• Nie Znaleziono Wyników

The lassi alsystemofrepli ativityequa- tions (1 n ) 1 n n 1 X =0 F  x+ n  =n s F(x) foralln2N withsome xedparameters2C wasstudiedfrequently

N/A
N/A
Protected

Academic year: 2021

Share "The lassi alsystemofrepli ativityequa- tions (1 n ) 1 n n 1 X =0 F  x+ n  =n s F(x) foralln2N withsome xedparameters2C wasstudiedfrequently"

Copied!
21
0
0

Pełen tekst

(1)

Arithmeti al aspe ts of ertain fun tional equations

by

Lutz G. Lu ht (Clausthal)

The lassi alsystemof fun tionalequations

1

n n 1

X

=0 F



x+

n



=n s

F(x) (n2N)

withs2C, investigatedforinstan ebyArtin(1931), Yoder(1975), Kubert

(1979),and Milnor (1983),isextended to

1

n n 1

X

=0 F



x+

n



= 1

X

d=1



n

(d)F(dx) (n2N)

with omplexvaluedsequen es

n

. Thisleadstonewresultsontheperiodi

integrable and theaperiodi ontinuoussolutionsF :R

+

!C interrelating

thetheory offun tionalequationsand thetheory ofarithmeti fun tions.

1. Repli ativityequations. The lassi alsystemofrepli ativityequa-

tions

(1

n )

1

n n 1

X

=0 F



x+

n



=n s

F(x)

foralln2N withsome xedparameters2C wasstudiedfrequently. Usu-

allyx varies over theadditivegroupT=R=ZorasuitableintervalDR,

for instan e (0;1) or R

+

. For D = Q= Z see Kubert [3℄. The solutions

F of theabove system form a linear spa e. Sin e any two equations (1

m )

and (1

n

) imply(1

mn

), itwouldsuÆ e to assume the equations(1

n

) forall

n2P=fp2N :pprimeg. The ase s=1 wasstudied byArtin[1℄ in on-

ne tionwiththegammafun tion. He proved thatevery integrable solution

F :T!C ofthesystem(1

n

)isalinear ombinationoflog (1 e 2ix

)andits

onjugatealmosteverywhere. Forarbitrarys2C Milnor[8℄gavea omplete

1991 Mathemati sSubje tClassi ation: 11A25,39B62,39A10.

(2)

hara terizationofthespa eof ontinuoussolutionsF :(0;1)!C and dis-

ussedtheir ontinuousextensionsto Tandto R

+

. Inparti ular,thisleads

tolinearrelationsbetweenthepolylogarithmandtheHurwitzzetafun tion,

andthere aresigni antappli ationstoDiri hletL-fun tions, theRiemann

zeta fun tion, the gamma fun tion and related fun tions. Yoder [12℄ re-

pla edthefa torsn s

onthe rightsideof theequations(1

n

) bythevalues

g(n) of a generating sequen e g : N ! C and showed that the existen e

of non-trivialsolutions F for esg to be totally multipli ative, whi h means

g(1) =1 and g(mn) =g(m)g(n) for all m;n2N. Moreover, the existen e

ofaperiodi ontinuoussolutionsF :R

+

!C impliesg(n)=n s

withsome

s2C and hen eleadsba kto the lassi alsystem.

Theaim ofthispaperisto investigatethesystemS ofextendedrepli a-

tivity equations, previouslyintrodu edin[6℄,

(2

n )

1

n n 1

X

=0 F



x+

n



= 1

X

d=1



n

(d)F(dx)

with some xed sequen es

n

:N ! C forall n2N. This systemprovides

a natural extension of the lassi al repli ativity system as it removes the

restraint onthegeneratingsequen egtohavetheformg(n) =n s

ortobe

totallymultipli ativeat least. Namely, onsiderF :T!C asrestri tionof

a fun tionG, holomorphi on theopen unitdis U C and normalized by

G(0)=0and G 0

(0)=1,to the boundaryU. Set

G(z)= 1

X

a=1 g(a)z

a

and writeF(x)=G(e(x)), wheree(x)=e 2ix

forx2R. The identity

1

n n 1

X

=0 e



a



n



=



1 if nja,

0 otherwise,

yields

1

n n 1

X

=0 G



ze





n



= 1

X

a=1

nja g(a)z

a

(z2U):

Now, apart from a remainder termof order jzj (d+1)n

, theright side an be

writtenasalinear ombination

n (1)G(z

n

)+

n (2)G(z

2n

)+::: +

n (d)G(z

dn

)

ofG(z n

);:::;G(z dn

)withuniquelydetermined oeÆ ients

n

(1);:::;

n (d)

2C forevery d2N. Assume that theremainder termvanishes asd!1.

Then

1

n n 1

X

=0 G



ze





n



= 1

X



n (d)G(z

nd

) (z 2U);

(3)

andinpassingtoF withxrepla edbyx=nweformallyarriveat(2

n

). Noti e

that S redu es to Yoder'ssystem ifand onlyifg istotally multipli ative,

in whi h ase 

n

(1) = g(n) and 

n

(d) = 0 for all d 2 N, d 6= 1, and all

n2N.

2. Periodi solutions. LetL(T) denote the spa e of integrable fun -

tionsF :T!C modulonullfun tions underthenorm

kFk=

\

T

jF(x)jdx<1:

Theabove onstru tionofthesystemS suggests investigatingitssolutions

F 2L(T). EvidentlyS hasnon-trivial onstant solutions F ifand onlyif

(3

n )

1

X

d=1



n

(d)=1

holdsfor all n2 N. The existen e of non- onstant solutions F 2 L(T) de-

pendsonhowthesequen es

n

(n2N)areinterrelated,whi hrequiressome

arithmeti alpreparation. Denote byF the omplexalgebraof arithmeti al

sequen es g : N ! C endowed with the usual pointwise linear operations

andwiththeDiri hlet onvolution:F 2

!F asmultipli ation,de nedby

(f g)(m)= X

a;b2N

ab=m

f(a)g(b) (m2N):

Observe that F ontains the multipli ative identity " with "(1) = 1 and

"(m) = 0 for all m 2 N, m 6= 1. The multipli ative group of F is F



=

fg2F :g(1)6=0g. By g 1

we denotethe multipli ativeinverse of g2F



,

whi h means gg 1

=". For g2F and n2N we de ne thesubsequen e

g(n



)2F byg(n



)(a)=g(na) foralla2N.

