• Nie Znaleziono Wyników

Shear transfer across a single crack in reinforced concrete under sustained loading. Part II: Appendices

N/A
N/A
Protected

Academic year: 2021

Share "Shear transfer across a single crack in reinforced concrete under sustained loading. Part II: Appendices"

Copied!
70
0
0

Pełen tekst

(1)

DELFT UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

Report 5-85-6

Shear transfer across a single crack in reinforced

concrete under sustained loading

Part II. Appendices

Ir. J.W. Frénay

STEVIN LABORATORY

(2)

'^i.

-^:)>

>>^'t

1

-Stevin Laboratory

Department of Civil Engineering

Delft University of Technology

Report 5-85-6

Project 8209

June 1985

Shear transfer across a single crack in reinforced

concrete under sustained loading

Part II - Appendices

by

J.W. Frénay

t

^r

Mail ing address:

Delft University of Technology

Concrete Structures Group

Stevinlaboratory I I

Stevinweg 4

2628 CN D e l f t

The Netherlands

Technische Hogeschool

Of Bibliotheek

Aldelii^: Civiele Techniek

_ o / Stevinweg 1

S /l S^'dS'-ppostbus 5048

2600 GA Delit

^iiyÜ^^g

/

No part of this report may be published without written permission of the

author.

(3)
(4)

3

-CONTENTS

I. Mix proportions

II. Standard tests

III. Results of regression analysis for f; and

IV. Instrumentation

V. Accuracy of displacement measurements

VI. Correction of measured displacements

VII. Data of sustained tests and push-off tests

VIII. Results of regression analysis

(5)

4

-APPENDIX I. Mix proportions

Mix code B1632550 strength f' =51N/mm2

.

^ cc

(mix A)

Components [kg/m^l Sieve analysis of aggregate

Sieve opening

[mm] [ k g ]

sand 877.2

gravel 1065.0

cement-B 325.0

water 162.5

2429.7

8 - 16 623.7

4 - 8 441.3

2 - 4 312.1

1 - 2 220.9

0.5 - 1 156.2

0.25 - 0.5 110.3

0.10 - 0.25 77.7

1942.2 1

Mix code B1642037.5 strength f' =70N/mm2

(mix B)

sand

gravel

cement-B

water

superpl .2J%

857.3

1018.5

420.0

147.0

10.5

2453.3

8 - 16

4 - 8

2 - 4

1 - 2

0.5 - 1.0

0.25 - 0.50

0.10 - 0.25

596.5

421.9

298.3

212.0

148.6

105.0

93.5

1875.8 1

Sieve analysis of aggregate

[cum.X]

mix A

100.0

67.9

45.2

29.1

17.7

9.7

4.0

mix B

• 100.0

68.2

45.7

29.8

18.5

10.6

5.0

Fuller

100.0

70.7

50.0

35.4

25.0

17.7

12.5

sieve opening [mm]

8 - 1 6

4 - 8

2 - 4

1 - 2

0 . 5 - 1

0.25 - 0.5

0.1 - 0.25 1

(6)

5

-For a good mix the Netherlands concrete code recommends a minimum

quantity of fiiie material D < 250 '^m.

For a maximum particle size of 16mm at least 140 liters/m' of concrete

is specified.

0.10.25 051.0 2.0 40 8.0 16.0

Actual v a l u e s :

mix A : 3 2 5 / 3 . 1 + 7 7 . 7 / 2 . 5 5 = 134.2 1/m^

mix B . : 4 2 0 / 3 . 1 + 9 3 . 5 / 2 . 6 5 = 170.8 1/m^

(7)

6

-APPENDIX I I Standard t e s t s .

Tests on 150mm cubes

Mix

B

A

A

B

B

B

A

A

A

B

A

B

A

A

B

B

B

batch no.

and date

10

(250583)

11

(060683)

12

(200683)

14

(040783)

21

(220883)

23

(050983)

25

(190983)

27

(031083)

29A

(171083)

29B

(171083)

31

(311083)

34

(211183)

36

(051283)

37A

(121283)

378

(121283)

38

(191283)

41B

(090184)

age to

[days]

28

58

84

119

28

58

86

119

28

58

87

119

28

58

87

119

28

28

28

28

28

28

28

28

28

28

28

10

28

39

56

9

28

cc

number

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

6

6

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

moressive

f^^ [N/mm^J

70.77

76.67

77.85

74.37

53.20

60.15

61.67

65.01

53.69

54.96

60.95

62.74

68.67

80.90

75.82

79.56

67.30

73.79

56.66

48.38

53.47

73.22

47.60

73.58

49.98

49.47

70.34

59.19

67.15

70.62

69.88

57.91

68.63

v.c.[%]

4.3

4.9

3.8

5.0

3.2

6.9

3.6

3.5

4.2

8.7

4.4

3.3

3.7

0.7

5.2

6.8

4.9

7.6

6.5

4.9

1.1

2.3

4.7

3.8

2.8

3.3

2.4

5.7

12.3

13.4

7.2

7.9

5.1

ten

number

3

3

3

3

3

3

3

3

3

1

3

3

3

3

3

-s i l e S D l i t t i n a

^cspl t^/™^^]

4.04

3.59

3.28

3.89

T

3.93

3.90

3.47

3.22

3.07

4.33

2.90

4.61

3.10

3.28

4.03

-v . c . [ . . ]

5.8

6.3

3.6

9.0

4.5

4.6

1.2

4.5

12.3

-6.5

0.3

7.3

5.5

2.6

(8)

7

-150mni cubes (continued)

A

A

A

B

B

41A

(090184)

47

(020484)

48

(090484)

49

(160484)

50

(240484)

9

21

28

39

29

7

28

27

5

5

5

5

6

6

6

6

43.55

45.79

52.64

51.65

51.07

38.83

69.24

67.05

2.6

8.8

3.7

7.8

3.2

2.0

3.8

5.3

-3

3

3

-2.30

3.42

3.66

-2.8

9.2

4.4

^150x400mm cylinders

A

B

12

(200683)

14

(040783)

28

58

87

149

28

56

87

135

2

2

2

2

2

2

2

2

34.75

38.54

39.98

44.57

53.96

64.54

57.64

65.08

5.8

9.3

10.7

4.4

5.0

0.9

15.1

4.4

150x150x600mm prisms

B

A

A

B

10

(250583)

11

(060683)

12

(200683)

64

(040783)

709

697

683

669

2

2

1

2

68.65

42.40

37.24

62.16

0.8

4.7

-3.9

(9)

ISOnim

batch

1 no.

10

11

12

14

21

23

25

27

29A

29B

31

34

36

37A

37B

Cubes

age to

[days]

28

58

84

119

28

58

86

119

28

58

87

119

28

58

87

119

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

67

72

74

71

51

58

59

63

51

50

58

60

67

80

71

73

60

68

63

76

51

56

45

48

52

53

71

73

43

49.

73.

71

50.

52.

46.

49.

70.

70.

.69

.62

.44

.64

.33

.89

.11

.56

.11

.84*

.53

.93

.11

.22

.51

96

84

.89

96

22

87

04

38

76

62

69

33

78

47

78

16

78

04

13

62

29

18

67

measured

val

70

77

79

72

53

59

62

63

54

53

60

62

67

81

76

79

66

68

70

78

54

59

46

50

53

53

71

73

47

49

69

76

48.

48.

50.

5 1 .

68.

