max{log x, 1}.

P r o o f. See Walfisz [5], Chapter 1, §1, Hilfssatz 3.

Lemma 8. We have

n

X

d=1

µ(d)

d = O(1),

n

X

d=1

µ(d) d 2 = 6

π 2 + O  1 n

 . P r o o f. See Landau [2], §152 and §153.

Proof of the Theorem. In the notation of Lemma 6 we have X 1

bc =

n

X

b=1

X

2b>c>n

1 bc

X

d|(b,c)

µ(d) =

n

X

d=1

µ(d) d 2

[n/d]

X

k=1

1 k

X

2k>l>n/d

1 l , hence by Lemma 7,

X ∗ 1 bc =

n

X

d=1

µ(d) d 2

X

n/d≥k>n/(2d)

1 k



log 2kd n − 1

4k + d n ψ  n

d



+ O  d 2 n 2



=

n

X

d=1

µ(d) d 2



log 2d n + d

n ψ  n d



+ O  d 2 n 2



X

n/d≥k>n/(2d)

1 k

+ X

n/d≥k>n/(2d)

log k

k − X

n/d≥k>n/(2d)

1 4k 2



.

(5)

Now,

 log 2d

n + d n ψ  n

d



+ O  d 2 n 2



X

n/d≥k>n/(2d)

1 k

=

 log 2d

n + d n ψ  n

d



+ O  d 2 n 2



×



log 2 − d n ψ  n

d

 + 2d

n ψ  n 2d



+ O  d 2 n 2



= log 2 log 2d n − d

n log 2d n ψ  n

d



+ 2d n log 2d

n ψ  n 2d

 + d

n log 2 ψ  n d



+ O  d 2

n 2 log + n d

 , while

X

n/d≥k>n/(2d)

log k k = 1

2 log 2 log n 2 2d 2 − d

n log n d ψ  n

d



+ 2d n log n

2d ψ  n 2d



+ O  d 2

n 2 log + n d

 , X

n/d≥k>n/(2d)

1 4k 2 = d

4n + O  d 2 n 2

 . Hence, by Lemma 8,

X ∗ 1 bc =

n

X

d=1

µ(d) d 2

 1

2 (log 2) 2 − d

4n + O  d 2

n 2 log + n d



= 1

2 (log 2) 2 6

π 2 + O  1 n



− 1 4n

n

X

d=1

µ(d)

d + O  1 n 2

n

X

d=1

log + n d



= 3

π 2 (log 2) 2 + O  1 n



+ O  1 n 2

n

X

d=1

log + n d

 . We have, by Lemma 7,

n

X

d=1

log + n d =

n/e

X

d=1

log n d +

n

X

d>n/e

1 = O(n), hence

X ∗ 1 bc = 3

π 2 (log 2) 2 + O  1 n



.

Together with Lemma 6 this gives the theorem.

(6)

Remark. The main term in the asymptotic formula for P (n), but not the error term, can be derived from Theorem 1.3 of [1] and from Lemma 5.

Acknowledgments. The authors thank Mr. M. Yoshimoto for his help in the calculations.

REFERENCES

[1] P. K a r g a e v and A. Z h i g l j a v s k y, Asymptotic distribution of the distance function to the Farey points, J. Number Theory 65 (1997), 130–149.

[2] E. L a n d a u, Handbuch der Lehre von der Verteilung der Primzahlen, reprint Chelsea, 1953.

[3] J. L e h n e r and M. N e w m a n, Sums involving Farey fractions, Acta Arith. 15 (1969), 181–187.

[4] B. A. V e n k o v, Elementary Number Theory , Wolters-Noordhoff, 1970.

[5] A. W a l f i s z, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag Wiss., Berlin, 1963.

Institute of Mathematics Department of Electrical Engineering

Polish Academy of Sciences University of Kinki, Iizuka

Sniadeckich 8 ´ Fukuoka 820, Japan

00-950 Warszawa, Poland E-mail: kanemitu@fuk.kindai.ac.jp E-mail: iskander@impan.gov.pl

schinzel@impan.gov.pl

Received 3 November 1997;

revised 12 December 1997

Cytaty

Powiązane dokumenty

For C 1 maps we prove that almost all primes are minimal periods of each essential self-map of a rational exterior compact manifold (Th. Dold’s relations and transversal maps.

The purpose of this paper is to prove the following

Paul Erd˝ os (Budapest), Melvyn B. All bases considered in this paper will be either asymptotic or strict asymptotic bases of order k. strict asymptotic basis) A is called minimal

In the present paper we show that if instead of primes one asks for almost primes of some fixed order r (that is, numbers with at most r prime factors, counted with multiplicity, or P

tipli ative re urrent sequen es shrinks S to the lassi al system. Then, similar to the proof of

A smooth weight is used to control error terms, and this weight can in typical applications be removed from the final result.. Similar results are obtained for the tails of

(See the proof of Lemma 7 in [1].) For some N , making sufficiently many lin- ear equations obtained by equating the coefficients of powers of x, including positive powers, we are

The set of multiples M (A) of any left compressed set A (in the sense of Definition 2) possesses asymptotic density.. We conjecture this even for left compressed sets in the sense