Theorem 1. For arbitrary sequen es 

n

2 F (n 2 N), let g 2 F be

de ned by g(n) = 

n

(1) for all n 2 N. If the system S has non- onstant

solutions F 2L(T) then

(a) g(1)=1 and 

n

=g 1

g(n



) for all n2N,

(b) the Fourier oeÆ ients of F are given by

b

F(m)=



sgnm

g(jmj) if m2Z



=Znf0g,

0

if m=0,

withparameters

0

;

1

;

1 2C,

( )

0

=0, unless (3

n

) is valid for all n2N.

Proof. Let

X

b

F(m)e(mx) (x2T)

(4)

betheFourierseriesof F 2L(T). The Fourier oeÆ ientsaregiven by

b

F(m)=

\

T

F(x)e( mx)dx (m2Z):

Denotingtheleftsideof(2

n )byF

n

(x), weseethatF

n

2L(T) and b

F

n (m)=

b

F(nm)forallm2Z. Denotingtherightsideofequation(2

n )byS

n

(x), we

obtain S

n

2 L(T) from the onvergen e of the seriesto F

n

2 L(T), whi h

legalizes termwiseintegration andshowsthat

b

S

n (m)=

X

djm



n (d)

b

F(m=d) (m2Z):

Comparing the oeÆ ients leadsto

(4)

b

F(nm)= X

djm



n (d)

b

F(m=d) (m2Z):

In parti ular, for m = 1 this implies b

F(n) = g(n) b

F(1). Sin e, by

assumption, b

F 60 onZ



,weobtaing(1)=1and g(nm)=(

n

g)(m) for

all m2N, whi h isequivalent to (a). Putting

1

= b

F(1),

1

= b

F( 1) and

0

= b

F(0)we obtain(b), and ( ) followsfrom (4)form=0.

In the sequel we only onsidersystems S forwhi h a sequen e g2F



a ording to Theorem1(a) exists. We allg thegenerating sequen e ofS.

ByTheorem1thedimensionoftheC-linearspa eP

g

ofsolutionsF 2L(T)

of S isat most3. In fa t, fora large lass of generatingsequen es we an

redu e thisboundby1.

Forq2N,q 6=1,denote byR

q

the setof allsequen es g2F satisfying

a re urren eequation oftheform

(5

q

) g(q

l+k



)+

k 1 g(q

l+k 1



)+:::+

0 g(q

l



)=0

with ertain integers k;l  0 and omplex oeÆ ients

0 6= 0;

1

;:::;

k 1 .

For every xed g 2 R

q

there exist minimal numbers k = k(q), l = l(q) 2

N

0

=N[f0gsu hthat (5

q

) holds. Forthis hoi e ofk,l we asso iate with

g2R

q

the ompanion polynomial

(6) f

q

(z)=z k

+

k 1 z

k 1

+:::+

0 2C[z℄

and theset Z

q

=f 2C :f

q

()=0g of itszeros. By k



2N we denote the

multipli ityof 2Z

q .

Lemma 1. Let g 2 R

q

for some q > 1. Then, for every a 2 N, the

solutions of the re urren e equation(5

q

) are given by

g(q



a)= X

2Zq P

 ()



( 2N

0

;  l)

(5)

with polynomials P



(x)2 C[x℄, depending on a2N, of degree  k



1 or

P



(x)0.

Proof. For xeda2N set h()=g(q



a). Then(5

q

) implies

h(+k)+

k 1

h(+k 1)+:::+

0

h()=0 ( l):

Asis wellknown (see,forinstan e, Lidland Niederreiter[5℄, Chapter6, or

Methfessel [7℄, Se tion 1), the solutions h 2 F of this re urren e equation

have theform

h()= X

2Z

q P

 ()



with ertain polynomialsP



(x)2C[x℄ , a ordingto thestatement of Lem-

ma1.

Theorem2.Letg2R

q

forsomeq >1andg(1)=1. Thenthe omplex

ve tor spa e P

g

has dimension 2. If b

F(0)6=0 for some F 2P

g

then P

g

onsists of all onstant fun tions, anddimP

g

=1.

Proof. InviewofTheorem1weonlyneedto onsiderthe ase(3

n )for

alln2N. Bytakingthe onvolutionprodu twithg 1

we mayrewrite(5

q )

as



q l+k+

k 1



q

l+k 1+:::+

0



q l =0:

Summation over d 2 N of the values at d and insertion of (3

n

) for n 2

fq l

;:::;q l+k

g leadsto f

q

(1)=0, whi h is equivalent to 12 Z

q

. Hen e, by

Lemma1 and theminimalityofk =k(q),

g(q



a)=P

1 ()+

X

2Zqnf1g P

 ()



( l)

with ertainpolynomials P



(x)2C[x℄ dependingon a2N, and P

1

(x)60

forsomea2N. Fromthiswe on ludethatg(n)6=O (1)asn!1. Finally,

Theorem1 and theRiemann{Lebesgue lemmayield

1

=

1

=0.

As to the onverse of Theorems1 and 2,we add thefollowingresult.

Theorem 3. Assume that the Fourier series of F 2L(T) has the form

X

m2Z



sgnm

g(jmj)e(mx)

with some sequen eg 2 F, g(1)= 1, and some onstants

1

;

1

2C, and

let the system S begenerated by g. If all series

1

X

d=1



n

(d)F(dx) (n2N)

onverge in L(T) then F 2P .

(6)

Proof. Re all that, byFejer'stheorem,theseries

X

m2Z



sgnm

g(jmj)e(mx) (x2T)

is Cesaro-summable to F 2L(T). With thenotation of theproofof Theo-

rem 1,F

n

2L(T) hastheFourier series

X

m2Z



sgnm

g(njmj)e(mx) (x2T):

By assumption, the series S

n

(x) onverges for almost all x 2T, and S

n 2

L(T). A short al ulation similar to that inthe proof of Theorem 1 shows

that

X

m2Z

 X

djm



n (d)

b

F(m=d)e(mx) (x2T)

isthe Fourierseriesof S

n

. Now observe that

X

djm



n (d)

b

F(m=d)=

sgnm (

n

g)(jmj)=

sgnm

g(njmj) (m2Z



):

Hen e the Fourier series of F

n

and S

n

oin ide, whi h gives F

n

= S

n in

L(T), and theassertionof Theorem3 follows.