68.

ues

.89

.38

.38

.84

.69

.82

.93

.87

.71

.87

.44

.27

.33

.16

.67

,96

.98

98

67

13

76

47

62

18

07

69

91

78

96

11

47

54

98

18

31

11

80

09

f ' [N/mm ]

ee

73

80

79

78

54

61

62

67

55

60

63

65

71

81

79

84

68

69

75

78

55

62

47

51

53

54

72

75

47

48

73

76

50

49

50

48

72

72

.73

.00

.73

.62*

.58

.73

.98

.60*

.24

.18

.87

.02

.56

.33*

29

76*

62

47

16

62

51

31

56

82

38

36

58

96

02

27

69

84

80

73

58

93

04

27 j

150mm Cubes (continued]

38

41B

41A

47

48

49

60

10

10

28

28

39

39

56

56

9

9

28

28

9

9

21

21

28

28

39

39

29

29

7

7

28

28

27

27

61.42

59.02

52.62*

73.24

55.69*

79.07*

73.42

73.78

59.56

58.13

63.78

71.29

43.56

42.67

50.13

44.84*

49.91

54.04

56.13

47.295!^

49.24

53.28

39.87

39.42

65.42

69.42

69.33

69.82

59.91

53.56*

70.62

69.38

70.67

78.36

71.56

69.20

60.40

61.42

65.96

71.02

44.09

42.27

39.42*

47.42

51.51

53.02

47.47*

54.31

51.73

50.36

39.16

38.36

72.31

72.04

64.18

71.07

62.04

-69.87

-69.38

-61.42*

-50.04*

-71.11

-45.16*

-47.11

-54.71

-53.07

-49.56

52.13

37.73

38.44

68.49

6 7.78

65.91

62.03 1

0150x400mm cylinders

12

14

28

58°

87

149

28

56

87°

135

36.16

35.99*

36.95*

45.95

55.85

64.96*

51.50*

67.11

33.33

41.08

43.01

43.18

52.06

64.11

63.78

63.04

-_ 1

-1

150x150x600mm

1 10 708

11 697

12 683

14 669

prisms

69.02

40.98

37.24

60.44

68.27

43.82

-63.87

1

-eliminated to f i n d f ' ( t ) ace. to (3.10)

deformation c o n t r o l l e d .

(10)

150mm Cubes

9

-batch no.

10

11

12

14

21

23

25

27

29A

29B

31

34

36

37A

37B

48

49

50

age to

[days]

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

7

28

27

measured

^cspl

4.43

3.78

3.33

3.15

3.49

3.69

3.71

3.06

2.83

4.33

2.70

4.63

3.24

3.27

4.08

2.27

3.73

3.50

4.54

4.10

3.71

3.31

4.05

3.80

3.94

3.26

2.87

-2.94

4.60

3.22

3.20

3.91

2.27

3.20

3.65

values

[N/mni^]

4.54

4.24

3.73

3.38

4.13

4.05

4.06

3.34

3.50

-3.07

4.61

2.84

3.46

4.20

2.25

3.41

3.83

The next two plots show measured mean cube strengths approximated to a normal distri'

bution.

038 097 0S5 090 OflO 0.70 0.60 0.50 0.40 030 020 010 005 003 0.02 probability p(f>(ccl

h

V

A

^

\ D

\ o

Y

^

i 1 Mix A cast nr number O 11 3 A 12 3 D i l A 5 f j . ^ = 5308N/mm' v.t » 34%

\

0.99 0.98 0.97 095 Q90 080 0.70 050 0.40 030 020 0.10 002 probobüity p l f ï f c c '

\

\

^

.

\

\

\

\P

\

I Mix B 1 cost nr number [ O 10 3 A 14 3 0 3 8 4 V41B 5 •ccm' 69.64N/mm ' V.C.. 4.0% [| Q

^

\

\

\

\

^

45 50 55 60 65 60 65 70 75 BO f' IN/mmM I'lN/mm']

(11)
(12)

-11

APPENDIX I I I

Results of regression analysis f o r f ' and

•^ cc

cs

The regression coefficients a and 3 are given in accordance with

f' .t

f' (t )= - ^ ^ °

cc 0

CH. + Q.t

( I I I . 1 )

in which t^ is the age in days. The values of da and d3 represent h a l f of the

90%-confidence i n t e r v a l s of a and 3 r e s p e c t i v e l y .

150mm cubes

mix

batchno.

number

of

measur.

f'

cc

[N/mm^]

f '

cc

[N/mm^]

d f '

cc

d."

11

11

11

12

12

12

41A

41A

41A

12

11

10

12

11

10

20

18

17

11+12+41A 44

11+12+41A 40

11+12+41A 37

53.20

53.20

53.20

53.69

53.69

53.69

52.64

52.64

52.12

53.08

53.08

53.08

6.298

6.576

6.227

5.000

5.100

5.172

2.211

2.191

2.098

3.681

3.610

3.785

0.777

0.767

0.778

0.839

0.826

0.816

0.976

0.968

0.979

0.868

0.852

0.847

0.88

0.92

0.94

0.49

0.68

0.81

0.45

0.66

0.67

0.66

0.83

0.86

53.10 2.98 1.344

53.09 2.51 1.151

53.19 2.22 1.061

52.75

53.27

53.66

4 9 . 8 8

50.28

49.45

53.10

54.13

54.05

6.46 2.916

4.74 2.122

•3.77 1.664

7.64 1.032

5.07 0.692

4.75 0.671

9.74 0.709

5.07 0.455

4 . 3 8 0.434

0.028

0.025

0.024

0.061

0.045

0.036

0.066

0.046

0.045

0.033

0.021

0.020

10

10

10

14

14

14

38

38

38

41B

41B

41B

10 - 4 1 8

10 - 4 1 8

10 -.418

12

11

10

12

11

10

20

18

17

10

9

54

50

45

70.77

70.77

70.77

68.67

68.67

68.67

67.15

70.78

70.78

68.63

68.62

68.63

68.58

69.64

69.54

2.580

2.527

3.072

4.684

5.170

5.965

2.142

465

539

2.513

1.917

2.046

2.853

2.804

2.533

0.900

0.906

0.890

0.820

0.804

0.780

0.925

0.946

0.939

0.912

0.934

0.929

0.885

0.883

0.895

0.30

0.34

0.49

0.53

0.66

0.81

0.31

0.52

0.66

0.63

0.78

0.79

,57

7R

0.80

71.33

71.00

70.81

71.65

67.85

69.19

67.06

68.45

68.77

68.49

68.49

68.49

69.50

70.84

70.65

6.82 2 . 2 4 ;

6.46 2.155

5.92 2.078

7.60 2.543

6.67 2.285

5.33 1.922

16.03 1.302

10.45 1.044

8.21 0.827

11.74 1.279

6.20 0.734

6.62 0.847

10.35 0.578

6.25 0.363

5.26 0.326

0.048

0.046

0.045

0.054

0.050

0.044

0.072

0.060

0.049

0.106

0.058

0.062

0.029

0.018

0.016

gl50x400inm cyl inders (continued)

A

B .

12

14

8

7

6

8

7

6

34.75

34.75

34.75

53.96

53.96

53.96

6.833

7.558

7.728

4.779

6.281

6.210

0.642

0.742

0.724

0.817

0.763

0.772

0.64

0.78

0.92

0.32

0.81

0.85

34.30

34.33

34.77

54.63

54.64

54.29

5.21

4.56

3.12

11.14

5.53

5.52

4.045

3.611

2.411

5.535

2.753

2.760

0.085

0.079

0.055

0.117

0.061

0.063

(13)

12

-Shrinkage deformations

c

have been calculated according to:

cs

-' .

c^^(t^«25 days, t) = ^ (HI.2)

c^3(t^«28 days, t) = -,+6.1n(t)

., . ,

(III.3)

in which

;;,3,Y

and

A

are regression coefficients and t is the duration of

the test in hrs. Test data have been analysed from t=240 hours onwards.

mix

A*

B*

A*

B*

A**

B**

A**

B**

spec.no.

IIA

11B

12A

12B

lOA

lOB

14A

14B

l l A

-

10A-11A

IIB

12A

12B

lOA

10B

14A

14B

11A-

10A-12B

14B

12B

14B

number of

observat.