3. Multipli ative sequen es. A sequen e g : N ! C is alled mul-

tipli ative if g(1) = 1 and g(mn) = g(m)g(n) for all oprime m;n 2 N.

The set M of multipli ative sequen es forms a subgroup of F



under the

Diri hlet onvolution. By T we denote the subsetof totally multipli ative

sequen es, and we writehni and hTi for the set of all d 2 N whose prime

fa torsdividen2N, andforthemultipli ativesemigroupgeneratedbythe

set T P respe tively. First,werestate Theorem2 from [6℄as

Lemma 2. Let g 2 F, g(1) = 1, and 

n

= g 1

g(n



) for all n 2 N.

Then g 2Mis equivalent to supp

n

hni for all n2N, and in this ase



mn

=

m



n

for all oprime m;n2N.

ByLemma2,everysystemS generatedbysomeg2M anequivalently

be repla ed by the partialsystem of equations (2

n

) for all n 2P



=fp



:

p2P;  2Ng.

With g2Mand p2P we asso iate theformalDiri hlet series

e g

p (s)=

1

X

k=0 g(p

k

)p ks

(s2C) ;

andwe denotebyM

p

thesetofallg2Mhavingthepropertythateg

p (s)is

absolutely onvergent and zero-free inthe losed half plane Res0. The

(7)

Theorem4.Letg2M

p

forsomep2P. Thenthe omplexve torspa e

P

g

has dimension 2. In parti ular, b

F(0)=0 for every F 2P

g .

Proof. It follows from Wiener's inversion theorem (see, for instan e,

Rudin [11℄, Chapter 18) applied to the power series G

p

(z) = eg

p

(s) with

z=p s

thatM

p

formsasubgroupof M,forevery p2P. Forn=p



2P



we inferfrom Lemma2 that

1

X

d=1 j

n (d)j=

1

X

k=0 j

n (p

k

)j

 1

X

%=0 jg

1

(p

%

)j 1

X

=

jg(p



)j 1

X

=

jg(p



)j=O(1)

as ! 1. Hen e equation (3

n

) failsto hold forall n2N, and Theorem1

givesthedesired on lusion.

A lo al version of Theorem 4 is easily obtained by assuming g(1) = 1

and supp

n

 hpi for all n 2 hpi instead of the global multipli ativity of

thesequen e g inthede nitionofM

p .

The proof of Theorem 4, similarto that of Theorem 2, onsists in ex-

luding ertain generating sequen es g of S satisfyingthe equations (3

n ),

n2N. It would therefore be desirable to know how to re onstru t g2 M

from anin nite systemof equationsof thetype

(7

n

) f(n)=

1

X

d=1



n

(d)h(d)

forall n2N, where h2T andf 2F aresuitably hosensequen es.

Lemma 3. For g2 F with g(1) =1 let 

n

=g 1

g(n



) for all n 2N,

and let h 2 T. Suppose that all series (7

n

) for n 2 N are onvergent, so

that f 2 F is de ned and f(1) =1. If g 2M then f 2 M, and if g 2T

then f 2T. Conversely, iff 2T andf(p)h(p)6=1 for all p2Pthen there

exists a uniquely determined g 2 M su h that (7

n

) is valid for all n 2 N,

namelyg=f 2T. Thisimpli ationdoesnotholdfor f 2T iff(p)h(p)=1

for some p2P.

Proof. The Diri hlet series

1

X

d=1



n

(d)h(d)

d s

(n2N)

onverges fors=0 andhen eforRes>0. The onvergen eisabsolute for

(8)

equation

1

X

d=1



mn

(d)h(d)

d s

= 1

X

a=1



m

(a)h(a)

a s

 1

X

b=1



n (b)h(b)

b s

;

whi h extends analyti ally to the half plane Res > 0. By letting s ! 0

along the positive real axis, Abel's limit theorem for Diri hlet series gives

f(mn) =f(m)f(n), i.e. f 2M. If, moreover, g 2 T then 

n

= g(n)" for

all n2N, and f =g2T follows.

Next, Lemma2 impliestheidentity

(8) 

p



(p k

) 

p

+1(p k 1

)=g(p



)g 1

(p k

)

validforg 2M, p 2P,  2N

0

,k 2N. Multiplywith h(p k

) and sum over

k 2N to obtain

(9) f(p



) h(p)f(p

+1

)=g(p



) 1

X

k=0 g

1

(p k

)h(p k

) (p2P;  2N

0 ):

In parti ular,for=0,

(10) 1 h(p)f(p)=

1

X

k=0 g

1

(p k

)h(p k

) (p2P):

By inserting (10) into (9) and dividing by 1 h(p)f(p) 6= 0 we see that

f 2 T implies g(p



) = f(p



) for all p



2 P



and hen e g = f. The last

assertionof Lemma2 resultsfrom thefollowing onstru tion.

Example 1. Let f;h 2 T, T = fp 2 P : f(p)h(p) = 1g 6= ; and

q:T !N su h thatq(p)p forp2T. Theng2Mde nedby

g(p k

)= 8

<

: f(p

k

)( 1) k



1=q(p)

k



ifp2T,

f(p k

) ifp62T,

satis es (7

n

) for all n 2 N and, moreover, g(n) = O (jf(n)j) as n ! 1,

n2hTi.

Inordertoverifytheassertionswemayrestri tourattentionton2hTi.

First,observe that(gh) 1

(gh)(n



)=

n h(n



),andrepla eghbygandfh

byf. Then it suÆ es to show that the restri tion of thesequen e g 2 M

with

g(p k

)=( 1) k



1=q(p)

k



(p2T; k2N)

to hTi satis esbothg(p k

)=O(1)asp k

!1,and (3 ) foralln2hTi.