17

17

17

17

17

17

13

13

20**

20**

17

17

17

17

17

17

13

13

20**

20**

[xlO^]

2.152

2.552

3.436

3.078

2.562

2.482

1.725

2.019

2.791

2.201

-404.5

-445.0

-476.8

-447.5

-448.75

-327.50

-368.50

-394.25

-439.75

-383.50

r^ 3,

[xlO-^J

2.459

2.528

2.514

2.609

2.711

3.298

3.031

2.847

2.539

2.954

88.33

91.78

93.08

89.60

91.60

70.23

80.93

93.25

90.18

81.60

r'

0.989

0.993

0.996

0.999

0.989

0.974

0.969

0.992

0.955

0.960

0.974

0.908

0.984

0.997

0.971

0.933

0.973

0.968

0.967

0.958

da

[x10h

0.10

0.10

0.10

0.05

0.13

0.18

0.17

0.10

0.16

0.19

27.50

30.00

35.10

50.00

35.00

32.00

45.00

52.50

67.50

72.50

dB T

[xlO^

0.16 1

0.16

0.12

0.06

0.24

0.34

0.32

0.19

0.12

0.09

5.00

5.00

5.00

7.50

5.00

5.00

7.50

7.50

10.00

10.00

(111.2)

(111.3)

* equation

** equation

(14)

13

-s c a n n o .

j 1

1 3

3 4 5 6 1 •'7 8 ? 1 0 1 1 1 3 1 3 1-1 I S 1 6 1 7 1 8 i V 2 0 2 1 2 2 2 3 2 4 2 S 2 6

1 27

2 B 2 9 3 0 3 1 3 2 3 3 3A 3 S 3 6 3 7 ! 3 8 j 3 9 j 4 0 t [ h r s ] 1 , 5 0 0 4 . S U 0 2 0 . S 0 0 4 S . 7 S 0 7 0 , S Ü 0 9 3 . S O 0 1 6 S . S O 0 2 3 6 . 7 S Ü 2 6 0 . S O U 2 6 7 . Ü O Ü 4 0 S , S Ü Ü 4 2 9 , 6 6 0 5 U 1 . 6 6 0 S S 3 , 5 Ü Ü 6 0 2 , S O 0 6 6 8 . 8 3 0 7 1 7 , 0 0 0 7 6 4 , 4 9 0 8 6 2 , 4 9 0 1 0 0 4 . 4 9 0 1 1 0 0 , 4 9 0 1 1 7 2 . 4 9 0 1 2 S 0 . 4 9 0 1 3 9 1 , 2 4 0 I S I O , 9 9 0 1 S 8 0 . 4 9 0 1 7 2 9 , 4 9 0 1 9 4 0 , 9 9 0 2 0 B 4 , 4 9 0 2 2 7 8 , 9 9 0 2 5 8 9 . 2 4 0 2 7 8 1 , 2 4 0 3 0 2 2 . 4 9 0 3 2 9 0 , 9 9 0 3 6 2 0 , 9 9 0 3 9 3 2 , 9 9 0 4 4 1 2 . 9 9 0 5 4 7 1 , 9 9 0 7 9 9 2 . 0 0 0 1 1 Ü 4 O.ÜÜ s p e c . n r . 1 0 . A filjl^ [mm] . 0 0 0 , 0 0 0 , 0 0 3 , 0 0 8 . 0 1 4 . O i S . 0 2 4 . 0 2 9 . 0 3 2 . 0 3 6 . 0 4 2 . 0 4 2 . 0 4 4 . 0 4 9 . O S O . Ü S 2 . 0 5 4 . 0 S 7 . 0 6 7 . 0 7 2 , 0 7 6 . 0 7 8 . 0 7 7 . 0 8 1 . 0 9 4 . 0 9 3 . 0 9 1 . 1 0 4 . 1 0 7 . 1 1 1 . 1 1 4 , 1 1 4 . 1 1 9 . 1 2 3 . 1 2 1 . 1 2 3 . 1 2 3 . 1 2 7 . 1 2 5 , 1 2 8 s p e c . n r . 1 0 . B A ' 5 ^ [mm] 0 . 0 0 0 U . OOO . 0 0 2 . 0 0 8 . 0 1 3 , 0 1 ; : . 0 2 3 . 0 2 8 . 0 3 2 . 0 3 6 . 0 3 9 . 0 4 1 . 0 4 S . 0 4 7 . 0 4 9 . 0 5 0 . 0 5 3 . 0 5 6 . 0 5 4 . 0 5 8 . 0 6 3 . 0 6 ^ . . 0 6 4 . 0 6 7 , 0 7 2 . 0 6 8 . 0 6 7 . 0 8 1 . 0 8 4 . 0 8 V . 0 8 9 . 0 9 1 . 0 9 7 , l O L . 1 0 1 . 1 1 (1 . 1 1 2 . 1 1 5 . 1 1 3 . 1 1 6 I s c a n n o .

1 1

1 2

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2Ü 2 3

I 2.;!

2 j i^A Li b 2 6 d/ dU 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 t [ h r s ] s p e c •••SH 3 , 6 7 0 5 . 7 S 0 2 2 . 0 00 2 9 . 0 0 0 9 4 . 2 3 0 1 6 7 . 0 0 0 1 9 1 . 1 6 0 2 6 3 . 1 6 0 3 1 5 . 0 0 0 3 6 4 . 0 0 0 4 3 0 . 3 3 0 4 7 8 . 5 0 0 5 2 S . 9 9 0 6 2 3 . 9 9 0 7 6 5 . 9 9 0 8 6 1 . 9 9 0 9 3 3 . 9 9 0 1 0 1 1 . 9 9 0 1 1 5 2 , 7 4 0 1 2 7 2 , 4 9 0 1 3 4 1 , 9 9 0 1 4 9 0 . 9 9 0 1 7 U 2 . 4 9 0 1 Ü 4 5 . 9 V Ü 2 Ü 4 Ü . 4 9 0 2 3 5 0 . 7 4 0 2 5 4 2 . 7 4 0 2 y 8 3 . 9 9 U 3 0 5 2 . 4 9 0 3 3 8 2 . 4 9 0 3 6 9 4 . 4 9 0 4 1 7 4 . 4 9 0 5 2 3 3 . 4 9 U 7 3 2 0 . 0 0 0 8 1 6 0 . 0 0 0 1 1 2 0 a o o n r . l l A [mm] . 0 0 0 , 0 0 1 , 0 0 5 . 0 0 5 , 0 1 6 . 0 1 9 , 0 2 8 . 0 3 7 . 0 4 1 . Ü 5 2 . 0 5 3 . 0 6 1 , 0 6 2 , 0 6 4 , 0 7 2 , Ü 7 i • . 0 8 1 . 0 8 2 , 0 8 6 . Ü 8 8 . Ü 8 8 , Ü9Ü , 0 9 8 , l ü i . 1 0 5 . 1 1 3 , 1 1 0 , 1 2 1 , 1 3 0 . 1 2 6 , 1 3 0 , 1 3 7 , 1 4 3 . 1 4 3 , 1 4 5 , 1 4 8 s p e c . n r . 1 ! B A I J ^ [mm] . 0 0 1 j . 0 0 3 . 0 0 7 . 0 0 7 . 0 1 6 , 0 2 5 . 0 2 8 , 0 3 3 . 0 3 9 , 0 4 2 . 0 4 4 . 0 5 ; : . 0 5 3 , Ü5i.. . 0 6 2 . 0 6 6 . 0 7 0 , 0 7 1 , 0 7 6 . 0 8 1 . 0 8 0 . ü s ; : : . 0 9 5 . 0 9 8 , 1 0 2 , 1 0 7 , 1 U 9 , 1 1 6 , 1 2 6 , 1 2 1 . 1 2 7 , 1 3 2 , 1 3 7 . l 3 i l . 1 4 0 . 1 4 3