(9)

In fa t, we have theestimate

0<g(p k

)= 1

kq(p) k 1

Y

=1



1+ 1

q(p)



 1

kq(p)



(k 1)q(p)

Y

%=0



1+ 1

%



1=q(p)

= 1

kq(p)

((k 1)q(p)+1) 1=q(p)

<(kq(p))

1+1=q(p)

;

whi h givestheO-relation. Next, onsiderforjzj<1 thepowerseries

G

p (z)=

1

X

k=0 g(p

k

)z k

=(1 z) 1=q(p)

6=0;

and invert to obtain

G 1

p (z)=

1

X

k=0 g

1

(p k

)z k

=(1 z) 1=q(p)

= 1

X

k=0 ( 1)

k



1=q(p)

k



z k

:

Hen e

g 1

(p k

)=( 1) k



1=q(p)

k



(p2T; k2N);

and,similarto theabove,

0< g 1

(p k

) 1

q(p) k

1 1=q(p)

(p2T; k2N):

This shows the absolute onvergen e of the power series G 1

p

(z) even for

jzj1,and Abel'slimittheorem forpowerseriesyields

1

X

k=0 g

1

(p k

)=0 (p2T):

Finally,forjzj<1and n=p



withp2T, 2N we ndtherepresentation

1

X

k=0



n (p

k

)z k

=G 1

p (z)

1

X

k=0 g(p

+k

)z k

=z





1 G

1

p (z)

 1

X

k=0 g(p

k

)z k



;

theright sideof whi his an absolutely onvergent powerseriesfor jzj1.

By applyingAbel's limittheoremagain, we arriveat (3

n

)forall n2T.

Inparti ular,Example1showsthatthereexistin nitelymanysequen es

g2Msatisfying(3

n

) forall n2N, with g(n)=O(1) asn!1. We leave

theproblemopenwhether the orresponding series

1

X

n=1

g(n)e(nx) (x2T)

(10)

4. Multipli ativere urrentsequen es. A ordingtoTheorem1(a),

every sequen e g 2 F with g(1) = 1 uniquely determines a system S of

fun tionalequations. Apartfromthe lassi al aseg2T,where

n

=g(n)"

forall n2N, there existsno generalexpli itformulaforthe orresponding

sequen es 

n

2 F. However, for generating sequen es g 2 M\R

q we

des ribe a onstru tive method based on Lemmas 1 and 2, whi h enables

usto determineS inmany ases. The followingtheorem hara terizes the

lo al polynomial-exponentialtype stru tureof sequen esg2M\R

q .

Theorem 5. For g2M the following assertionsareequivalent:

(a) g2R

p

for some p2P,

(b) g2R

q

for some q 2N, q 6=1,

( ) there exist integers p 2P, k;l2N

0

with k+l 6=0,and oeÆ ients

0

;:::;

k 1

2C,

0

6=0, su h that g satis es the linear re urren e equation

g(p

+k

)+

k 1 g(p

+k 1

)+:::+

0 g(p



)=0 ( 2N

0

; l);

(d) there exist integers p2P, k;l;r2N

0

with k+l6=0, k

1

;:::;k

r 2N

satisfyingk

1

+:::+k

r

=k,andpolynomials P

%

(x)2C[ x℄of degreek

% 1

or P

%

(x)0 (%=1;:::;r), su h that

g(p



)= X

1%r P

% ()



%

( 2N

0

;  l):

Proof. Trivially,(a)implies(b). Ifg2R

q

andq6=1isapowerofp2P

then a re urren e equation of type ( ) follows from (b) by taking a = p



with 2N

0 in(5

q

). Now, let q =q

1 q

2

beany oprimede ompositionwith

q

1

;q

2

2 N nf1g and a prime power q

2

. If g(q

%

1

b) 6= 0 for in nitely many

exponents % 2 N and some b2 N with (b;q

2

) =1 then it follows from (b)

and g2Mbytaking a=q

%

1 q



2 b in(5

q ) that

g(q l+%+k

1

b)g(q l++k

2

)+

k 1 g(q

l+%+k 1

1

b)g(q

l++k 1

2

)+:::

+

0 g(q

l+%

1

b)g(q l+

2

)=0:

Fix% and bsu hthat g(q l+%

1

b)6=0. Then

d

k g(q

l++k

2

)+d

k 1 g(q

l++k 1

2

)+:::+d

0 g(q

l+

2

)=0

with ertain oeÆ ients d

0

;:::;d

k 1

;d

k

2 C, d

0

6= 0, whi h gives a re-

urren e equation a ording to ( ). If g(q

%

1

b) = 0 for all suÆ iently large

%2N and all b2N with (b;q

2

)=1 then, bythe multipli ativityof g, also

g(q

%

1

a) = 0 for all suÆ iently large % 2 N and all a 2 N. Hen e g 2 R

q

1

where q

1

has a redu ed number of prime divisors. In this ase pro eed

indu tivelyto obtain( ).

The equivalen e of ( ) and (d) follows from Lemma 1. It remains to

(11)

form a=p

 l

b with2N

0

, l. Nowg2Mimplies

g(p l+k

a)+

k 1 g(p

l+k 1

a)+:::+

0 g(p

l

a)

=g(b)(g(p

+k

)+

k 1 g(p

+k 1

)+:::+

0 g(p



))=0;

whi h ompletestheproof.

With g2Mand p2P we asso iate thep- bre g

p

2Mde ned by

g

p (n)=



g(n) ifn2hpi,

0 otherwise,

(n2N)

and theformalpowerseries

G

p (z)=

1

X

=0 g(p



)z



(z2C);

whi h takes the formof the Diri hlet serieseg

p

(s) of g

p

bysubstitutingz =

p s

. Further we set N

p

= fg 2 M :g = "on hpig. Obviously N

p

 R

p .

Thefollowingtheoremdes ribesthemultipli ativestru tureofM\R

p with

respe tto theDiri hlet onvolution.

Theorem 6.For every p2P, M\R

p

forms a group underthe Diri h-

let onvolution,and thereisa group homomorphism withkernel N

p from

M\R

p

onto the multipli ative group of all quotients P(z)=Q(z) of rela-

tively prime polynomials P(z);Q(z) 2C[z℄ satisfying P(0)=Q(0)=1. In

parti ular,

(g)=G

p

(z); Q(z)=z k

f

p



1

z



; P(z)=Q(z)G

p (z);

wherek2N

0

isthedegreeofthe ompanionpolynomialf

p

(z)ofg2M\R

p .

Proof. First,observethatforg2Mtherationalityofthepowerseries

G

p

(z)isequivalentto g2R

p

. Hen e,ifg;h2M\R

p

thengh2M,and

the orrespondingpowerseriesG

p (z);H

p

(z)aswellastheirCau hyprodu t

G

p (z)H

p (z)=

1

X

=0 X

%+=

g

p (p

%

)h

p (p



)z



are rationalfun tions. This gives gh2M\R

p

and shows that M\R

p

is losed undertheDiri hlet onvolution.