1

s c a n n o . 1 0 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 I S 1 6 1 7 1 8 1 9 2 0 2 1 1 0 0 2 3 t [ h r s ] 2 3 5 0 1 1 4 1 6 4 21 0 2 8 2 3 6 0 5 0 0 6 2 0 8 3 9 1 O 5 0 1 1 9 4 1 3 8 8 1 6 9 8 1 8 9 0 2 1 3 1 2 4 O 0 2 7 3 0 3 0 4 2 3 5 2 2 4 5 8 1 7 9 9 2 1 1 Ü 4 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 ( 0 00 7 5 0 5 0 0 5 0 0 7 5 0 ÜÜÜ 0 0 0 2 5 0 2 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 Ü ( 0 0 0 ÜÜO 0.0 0 s p e c . n r . 1 4 A . , I j ^ [mm] . 0 0 3 , 0 1 9 , 0 2 5 . 0 3 3 . 0 3 9 . 0 4 2 , 0 4 6 , 0 5 8 , 0 5 3 , 0 6 1 , 0 7 5 . 0 8 1 , 0 8 3 , 0 8 9 , 0 9 4 . 1 0 1 . 1 0 7 . 1 Ü 8 . 1 1 3 •. 1 1 8 . 1 2 4 , 1 2 5 . 1 2 Ö s p e c . n r . 14 E • • ' s h ' ' ™ l . 0 0 4 1 . 0 0 9 . 0 1 7 . 0 2 7 . 0 3 3 . 0 3 9 . 0 4 8 . 0 5 5 , 0 5 5 . 0 5 0 , 0 7 3 , 0 7 9 , 0 8 5 . 0 9 0

, 095 1

. 100 1

. 1 0 7 . 1 0 9 , 1 1 4 . 1 2 0 , 1 2 6 . i 2 y , 1 3 U s c a n n o .

1 1

1 2

3 4 5 6 '? S 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 ' j T 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 t [ h r s ] 1 6 . 7 5 0 4 2 . 7 5 0 1 1 2 . 5 9 0 1 3 6 . 5 0 0 1 6 0 . 7 5 0 2 0 8 . 3 5 0 3 0 6 , 2 5 0 4 4 8 . 2 5 0 5 4 4 , 2 5 0 6 1 6 , 2 5 0 6 9 4 , 2 5 0 8 3 5 . 0 0 0 9 5 9 . 7 5 0 1 0 2 4 . 2 5 0 1 1 7 3 . 7 5 0 1 3 8 5 . OOO 1 5 2 3 , 2 5 0 1 7 2 2 . 2 5 0 2 0 3 2 . 5 0 0 2 2 2 4 , 5 0 0 2 4 6 3 . 2 5 0 2 7 3 1 . 7 5 0 3 0 6 1 , 7 5 0 3i7i,7S(l 3 8 5 3 . 7 5 0 4 9 1 2 , 7 5 0 6 6 6 8 . 7 5 0 7 3 2 0 . 0 0 0 8 1 6 0 . 0 0 0 1 1 2 0 8,00 s p e c . n r . 1 2 A A I J J ^ [mm] . 0 0 0 . 0 0 2 , 0 1 2 , 0 1 3 , 0 1 8 , Ü 2 1 . 0 3 0 . 0 3 9 . 0 4 5 , 0 4 6 , 0 5 3 , 0 5 2 . 0 6 3 . 0 6 5 . 0 6 5 , 0 7 8 , 0 8 3 , 0 9 0 . 0 9 4 . 0 9 0 , 1 0 3 . 1 0 9 . 1 1 0 . 1 1 2 . 1 2 0 . 1 2 7 . 1 3 7 . 1 3 7 . 1 3 9 . 1 4 2 s p e c . n r . 1 2 B .AIJ,_I [mm] , U U .i , 0 0 Ö , 0 1 7 , 0 1 9 , 0 2 1 , 0 2 5 , 0 3 2 , 0 4 2 , 0 4 9 . 0 5 1 , 0 5 6 . 0 5 ! , 0 6 4 , 0 6 7 . 0 6 7 . 0 8 0 . 0 8 5 . 0 9 0 . 0 9 3 . 0 9 7 . 1 0 4 . 1 0 V , 1 1 0 , 1 1 0 , 1 2 0 , 1 2 r , 1 3 5 , 1 3 f c . 1 3 8 , 1 4 1

(15)

14

- 6 i 400,

-CS

[10-"]

300

SHRINKAGE

Specimennr.

mix B

tQ=26 d a y s

c ^ * ( l l n ( t ) '

t

« +

(11

loA

200 100 m l O • 1 ^ 1 10 10 10* - 6 i 400

ecs[10-"]

t [hrs)

300

SHRINKAGE

Specimennr.

mix B

tp= 26 days

( x * ( i l n ( t )

• t

«* fit

loB

200 100

. . /

10

b * ' ' * " . ' A *' "k

10 te'

t [hrs]

(16)

400

ecsHO-^l

300

200

100

SHRINKAGE

Specimennr.

mix A

tQ= 24 d a y s

o<.t(iln(t)

t

a * p t

: uA

0(9

I l i i i m l I i i i i i i i l I i ^ ^ i P i i i l I | > | | | 10 10'

i,00

^csIlO 1

10"

t [hrs]

300

200

100

SHRINKAGE

Specimennr.

mix A

to= 24 days

«•(!,.|n(t)

t

i l B

a* pt

i i I i I M l I I ^ 10

t[hrs]

(17)

16

-400

erc;[10"'l

'CS

300

200

100

SHRINKAGE

S p e c i m e n n r .

m i x A

tQ= 23 days

o ^ - p l n ( t )

t

12A

::i>

10'

e i I P i I I 1 I I I M i l 1 * « * » • * j « * 10 10 10 10

400

ecs[io-']

10

10-t[hrs]

300

200

100

SHRINKAGE

S p e c i m e n n r .

mix A

1^= 23 days

p In(t)

t

1 2 B

«* ( ï t

o « ^

-10 •

^^^

l u l I I I • I m l 10 10 10

t [hrsl

(18)

17

400

^csHO''!

300

200

SHRINKAGE

Specimennr.

mix B

1^= 23 d a y s

« • ( l l n ( t )

t

1 4 A

« + (5t

100

I . — • — I — I I I 1 1 1 10 10 10

400

EcsllO-^]

t [ h r s ]

300

200

SHRINKAGE

Specimennr.

mix B

tQ= 23 days

t

14B

100

d<r*

~ * i — -

10

t [hrsl

(19)

Measured losses of weight of 150mm cubes and 150x150x500mm prisms,

The specimens were taken from the fog room at age t .

cast

no.

63

65

1

mix

B

A

toW

28

56

90

182

28

56

90

204

w(to) [gr]

76.8

36.0

84.2

87.2

87.6

83.4

72.0

76.3

79.0

90.1

76.4

81.1

95.0

96.6

112.2

111.6

103.5

120.9

126.6

91.3

107.5

94.4

/^w^^0O(.[gr]

2.9

1.4

3.1

1.5

1.4

1.2

0.5

0.7

0.7

0.4

2.9

3.2

2.6

1.8

2.1

1.7

1.4

1.6

2.3

1.0

1.5

1.1

'^^10+1050°c[9'•]

3.7

1.9

4 . 3

2.5

2.2

1.8

0.9

1.2

1.0

0.8

4.0

4.7

4.5

3.3

3.7

3.5

3.1

3.2

3.9

2.0

3.3

2.2

X eliminated values for eq. (3.27a) and (3.27b)

xx compressive strengths are reported in report 5-85-10.

batch no.