Further, the inverse g 1

of g 2 M belongs to M. From Theorem 5

we know that the power series G

p

(z), asso iated with g 2 M\R

p and

representing a rational fun tion, has positive radius of onvergen e, and

G

p

(0) = 1. By the Cau hy{Taylor theorem, the same is true for G 1

p (z),

and the Cau hy produ t with G

p

(z) obviously orresponds to g 1

g = "

on theset hpi. Therefore, g 1

2M\R .

(12)

Next, noti ethatN

p

is asubgroupof thegroup M\R

p

. Themapping

g 7! g

p

is learly a group homomorphism with kernel N

p

. The Diri hlet

serieseg

p

(s)ofg

p

2M\R

p

isabsolutely onvergent insomerighthalfplane

of the omplexplane,and g

p 7! G

p (p

s

)=eg

p

(s) representsan isomorphi

mappingfrom(M\R

p )=N

p

ontothemultipli ativegroupofrationalpower

seriesR (z) witha positiveradius of onvergen e andR (0) =1.

Finally, by multiplying the re urren e equation in Theorem 5( ) with

z

+k

andsummingoverall 2N

0

,we seethatG

p (z)z

k

f

p

(1=z)is apolyno-

mialP(z) ofdegree k+l 1 withP(0)=1, whi his relativelyprime to

Q(z) =z k

f

p

(1=z), dueto the minimalityof k = k(p). This ompletes the

proof ofTheorem6.

The divisorfun tion  2Misde nedby =11,where1 denotesthe

onstant sequen e withvalue1 on N.

Example 2. Fors2C let thesystemS be generated by thesequen e

g = ((n)n s

) 2 M. Observe that g 2 R

p

for every p 2 P with f

p (z) =

(z p s

) 2

. Forn=p



2P



we obtain

1

X

k=0



n (p

k

)z k

=(1 p s

z) 2

1

X

%=0

(+%+1)p (+%)s

z

%

=p

s

(+1 p s

z);

whi h gives



p



(p k

)= (

(+1)p

s

ifk =0,

p

(+1)s

ifk =1,

0 ifk >1.

Hen e S onsistsofthe equations

1

n n 1

X

=0 F



x+

n



=n s

X

djn

(d)



n

d



d s

F(dx) (n2N);

and dimP

g

 2. In parti ular, for Res  0, s 6= 0, the null fun tion is

the only solutionF 2 L(T) of S, and for s= 0 the spa e P

g

of solutions

F 2L(T) of S onsists of all onstant fun tions. For Res>0 that spa e

isspannedbythe osineand thesinepart oftheseries

T(x)= 1

X

n=1

(n)n s

e 2inx

;

ifthese aretheFourierseriesofL(T) fun tionsrespe tively. Thisisobvious

forRes>1only,dueto theabsolute onvergen e ofT(x).

In a similar way extended repli ativity systems S generated, for in-

s s

(13)

respe tively theEuler fun tionand the sum of divisorsfun tion, and their

solutionsF 2L(T) an be treated.

5. Aperiodi solutions. ForintervalsI R wedenotebyC(I)theset

of ontinuousfun tions F :I !C. We areinterested inaperiodi solutions

F 2 C(R

+

) of systems S, generated by some sequen e g 2 F, g(1) = 1.

One mayexpe tthatthey arerather ex eptional.

It is wellknown thattheHurwitz zeta fun tion de ned by

(s;x)= 1

X

=0

(x+) s

(Res>1; x2R

+ )

extends to a fun tionholomorphi fors2 C nf1g and x 2C



=C nfx 2

R :x 0g, with a simple pole at s=1 withresidue 1. The polylogarithm

fun tion de ned by

L

s (z)=

1

X

=1

 s

z



(s2C; z2U)

extends to a fun tion holomorphi fors2C and z2C n[1;1). In parti -

ular, we have the following two lemmas, whi h are taken from Milnor [8℄,

Lemma1, Lemma2 and Theorem1.

Lemma 4.Thefun tion

B

s

(x)= s(1 s;x)

is holomorphi for s 2 C and x 2 C



, with B

0

(x) = 1. For ea h s 2 C

the fun tion B

s : R

+

! C solves both the lassi al repli ativity system S

generated by g(n)=n s

and the di eren eequation

B

s

(x+1) B

s

(x)=sx s 1

:

Moreover,if s2N

0

then B

s

(x)2Q[ x℄ isthe sth Bernoulli polynomial and

B

s

=B

s

(0)is the sth Bernoulli number.

Lemma 5.For every s2C the linear spa e onsisting of all ontinuous

solutions F :(0;1) !C of the lassi al systemS generated by g(n) =n s

hasdimension2. Fors62N

0

itisspanned byB

s

(x)andB

s

(1 x),for s=0

by B

0

(x) and ot (x), for s2N by B

s

(x) and ReL

s (e

2ix

).

Now we an formulate ourmainresulton aperiodi solutionsof S.

Theorem 7.Letg2M\R

q

for two di erent q2P, andlet the system

S begenerated by g. Then S has an aperiodi solutionF 2C(R

+

) if and

only ifS is the lassi al system generated by g(n) =n s

with somes6=0.

In this ase

(11) F(x)= B

s

(x)+(x) (x2R

+ )

withsome onstant 2C



and some 1-periodi solution 2C(R ) of S.

(14)

The important point to note here is that the existen e of aperiodi so-

lutionsF 2C(R

+

) of extended repli ativitysystems S generated by mul-

tipli ative re urrent sequen es shrinks S to the lassi al system. This ex-

ludes the o urren e of aperiodi solutions F 2 C(R

+

) in many ases.

Observe that the previous result of Yoder [12℄, Theorem 4, is ontained in

Theorem 7 above, sin e every g 2 T has the propertyg 2 M\R

q for all

q2P.

Proof (of Theorem 7). By Lemmas 4 and 5 we only need to show

that the existen e of an aperiodi solution F 2 C(R

+

) of S impliesthat

g(n)=n s

with some s2C. We set

(x)=F(x+1) F(x) (x2R

+ )

and denote for ! 2 R

+ by R

!

the ring of !-periodi fun tions  2 C(R) .

The rst step oftheproof onsistsin derivingfromg2R

q

forsome q2N,

q6=1,a fun tionalequation of thetype

(12) q k





x

q k



+

k 1 q

(k 1)





x

q k 1



+:::+

0

(x)=0 (x2R

+ )

with ertain oeÆ ients

k 1

;:::;

0

2 C,

0

6= 0, and from g 2 M the

systemof fun tionalequations

(13) 



x

p

+1



p



g(p



)



x

p



= 1

p p 1

X

%=0







x+%

p

+1



p



g(p



)



x+%

p



(x2R

+ )

for all p 2 P and  2 N. In the se ond step of the proof, while assuming

(12) fortwo numbersq 2N havingQ-linearly independentlogarithms(e.g.

fordi erent primes),weobtainthe expli itformula

(14) (x)=

X

s2S P

s

(logx)x s 1

(x2R

+ )

with some niteset S C and ertain polynomials P

s

(x) 2C[x℄. Further

we put(13) into theform

(15) 



x

p

+1



p



g(p



)



x

p



= X

2T

p h

;p;

(x)

x

;

where T

p

is theset of zeros of thepolynomialt

p

(z) =(z p

1)=(z 1) p

and h

;p;

2R

1

. Inthethirdstep we insert(14) into (15)to on ludefrom

60 that(x)=ax s 1

withsome onstants a;s2C, a6=0. Finally,we

derivethat g(n)=n s

forall n2N.

Inparti ular,supposethatthesystemS isgeneratedbysomesequen e

g2R ,g(1)=1,where16=q2N. Then,similartotheproofofTheorem2,

(15)

equation (5

q

)mayberewrittenas



q l+k+

k 1



q

l+k 1+:::+

0



q l =0;

from whi hit follows that



q

l+k(d)F(dx)+

k 1



q

l+k 1(d)F(dx)+:::+

0



q

l(d)F(dx)=0

foralld2N, x2R

+

. Summingoverd 2N andwritingagainF

n

(x)forthe

left sideof equation (2

n

), we inferthat

(16) F

q

l+k(x)+

k 1 F

q

l+k 1(x)+:::+

0 F

q

l(x)=0 (x2R

+ ):

Observe that F

n

(x+1) F

n

(x) =(1=n)(x=n) forall n2N and x2R

+ ,

and subtra tequation (16) at x fromthat at x+1. It follows that

1

q l+k





x

q l+k



+

k 1 1

q l+k 1





x

q l+k 1



+ :::+

0 1

q l





x

q l



=0 (x2R

+ );

whi h isequivalent to (12).

Next, assumethatthesystemS isgeneratedbysomesequen e g2M.

Observe thatS turnsinto the systemoffun tionalequations for,

1

n





x

n



= 1

X

d=1



n (d)

d 1

X

Æ=0

(dx+Æ) (n2N):

By multiplyingtheidentity(8)with

p k

1

X

Æ=0

(p k

x+Æ);

summingoverk 2N and applyingLemma 2,we obtain

1

p







x

p





g(p



)(x) 1

p

+1 p 1

X

%=0





px+%

p

+1



=g(p



)

p

;

forall p2Pand  2N

0

,where



p

= 1

X

k=1 g

1

(p k

) p

k

1

X

Æ=0

(p k

x+Æ):

In parti ular,for=0we see that



p

= 1

p p 1

X

%=0





px+%

p



;

from whi h(13) follows withpxinstead ofx.

The derivation of (14) and (15) from (12) and (13) requires two more

(16)

Combining(14)and (15) gives

X

s2S



x

p



s 1

(p

s

P

s

(logx logp

+1

) g(p



)P

s

(logx logp))

=p

 X

2Tp h

;p;

(x)

x

:

Observe that 1 2 T

p

and all  2 T

p

,  6=1, satisfy jj> 1. Therefore the

rightsideof theaboveequationredu esto thetermp



h

1;p;

(x)=h

p;

(x),

say, andwith pxinsteadof xwe arrive at

X

s2S x

s 1

(p

s

P

s

(logx logp



) g(p



)P

s

(logx))=h

p;

(px);

where h

p;

2 R

1

. It follows from (x) 60 that (x)= ax s 1

with some

onstantsa6=0,s2S. Moreover,g(p



)=p

s

ors=1. Sin e g2M, the

rst equation is validforall p2P and  2N ifs6=1. If s=1 thenwe see

from Lemma4 thatF(x)=aB

1

(x)+(x)withsome fun tion2R

1 . On

insertingthisinto(2

n

) we obtain

a 1

X

d=1



n (d)B

1 (dx)

a

n B

1 (x)=

1

n n 1

X

=0





x+

n



1

X

d=1



n

(d)(dx)

wheretherightsiderepresentsafun tion

n 2R

1

,say. NowB

1

(x)=x 1=2

yields

1

X

d=1



n

(d)d=n 1

and

a

2



1

n

f(n)



=

n (x);

where, forabbreviation,

f(n)= 1

X

d=1



n (d):

By integrating overTwesee that b

n (0)=

b

(0)(1 f(n)), leadingto

(17)

a

2



1

n

f(n)



= b

(0)(1 f(n)):

Supposethat b

(0)6=0. Then

f(n)



b

(0) a



= b

(0) a

and b

(0)6=

a

;

(17)

sothat

f(n)= b

(0) a=(2n)

b

(0) a=2 :

ByLemma3,f ismultipli ative,and we on ludefrom f(mn)=f(m)f(n)

for oprime m;n 2 N that b

(0) = 0, ontrary to our assumption. Hen e

b

(0) = 0 and f(n) = n 1

by (17). Applying Lemma 3 again we obtain

g(n)=n 1

,whi histhe desired on lusion.

Example 3. A ording to Example 2, the sequen e g = ((n)n s

)

belongs to M\ R

q

for every q 2 P. By Theorem 7 the orresponding

system S has no aperiodi solutions F 2 C(R

+

). The same holds for

theextended repli ativitysystems,generated forinstan e bythe sequen es

('(n)n s

)and ((n)n s

).

6. Di eren eequations. Inthisse tionwe losethegapinthepre ed-

ingproofofTheorem7byderivingtheequations(14)and(15)respe tively

from the fun tional equations (12) and (13). We begin with two lemmas

on erningthe ontinuoussolutionsof homogeneous di eren eequations.

For xed ! 2 R

+

we are interested in the solutions  2 C(R) of the

linear homogeneousequation

(18) (x+k!)+

k 1

(x+(k 1)!)+:::+

0

(x)=0 (x2R)

where k 2 N,

0

;:::;

k 1

2 C,

0

6= 0. We may onsider C(R) as an

R

!