10

11

t

[hrs]

93.50

242.00

332.83

764.50

1511.00

2230.25

3932.50

5471.50

7227.50

168.00

863.00

1492.00

2041.00

3695.00

5234.00

6990.00

iw^grams]

34-30

*52-50

55-55

70-67

85-78*

110-110

150-150

195-195

225

-85-90

155-167

*185-200

230-250

295-320

365-390*

410-420

12

14

63

65

112.58

835.00

3367.25

1528.25

4915.25

6671.25

167.00

843.50

1559.00

2404.00

3046.00

4585.00

672.0

1488.0

3696.0

672.0

1488.0

4224.0

80-60 '.

172-150

'*325-285

130-210

350-300*

415-375*

33-27

63-43*

98-93

127-128

143-133

*195-190*

34.7

57.2

73.0

64.6

72.2

101.4

prisms

cubes

batch no.

10

n

12

14

63"'*

65X'*

specimen no

10A-10B

11A-11B

12A-12B

14A-14B

63A-63B-63C

65A-65B-65C

mix

B

A

A

B

B

A

t^Ldays]

26

24

23

23

28

28

PLkg/m^] [

of concrete

2383-2384

2367-2365

2366-2365

2395-2433 |

2401 (0.6% v . c . )

2381 (1.2% v . c . )

Measured average weight increase from demoulding

(t^=2 days) until removal from fog room (t <s»28 days):

mix A: 39 (cubes) and 208 (prisms) grams.

(20)

19

-APPENDIX IV Instrumentation

Specification of measuring instruments:

Computer

Floppy-disk

Printer

Amplifier

Displacement

trans-ducers

A/D converter

Hand-held device

Accumulators

Glue

Wheatstone bridge

SIiding layer

Jack

Load-cell

- CBM8032; 32

\(b

RAM; 28 Kb ROM

- CBM8050; 521 Kb

- CBM4022 : 80 characters/s

- HBM KWS/5T-5/GS-551

s u p p l y 4,

- H e w l e t t - P a c k a r d , 7ACD, T-lOO; ± 1/10 i n c h , 6 V power

- D a t e l ; HDAS-16ADC : ± 10 V o l t accuracy 4.884 mV

- Onno-Sokki : accuracy 0,001mm : ± 6.5mm

- OLAER : NPB-1 : PS = 330 bar PE=495 bar (1 l i t e r )

- T r i d o x : P h i l a d e l p h i a S.A. : F-88 epoxy

- Peekel : T200 : 0-10000 ym/m

- Rulon LD

- F r e y s s i n e t f l a t j a c k 220mm, 400 kN

- S t r a i n - g a u g e T o k y o ' s Sokki : P C - 5 - 1 1 ; 5mm; 120

±0.3-0-d isplacemen t - Irans±0.3-0-d ucers

-crock face

stejjl refereoce.

poi

glue

'.%

(T

CROSS-SECIION A-A

1 .

-crock face

(21)

20

-isplacement

transducers

data-collector

9--f

-P

-•

load<ell

amplifier

T= 0-24 HRS.

aid

con-verter

cbm 8032

micro-computer

^disk-drive

M printer

displacem. transducer

t=T^

updovi»

counter

calibrcrting-jjevice

Tneosuring pbirtS'

V

load-cell

P

whecfclone

^^^^

measuring -bridge

T= 2AHRS.-9(LDAYS

cbm 8032

micro-computer

1

disk-drive

printer

shear creep 8209

electric sctiemes

(22)

- 21

/ ^

^ ^

<D

T= O -24 HRS.

1. flat hydraulic jack

2. electric oilpump

3. handforce oilpump

A. accumulator

shear creep 8209

hydraulic schemes

(23)

22

-APPENDIX V Accuracy of displacement measurements

»

a. Hand-held measuring device

A few analyses of the measuring system are presented. Specifications are given

in appendix IV.

a1. Choice of measuring system and reference points

The illustration below schematically shows the hand-held measuring-device.

The legs are placed in steel reference points stuck to the concrete surface.

The optimal position is disturbed by an inclination of these steel points

(..s) and by a difference in height of the layer of glue used (At). Hence:

AS = s(l-COSa) - R.COSO(l-COSa) ' (V.I)

lA = 2.AS+.-,t (V.2)

The maximum disturbance .'1 is l i m i t e d to h a l f of the measuring accuracy:

Al = y p +

(;:A)2'

- 1 •0.002mm (V.3)

The optimal position is found for a=0° and 0=90". The actual values are found

analytically;

.> x^ + y* = R2 (V.4)

dy/dx = -2x/

/ R ^ - X ^ '

= -6 (V.5)

Combining (V.4) and (V.5) gives X-+0.95R and 0=72°. If 1=100mm and R=2.5mm

are chosen, then the maximum difference in height can be calculated:

tanu = ZA/l s0.02-> o( = 1.14° (V.6)

After substituting (V.2) and (V.3) with o< = 1.14'

Al =

J]OQ.O'

+ (5.0.32 (1-cos1.14°))2' - 100.0 (V.7)

so that At • 0.60mm. This condition can be satisfied by a smooth concrete

sur-face and by use of a special steel jig for glueing. It can be concluded that:

(24)

23

-- large values for R and 1 should be chosen;

- angle of the cone is 1:6. Hence the contact area between the reference

point (see illustration below) and the measuring leg is relatively large.

The induced deformation will be negligible;

- it is important to reduce the difference in height between the reference

points. The screw thread is used to fix the steel jig temporarily.

a2. Accuracy

The actual displacements of the shear plane are found from both the zero

measurement before pre-cracking and the actual measurement. Possible errors

are:

- systematic e r r o r s : a wrong zero-measurement w i l l influence a l l additional

measurements in the same d i r e c t i o n ;

- stochastic errors;

- personal differences. It is advisable to have all measurements performed

by the same person (A1,=0.0010mm);

- deviations (height, inclination) from the ideal position of the steel

reference points (AI^^O.0005mm);

- deflection of measuring instrument and deformation of the legs (A1 o?»nought);

- electronic stability of instrumentation (A1.smought);

- digital signal output (A1.=0.0005mm);

-Fi

-

temperature fluctuations of the steel reference jig(u-.= 10 "K-l andAT=1''C)

and of the measuring device (o<j= lO" "K-l and

A T = 4 ° C ) .

The gauge length is assumed to be 100mm ( A 1 ^ = ( 1.0-1-4.0)x'lo"'^=0.0005mm).

By adding together all the errors the maximum deviation is found:

6 , •

A 1 = X Al'=0.0025mm (V.8)

i = 1

Assuming a normal error distribution, the final accuracy of the measured

dis-placements will be 0.0025x1.4=0.004mm.

(25)

24

-a3. Calibration

The displacements (y) of the movable leg of the hand-held device were

measured by means of imposed displacements (x) of a micrometer instrument.

The relation between x and y is assumed to be linear. Hence:

y 'a Ö

(V.9)

Y[mm

X l m m J

Neglecting adjustment errors both x and i t s variance can be c a l c u l a t e d :

X = ( y - Ü

y nt

- ' ' ' • = - , '

f U h . y )

^x

-~

(^) -"a " ^13) • "3 " % ^ • °y

Combining (V.IO) and (V.11) the approximate variance will be

2 ~ ' 2 _2 2 2

C R i t ) . ( S - H X . S - l - S ) :•

X ^ a

b

y

.

.

-

.

(V.IO)

(V.11)

(V.12)

Assuming a Student distribution of the observed phenomenon the total measuring

accuracy Af can be quantified. In order to reduce the error each result is the

average value of three measurements. Hence:

Af

1 .65

0.005mm

(V.13)

a4. Measurements in-situ

Measurements were performed on the surface of a concrete specimen (figs. 2.5

and 4.6 in report 5-85-5). The cracked as well as the uncracked situation

were simulated. For one and the same gauge length theoretically all values

should be identical. Systematic ( A X ) and stochastic (standard deviation s)

errors can be calculated with 90/ü confidence:

(26)

- 25

|AX| = |x.(cracked) - x (uncracked'

2.13.s = to_Q5 (4 meas.)-/s + s

1 o

(V.14)

(V.15)

error

gauge

length

1=70

[mm]

gauge

length

1 = 189

[mm]

Ax

2.13.S

added

0.001

0.002

0.003

0.002

0.003

0.005

As d e r i v e d e a r l i e r o n , t h e gauge l e n g t h w i l l i n f l u e n c e t h e e r r o r . I t can be

concluded from both i n v e s t i g a t i o n s t h a t the e r r o r i s Af=0.004mm (0.08% f u l l

-s c a l e ) .

a 5 . I n f l u e n c e o f measuring e r r o r on the c a l c u l a t e d d i s p l a c e m e n t s .

t = to: uncracked specimen

t = t i : cracked specimen underload

1 t:^ 70 mm

0

K(t ) =^175 mm

P o'

l,(t ) -188.5 mm

2^ 0

The actual displacements of the crack plane can be approximated by simple

formulae if w/l-(t ) <<1 and s/l.(t ) -•<1 :

w « y t ,

) -

i^(t^;

s^A%)

-l?(ti) - 1 ,

^. 2

(V.16)

(V.17)

The measuring error A1=0.004mm will correspond to displacement inaccuracies

(ï(w) and (f(s) :

(27)

26

<fw = i3w/^l^(t^)|.'5l^(t^) + !3w/9l^(t^)1.6l^(t^)

n^(t^) + 'li(t^)« 2.Af= 0.008mm (V.18)

is = |9s/ .<l^(t.,) j-Sl^(t^) + ldS/3l2(t^)|.Sl2(t^)

+

laS/.l^i-ól^

l(^o)^^2(^o) n .f

Y=\

+ 1} . Af

7ÏÏ

= {I^}^A + ]).Q^QOil = Q,Q]Qmm

(V.19)

Both separation and slip have been calculated iteratively by a computer

pro-gram using eq. (V.16) and (V.17) as initial values. The computation stops if

successive displacements change less than 10~ mn. Final values of w and s

agree with geometrical conditions. As an advantage, error propagation

can also be quantified in a more refined way. There is close agreement with

the results of eq. (V.18) and (V.19). The error of As is limited for "Ip^^o^'^

l^(tQ)>2. The final choice is 188.5/70.0=2.62).

b. Displacement transducer

b1 . Accuracy

i M

Electronically the accuracy of the system is limited by high-frequency waves

and by the resolution of the 12 bit A/D converter;

- sensitivity : 0.004 mm (5mV)

- binary resolution : 0.001 mm

Mechanical 1iniitations also contribute to the inaccuracies. The transducers

have been calibrated by a micrometer instrument analogous to the hand-held

measuring device. The final error amounts to 1 .65x0.006=0 .OlOmm (0.2%

full-scale).

b2. Influence of eccentricity . >.

In section 4.1 it is reported that the crack plane may experience bending

moments, viz.: .'J ' - . ,

iff I

-"

.

-y

- M = 4.0 kNm at pre-cracking with Wn=0.01-0.03mm v'** *>-'^/'

yy ^^ ^ 0 .**^

- M = 2.4 kNm a t maximum shear l o a d i n g w i t h e=6mm.

XX

(28)

27

-In order to estimate the change in the displacements caused by M the

A X

following assumptions are made:

- the bending moment is transferred only by stirrups that cross the crack.

The reducing influence of the cracked concrete has been entirely neglected.

- the separation changes due to deformation of the reinforcement and to

in-duced si ip.

- both separation and slip equally change in proportion to the corresponding

axial steel stresses.

crack plane stimjps 08n\m M,j^Mspi = 4DkNm Myy;Mexc=2.4kNm

I =i.TT.4^ + TT-4^.(37.5^ + 112.5^) = 2B3.10^mm^

XX

I y=i-TT.4^ +TT.4^.41^.2 = 0.68.10^mm^

c (M )=4.10^.41/0.68.10^ = 242 N/mm^

max yy

o _ (M ) = 24.10^.112.5/2.83.10^= 95N/mm2

iTlaX X X

(V.20)

(V.21)

(V.22)

(V.23)

The order of change of both w and s is 0.03/2.8=0.01 mm;

Al^ = Al^.60/41 4 0.03mm and Al]= lj150/112.5

Al^/AlJ =60.112.5 . 242/(41.150.95)=2.8

(V.24)

(V.25)

A maximum shear load of 400 kN can be applied with four stirrups 08mm

(p =1.12%): the concrete grade f' =62 N/mm^ is necessary for a crack width

w=0.25mm according to eq. (2.2). It is concluded that the influence of the

eccentricity on w is less than 4'ó. For higher reinforcement ratios the change

(29)

28

-APPENDIX VI Corrections of measured displacements

Fig. 4.15 shows two corrections:

a. Corrections due to the use of two measuring systems. At the very moment

of change-over from one system to the other most specimens showed a small

discontinuity in the time-dependent displacements:

- increased displacements during the change-over period (At=l-4 hours) were

corrected via a simple regression analysis (w or s=a +i?-1 n(t)). Thus part of

the correction due to time-dependent displacement increases was considered;

- the remaining differences d(w) and d(s) in all the specimens show a more or

less normal distribution (see fig. 4.16) which points to stochastic measuring

errors. The fact that d(w) has a relatively large scatter is inherent in the

hand-held measuring device, as has been explained in appendix V. During

preliminary tests an 8 bit A/D converter was used. Logically it induced higher

values of d(w) and d ( s ) .

QQ^ifference d[mm]

006^

OOi

002.

0

-0D2

-00/.

-006

-0081

dlwl '« d i s l 90% anfKJence limit d l « L l90Xr

; .

.LJ:

d(sl-.0O17mm dlv>>>0011mm ^ * * ' ^ t

'~êm)

specimen ne,

Next, both d(w) and d(s) were spread over the two systems in proportion to

t h e i r respective accuracies (see also appendix V):

transducer:

hand-held instrument

^ " V a s ~ 0-56.d(w) (0.56 = 0.010/0.018)

S = s ^ . , , ± 0.50.d(s) (0.50=0.010/0.010)

^"%eas + 0 - 4 4 . d ( w ) (0.44=0.008/0.010)

^ = ^meas T 0 - 5 0 . d ( s ) (0.50=0.010/0.010)

( V I . i :

( V I . 2 ;

( V I . 3 ;

( V I . 4 )

(30)

29

-Corrections due to the deformation of the concrete near the crack between

the steel reference points

"c — m — I'l

H "

- * III — fill — 811

— DiL

sew.,-I

\t,'H^

J

Displ t>»tw*«n crock face ond ste«l rrf^rence points

Possible deformations are:

- effect of o'c on the crack width w:

ÖW

dir

(SW,

'sh

instantaneous deformation

time-dependent deformation

shrinkage

- effect of fc on the shear displacement s

4,

5. OS

OS,. : instantaneous shear deformation

d i r

time-dependent shear deformation

An example o f a c a l c u l a t i o n i s given b e l o w . I t r e l a t e s to a p u s h - o f f specimen

having a r e l a t i v e l y low r e i n f o r c e m e n t r a t i o o f the crack p l a n e . The s u s

-t a i n e d shear s -t r e s s l e v e l i s

T / T U = 0 . 8 0 .