-moduleandinterprettheindeterminate zinthe ompanionpolynomial

(19) f(z)=z

k

+

k 1 z

k 1

+:::+

0 2C[z℄

of equation (18) as the endomorphism of C(R) de ned by  7! z with

z(x) = (x+!) for all x 2 R. Further, we may write the omposition

of endomorphisms as produ t. Then (18) takes the form f(z)(x) = 0,

and the problemof solving (18) onsists in determining kerf(z)  C(R) .

Observe that kerf(z) is a k-dimensionalR

!

-submodule of C(R). Namely,

if

1

;:::;

r 2C



arethedistin tzeros off(z)oforderk

1

;:::;k

r

2N; k

1 +

:::+k

r

=k,then

kerf(z)=ker (z 

1 )

k1

:::ker (z 

r )

kr

:

It remains to determine ker (z ) k

where  2 C



, k 2 N. Noti e that

thebran hesofthemulti-valuedfun tion x=!

=e

(x=!)log

onlydi er bya

fa tor of theforme(mx=!)2R

!

withm2Z. Now

(z ) k

 x=!

P(x)= k

 x=!

(z 1) k

P(x)

vanishesforall x2R ifandonlyif(z 1) k

P(x)0,whi hisequivalentto

P(x)2R

!

[x℄,degP(x)k 1,orP(x)0. Wethusarriveatthefollowing

(18)

Lemma6.Let

% 2C



bethedistin tzerosoforderk

%

2N (%=1;:::;r)

of the ompanion polynomial (19), asso iated with equation(18). Then 2

C(R) solves (18) if and onlyif

(x)= X

1%r P

% (x)

x=!

%

with polynomials P

%

(x) 2 R

!

[x℄, degP

%

(x)  k

%

1, or P

%

(x)  0 (% =

1;:::;r).

Inthesequel,weindi atethedependen yon! 2R

+

oftheshiftoperator

z de ned above bywriting z

!

. The followinglemma extends a theorem of

Popovi iu [10℄ (seeKu zma [4℄,Theorem 13.5).

Lemma 7.Let !

1

;!

2 2R

+

su hthat !

1

=!

2

62Q. Let f

1 (z);f

2

(z) 2C[z℄

satisfy f

1 (0)f

2

(0)6=0,andlet Abethe ( nite)setof (uniquely determined)

solutions 2C of the system

f

1 (e

!

1

)=f

2 (e

!

2

)=0:

Then every 2kerf

1 (z

!1

)\kerf

2 (z

!2

) has the form

(x)= X

2A P

(x)e

x

with ertain polynomials P

(x)2C[ x℄.

Proof. Be auseofthedire tsumrepresentationofthekernelsoff

1 (z

!

1 )

and f

2 (z

!2

) it suÆ es to prove the followingspe ial ase: Let 

1

;

2 2C



and k 2 N. Then the existen e of a non-trivial solution  2 C(R) of the

di eren eequations

(z

!

1



1 )

k

 =0; (z

!

2



2 )

k

 =0

impliesthat

1

=e !

1

,

2

=e !

2

withauniquelydeterminednumber 2C,

and (x)=P(x)e x

withsome polynomialP(x)2C[ x℄, degP(x)k 1.

Fix some values

1

of (log

1 )=!

1

and

2

of (log

2 )=!

2

. Then, by the

irrationalityof !

1

=!

2

,theequation

(20)

1 +

2m

1

i

!

1

=

2 +

2m

2

i

!

2

hasat mostone solution(m

1

;m

2 )2Z

2

.

Lemma 6 yieldstherepresentations

(x)=P

1 (x)e

1 x

=P

2 (x)e

2 x

(x2R)

with polynomials P

1

(x) 2 R

!1 [x℄, P

2

(x) 2 R

!2

[x℄ of degree  k 1. By

omparingsummandswe obtain

(21) h (x)x



e

1 x

=h (x)x



e

2 x

(x2R; 0<k)

(19)

where h

1

2R

!

1 ,h

2

2R

!

2

. In parti ular,withh=h

1

and Æ =

2

1 ,

itfollows that h(x+!

1

)=h(x) and h(x+!

2 )=e

Æ!

2

h(x) forall x2R or,

equivalently,

(22) h(x+m!

1 +n!

2 )=e

nÆ!

2

h(x) (m;n2Z; x2R):

By Krone ker's theorem (see for instan e Hardy and Wright [2℄, Theo-

rem 444) the set fm!

1 +n!

2

: m;n 2 Zg is dense in R. Consequently,

for every y 2 R there exists a sequen e of pairs (m



;n

 ) 2 Z

2

depending

onlyon y su h that the orresponding sequen e (m



!

1 +n



!

2

) tends to y

as tendsto in nity. Sin eh is ontinuous, (22) implies

h(x+y)=h(x)H(y) (x;y 2R)

with some fun tionH :R !C. We may assume that h(x)60. Then h is

zerofreeonR andh(y)=h(0)H(y). Therefore,His ontinuousandzerofree

too,and additionallysatis esthefun tionalequation

H(x+y)=H(x)H(y) (x;y2R) :

Thesefun tions aregiven byH(x)=e x

,whi hleadsto h(x)= e x

,with

some onstants 2C, 2C



. Byinserting weseefrom (22)thate !

1

=1

and e !2

=e Æ!2

or, equivalently, !

1

=2%

1

iand !

2

=Æ!

2 +2%

2

iwith

ertain numbers %

1

;%

2

2Z. It follows that

(23) Æ=

2ki

!

1

2li

!

2

;

whi h showsthat (20)hasatleastone solution. We on ludethat is well

de ned.

A tually,theequations(20),(21)and(23)yieldthatthefun tionde ned

by

x7!h

1

(x)e



%

1

!

1 x



=h

2

(x)e



%

2

!

2 x



(x2R)

belongs to R

!

1

\R

!

2

and therefore must be a onstant. This means that

(x)=P(x)e x

witha polynomialP(x)2C[x℄ ofdegree k 1,whi his

thedesired on lusion.

In order to derive(14) from (12) we multiply (12)with x, repla e x by

e x

,put(x)=e x

(e x

) and !=logq. Thisyieldsthedi eren e equation

(24) (x k!)+

k 1

(x (k 1)!)+:::+

0

(x)=0 (x2R):

With the ompanion polynomial f

q

(z) of g 2 R

q

a ording to (6), the

ompanion polynomial of equation (24) equals z k

f

q

(1=z). Therefore the

zeros 

% 2 Z

q

(% = 1;:::;r) of order k

%

2 N of f

q

(z) orrespond to the

zeros  1

2C



ofthe same orderof z k

f

q

(1=z). By applyingLemma6 and

(20)

returningto we obtain

(x)= X

1%r P

%

(logx)x s

% 1

(x2R

+ )

with polynomials P

%

(x)2 R

!