Taking i n t o account the measuring

a c c u r a c y , o n l y t h e c o r r e c t i o n s 3 , 4 and 5 are i m p o r t a n t ;

Example o f p u s h - o f f specimen

f

cc

sy

A

c

E'

c

G'

c

1

= 6 7 . 3 N/mm2

= 460 N/mm2

= 36.10^ mm^

= 37.10^ N/mm^

= E ' / 2 . 4

c

= 50 mm

T / T =0.80

u

w =0.03mm

0

p = 1 . 1 2 %

0

i . e . 4 s t i r r u p s 0

5 mm

(31)

30

Results of computation:

Og = 80 N/mm2 i = 9.9 N/mm^

'cs

0.9 N/mm^ T ^ = 1 .S.S^f^^ .f^^/A^ = 3.3 N/r

s) = 0.19

24hrs) = 20.10'

tp (24hrs) = 0.19 T = T - T ,

C

r

c d

The corrections are:

'^^dir

^:w^

^^sh

^'^dir

OS

c

= l.r'/E'

c c

= ^w^.^.cp^(24hrs)

= l..^^(24hrs)

-

^-V^c

= .s,.^..p^(24hrs)

= 0.0010

= 0.0002

= 0.0010

= 0.0210

= 0.0039

mm

mm

mm

mm

mm

(VI.5)

(VI.6)

(VI.7)

(VI.8)

(VI.9)

The internal stresses on the crack plane o' and x have been calculated

^ c c

with a theoretical model of Pruijssers [27]. Creep and shrinkage deformations

have been obtained from the CEB-FIP model code [11].

Re 3.

Values of Sw , were measured using four unloaded push-off specimens. The

position of the steel reference points conformed to the loaded specimens.

Experiments started at t =23 days and lasted approximately six months.

Test data were analysed by non-linear regression analysis:

mix A : -W^^(t^,t) = { 6Ü3(-4- + 129)° "^^^ - 4592}.10"^ (VI,10)

mix B : 'iW3^(t^,t) = (1.3 . (t + 4i2)°-°°2 - 1.3} . 10° ' (VI.11)

in which t=duration of test in hours. An increase of the reinforcement ratio

will reduce shrinkage. For the relation between the embedded bars and the

concrete it is assumed [21] that:

£ ^ ( P Q > 0 ) = c^(p = 0)/(Un.p) (VI.12)

in which n=E /E' (mix A: n=6.2 and mix B: n=5.7) and ii=A /A . All the specimens

S c 5 c •

(32)

31

Combining ( V I . 1 0 ) - ( V I . 1 2 ) g i v e s :

mix A: 6 w ^ ( t , t ) = 1.069. (eq . ( V I . 10))/(1+6.2iO

mix B: 5w^^(t , t ) = 1.064. ( e q . ( V I . 11))/(1+5.7p)

( V I . 1 3 )

( V I . 1 4 )

20

15

10

ÖWrs [lO-^mm]

tQ=23days

mix A

fee'= 53.7 N/mm 2

• ^ stirrups 08mm 60,p[

measuring points:

O nr. 1 specimennr 27

A nr 3 specimennr 28

D nr U specimennr. 28

20

15

10

öWcs[lO"^mm]

t [hrs]

tQ= 23 days

mix B

fcc'= 67 2 N/mm

i stirrups 08mm

2 s .

-o

- o

60^

measuring points :

O n r . r

• nr.2

A nr. 3]

D nr. L,

specimennr. 29

— specimennr. 30

equation tffltl

90% confidence

interval

10'

10^

10'

10-

10^

t [hrs]

(33)

- 32

Re 4.

The external shear force V='Z~'.A is transferred both by the opposing crack

faces C^c) and by the embedded bars (Td). The bars are subjected to a dowel

force F ,. The observed instantaneous crack widths w . vary between 0.1 and

d el -^

0.2mm, i.e. approximately 2-3 times the initial crack width. In that case

the dowel force on the bar will already have reached its maximum value

according to the model [20, 26, 27j :

T = T +•[ ,

c d

T , = n-1.3 . 0^ /f' • f ' /A

d ^ cc sy c

in which:

T , = shear stress component on dowels

i^ = shear stress component on concrete

n = number of dowels

0 = bar diameter

f' = cube compressive stress

cc ^

f = steel yield strength

sy

= reinf. ratio = 100 .n.n.02/(4A )

0

'^

' ' c

:VI.15)

; v i . i 6 )

T

i

tTc

c

(VI.17)

At a distance of approximately four times the bar diameter from the shear

plane the dowel force will be completely transferred to the surrounding

con-crete. If the shear stress increase in the concrete is simplified to develop

linearly in this area, the average shear stress will be:

T '^T -I- l,/2 = T - T , / 2

c c d d

;VI.18)

Now pure shear of the concrete is assumed between the steel reference points

(Ss ,.

dir

•^c -l/^c

(VI.19)

On substituting G^=

VJ{2+2.0^)=

0.42.E^ and 1= 60mm and combining (VI.

16)-(VI.18) the following equations are obtained:

^ix A: ^Sdi^.= 42.10"-^i'r'- 0 .1775 . p ^ / F ^ }

iix B:

k^^^-

3.9.10"3(r- 0.1775.p^yf^l

(VI.20)

(34)

33

-Re 5.

No experiments concerning time-dependent shear deformation of plain concrete

are reported in the literature. Ruetz [3l] derived a theoretical relation

between shear and normal deformation of concrete. Neglecting volumetric

change compared with deformation by transfiguration, it follows that:

S i = T e i / 2 " _ (VI.22)

de^/dt = è.dy^/dt (VI.23)

so that: dy /dt=2.de /dt=2.t: , .dcp /dt

'o c el c

and dy /dt=Y i -dip /dt (VI.24)

0 'el c

Integrating the last equation gives 70=~»el*tp^. By analogy it follows that:

6s^(t)=ós^.^.cpc(t)= Ö5j.^. (cp^(t+28)- U)^(28)} (VI.25)

in which:

6 s , . = d e f o r m a t i o n a c e . t o ( V I . 2 0 ) and ( V I . 2 1 )

d i r

cp = creep c o e f f i c i e n t of c o n c r e t e a c c o r d i n g t o [ 1 1 , 1 9 ]

t = d u r a t i o n o f l o a d a p p l i c a t i o n i n d a y s .

The creep c o e f f i c i e n t cit c o n s i s t s of a. number o f s i m p l e f u n c t i o n s :

t p ^ ( t ) = e g ( t ) + c p ^ . B ^ ( t - t ^ ) + c p ^ - { B ^ ( t ) - S ^ ( t ^ ) ( V I . 2 6 )

e ( t ) = 0 . 8 0 . d - f ( t ) / f ( t ^ ^ ) }

a L U L U

U)j = 0.40 tp^ = cp^^. ip^^^2.70 . 1.70 = 4.59

^ ^ ( t - t ^ ) = 0 . 2 4 + 0 . 0 9 . 1 n ( t - t Q ) p ^ ( t ) = - 0 . 1 2 + 0 . 1 5 . 1 n ( t )

For all cases it is assumed that the dowel force remains constant [28,29].

Hence with (VI .25)-(VI .26):

mix A: 6s^(tQ,t) = 6s^.^. {-2 .075+0.036-ln(t)+0.7071 n(t+28)} (VI.27)

(35)

34

-50

30

20

10

öS(jjp [lO"-^mm]

O

O

to= 28 days I I

— — mix A (eq.Tn.20)

mix B (eq,S3.21)

0 = 8mm

8 10

l [ N / m m ^ ]

ÖWrs o»" öSp[lO'^mm]

(36)

35

-APPENDIX VII Data of sustained tests and push-off tests

The measured displacements of specimensnos. 1-26 are presented on the

following page 36-62 . The data correspond to the plots in sections

4.4.2-4.4.6 (figs. 4.22-4.68). Three tables of the measured displacements

for each specimen are given:

- during load application and sustained shear loading (t «^ 90 days)

- during possible prolonged load application and unloading ( t > 9 0 days)

- on reloading to failure

All the tables show definite displacements as well as the necessary

correc-tions.