[x℄, degP

%

(x) k

%

1, or P

%

(x) 0, where

s

%

issome xed value of (log

%

)=! for%=1;:::;r.

Now we asso iate with g 2 R

q

the set S

q

= fs 2 C : f

q (q

s

) = 0g.

Observe that S

q

= ; if and only if k = 0, and ardS

q

= 1 for k 2 N,

sin eevery zero  2Z

q

of the ompanion polynomialf

q

(z) ontributes the

distin telements

log+2mi

logq

(m2Z)

to S

q

,where log is some xed logarithm of  6=0. Assume now that g2

R

q

1

\R

q

2

,g(1)=1,with !

1

=logq

1 and !

2

=logq

2

linearlyindependent

over Q. Due to the irrationality of !

1

=!

2

, the interse tion S = S

q

1

\S

q

2

is always a niteset. Noti ethat for every s2S thenumbers 

1

=e

!

1 s

,



2

=e

!2s

are zeros of f

q

1

(z) and f

q

2

(z), respe tively. Hen e, byapplying

Lemma 7 to the (transformed) fun tional equations (12) for q = q

1

;q

2 we

obtain(14).

In order to derive (15) from (13) denote the left hand side of (13) by

H(x). Then (13)takestheform ofthe di eren eequation

H(x)= 1

p p 1

X

%=0

H(x+%) (x2R

+ )

with the ompanion polynomial t

p

(z) = (z p

1)=(z 1) p having only

simplezeros  2T

p

. A ording to Lemma6, the solutionsH 2C(R

+ ) are

given by H(x) = P

2T

p h

 (x)

x

with fun tions h

 2R

1

, whi h gives (15)

and ompletesthe proofof Theorem7.

A loser inspe tionof the proof of Theorem 7 shows that the existen e

of aperiodi solutions F 2C(R

+

) of ertain extended repli ativitysystems

S an be ex luded by onsidering suitable nite subsystems only. This

requires lookingagain at the ompanionpolynomial

f

q

(z)=

k z

k

+

k 1 z

k 1

+:::+

0 2C[z℄

of g 2 R

q

, where

k

= 1 and

0

6= 0. We asso iate with g 2 R

q the

(non-empty) set

N

q

=fq l+

:0k;

 6=0g

of powersof q,where k;l2N

0

are hosen minimalsu h that equation (5

q )

isvalid.

Theorem8.For di erentprimesq

1

;q

2

assumethat thesequen eg2F,

normalized by g(1)=1, satis es g2R and supp hqi for all n2hqi,

(21)

q 2 fq

1

;q

2

g. If the system S generated by g has aperiodi solutions F 2

C(R

+

)then thereexistssomes2C su h that g(n)=n s

for alln2hq

1 q

2 i.

Hen e,ifthe nitesubsystemofS onsistingoftheequations(2

n

)forall

n2N

q

1 [N

q

2

doesnot oin ide withthatofthe lassi alsystemgenerated

byg(n)=n s

thenS hasnoaperiodi solutionsF 2C(R

+

). Fortheproof

of Theorem8werefer to that ofTheorem 7.

Example4. A ordingtoExample2,thenon-existen eofaperiodi so-

lutionsF 2C(R

+

)ofthesystemS generatedby((n)n s

)followsalready

from its equations(2

n

) forn=q;q 2

andtwodi erent primesq.

Referen es

[1℄ E.Artin,TheGammaFun tion,Holt,RinehartandWinston,NewYork,1964.

[2℄ G.H.HardyandE.M.Wright,AnIntrodu tiontotheTheory ofNumbers,3rd

ed.,OxfordUniv.Press,London,1960.

[3℄ D.Kubert,Theuniversalordinarydistribution,Bull.So .Math.Fran e107(1979),

179{202.

[4℄ M. Ku zma,Fun tional Equations in a Single Variable, PWN{Polish S ienti

Publishers,Warszawa,1968.

[5℄ R.LidlandH.Niederreiter,Introdu tiontoFiniteFieldsandtheirAppli ations,

CambridgeUniv.Press,London,1986.

[6℄ L. G.Lu ht,Arithmeti alsequen esandsystems offun tional equations,Aequa-

tionesMath.53(1997),73{90.

[7℄ C. Methfessel, Multipli ative and additive re urrent sequen es, Ar h. Math.

(Basel)63(1994),321{328.

[8℄ J. Milnor, On polylogarithms,Hurwitz zeta fun tions, and theKubertidentities,

Enseign.Math.29(1983),281{322.

[9℄ N.E.Norlund,VorlesungenuberDi erenzenre hnung,Springer,Berlin,1924.

[10℄ T.Popovi iu,Remarquessurlade nitionfon tionnelled'un polyn^omed'uneva-

riable reelle,Mathemati a(Cluj)12(1936),5{12.

[11℄ W.Rudin,RealandComplex Analysis,M Graw-Hill,London,1970.

[12℄ M.F.Yoder,Continuousrepli ativefun tions,AequationesMath.13(1975),251{

261.

InstitutfurMathematik

Te hnis heUniversitatClausthal

Erzstrasse1

38678Clausthal-Zellerfeld, Germany

E-mail:lu htmath.tu- lausthal.de

Re eivedon1.10.1996

andinrevisedformon4.12.1996 (3053)

Cytaty

Powiązane dokumenty

[r]

[r]

Na odcinek [−n, n] rzucono losowo (zgodnie z rozkładem jednostajnym) n gwiazd o masach jed- nostkowych7. Dla danego α rozkład

164. Wśród poniższych sześciu szeregów wskaż szereg zbieżny, a następnie udowodnij jego zbieżność.. musi być rozbieżny). N - może być zbieżny lub

Zbadać, w jakim kole jest zbieżny szereg MacLaurina funkcji tgh z.. Znaleźć kilka pierwszych

Pokazać, że granica według prawdopodobieństwa jest wyznaczona

Semestr zimowy Kolokwium próbne. Javier

Aby zbada¢ czy taki szereg jest zbie»ny korzystamy z kryterium pierwiastkowego Cauchyego.. Warto