APPENDIX VIII Results of regression analysis

The regression coefficients *<i-'^io of eq. (5.2)-(5.4) are presented on

page 62-63,

(37)

w -9 00 Jl IS i. ON N w w l<j w lu pj rj ro fo >-—•• •-( i i o o - . i o » ü i * . w P O ' - o « ) a j - v i a i U , * u w > - o < £ •-( D N < r i u x . •-( j r o i Z CO .71 n • II Z I O 'J) (B -g o-i m A u Po m 10 M o CO 'J (T-. CI * '.•;• PO P.' - •-•- 'i) po •-•- CTi o Po '-H ui (T. CO •-•- ai ui u ^> PO PO " PO i ui CO cf\ PO Ln >- ^ " 'i) ui -si C3 PO A ui CO ai 00 * r ) " I U1 o * • - '.0 Cl -J 'ri 1 * PO Cl| <JJ 10 Q -^l I - <J3 o o C? Q o G) Ul PO " • o Q Q • * - o -vj ^ <i) . - ai U1 PO CP. PO PO o 'J? CO Ch 4i -J A * . .X. 4. .fc 4. Q PO -J Ul .t. 01 o m :Ü ^ t o -13 rn tn o s o o o o o o o o o o c o e o o o o o o o o o o o o o o o o ^ l i v i ^ . o v i v ) v ] . 0 ( . j r o > * i . n * c . f r r o > u o ^ o . i o o o o o o o o o o * o o 3 CO n r" 7n /^ • m (7i f t f T l -e D a ï € D 0 D C D N ] ^ s i N j N j o ^ a n / i i n A . f c W c j w c i j w r u w r o r ü H . r u H . ^ * M - f r * i 2 ^ J » . f ^ ^ } ' > - ^ • ^ U ( . J ^ > ^ ^ u * - . ! ( ^ a . . ^ . ^ ^ O J ^ l ƒ 1 ^ I ^ o ^ o - ^ l Z } o o o o c > > - ' '-• o cn o I w '^ :<i -o -^1 Z CO • :<3 o • I J. CO CO CO CO CO CO PO - rn • i -J c^ * CO " o •- CO o Q a, H» o> Ji CO *. .^ UI <si k-» r-i (fl 3 m . - G ' C ' 0 Q 1 ' Q Q C > 0 3 T o - j u c . n A i * A A i i - i i i CO 'U) CO CO <jj to CO CO CO to ,T) © © Q o C' CD G' o Q o 3 r -0 .b (0 PO PO "^ — • - • - — 3 " -J 1.0 (^1 cri cr, -g 03 CO a-i i . " t i O ( D O O Q O O Q O O O C S Q O Q O D Q O Q Q Q Q O Q O C ' O O G ' C r ' ' " ' C 0 ^ * Q Q Q O O Q © O Q Q Q Q Q ' S Q O O O O Q O Q O O O O Q O O © 3 r n ( S k D t O < D - . l ( r i C h U I U I * * CO POPO . - • ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 - 0 o o 71 7] .-^ H 73 (i> O O O O O O O O O Q G ' O Q O O O O O O O O O O O O O O O O O G ' " ü ' ^ C O P O P O W P O P O P O " — >- — ' - ' - ' - > - ' - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 r o 00 <^ ui Jk PO O '03 CO - J cn t CO .- o o -g (T> m (71 ui ui J^ * (0 CO PO >- •- >- •- 3 " u j "0 01 o r o "71 O O O O O O O O O O T ) ^ , - . - ^ Q (^. Q Q Q Q o ^ j i • - CO -g .J. (Tl UI UI o '-1 o 3 "H 3 :c (ft UI A co co PO PO PO M Z 3> CO <J\ cr, oi — -g 41 co co C3 3 ' ' J co 4i co ' j j UI * (Tl ijj o 3 PO 3 3 m m 3> 3) (O co (O 03 r m •- -o -o i II II o Q O H - I O • • 71 7! (O CO • r m D " T " - 0 1 I co + r " n n -o o o 71 71 03 O l r m -D I> n 03 -D 30 PO -+ -+ o o Cl o o o .-* .-. 73 73 JO ,T0 71 7! • • O a Cij CO - . .-. r m 73 T ; " -D . . - 0 1 . 03 03 I r r H -o -n o

z

\

{ 3 PO t . •4)

??!I

i^^ni

91

g^

• 1

." n

" ?i

m

. . n i

L -D

o o Cl . -PO - - j o i - - j -g co r r o 'S II n (T, UI o o .-. /-. . ^ / s i (O M • • ^ N . . > • ^ '43 PO CO

g ^ ^ Q

PO n 01 "-i 3 Z 3 3 X ' - ' 3 3 ^^ 3 O 01 • U UI CO I (O ' J M M N) W PO PO PJ PO PO PO — • • O l i ) 0 0 N ( T i U I * . C 0 P 0 O ' J ) 0 0 • g ( r i U i 4 i t o P o i o ( f l ( a M ( T i u i A c o w > -z co 71 n 33 00 N * PO o IJ) g CTi ' j i (.n A co NI 10 • i O ( f t ' 4 ) P 0 ( T , ^ ^ 3 ^ 0 ( S O C l l U l • c ^ l 0 3 ( f t * •

-co -co • - 00 - j -co -J " A p.i PO A J . cn -co ïi> cji CD « (Tl -co * PO 1

X 10 • - 03 " ^3 O (A) CJ • o c D ^ - g o o o o c o c o c o c o c o c o o p o - g c / ) c o i ~ . -g -g >- PO O n PO (3i o o o o o UI PO . - o o o o co o (Tl ,"T) '^ -o m UI ( T . U 3 . f c ( / l C » i r o c C C C H - i c r c ^ ^ c ; c r c c 9 C ^ c c ) C ^ ^ e s c ^ ^ o ^ i ~ * CL c; cr < ff- 0^ 0" cr c (3" c^ i/i cn cr .b CK C/j ro r^. f'3 H 2 % ; 0 : C C C ^ ^ ^ ^ ' ^ - < ( ^ c c c c ^ o o ( ^ o < ^ c ^ c • c ^ 3 ^ (^ (^ (^ ff ^ iT cw C.J t.1 r-i ro ro . * o >- o e O? co C3 ^ ^ (^ .^ .1. c j OJ £>J TL '•' ffOD-^ruWOiPOai^m'CoD^-OP'Ccicrifyt.J.fcl/iir, ( r ( > ^ c c = c r c c < = 03 o r 73 --^ • m ai " m ^' 3 73 3 '^ O (j) o I ;o '^ ;C 71 N i . . . . . . * . . . • . . . • . . „ ( ^ O O O O O O Q O O O Q ( ? O O O Q O O O O O O O O O O O O O O O r - i C 0 0 0 Q O 0 O 0 O Q 0 0 O 0 0 0 Q < S O 0 0 O O 0 0 0 0 0 O 0 C I i Q 3 n i C D l O O O - g ^ ( f t C i | U I X . J > ( O C O P O P O . - > - O O O O O O O O O O O G ' ( S S i Q 3 - D .-- n o o 7} 71 •-• -o JO 00 0 ( P O O O O O O O O O O O O O O O O O O O O O O O O O O O Q O ' - i C ^ ' ( 0 ( O C d ( O P J P O P O P O P O P O - ' - ' - - - ' - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 r ü l * ^ - © O O C l A C O » - 0 ( D N C I I * l O O ( D ' . D - g N O l U l U I * C O P O P O " " 0 0 3 ~ i-i 73 PO - o 'J) CD I I z co I 73 o I -g (Tl cn * co PO • - • D l Z I I I I I I I I cn cn * * * * Ji * co - m • PO o 'j) -g (ft * PO o cn CC' (ft n -g 10 * . 03 o-. 'O * Cfi co 03 co o t j r-i 03 3 m . - . - . — 0 0 0 0 0 0 0 0 0 3 - 0 ' J PJ o co 00 -•! iJl UI Cfl t . co . t i-i I (O 'O 10 10 'J3 'O 'O 'O >0 'O 'J IJ' 71 " 0 3 .— ( ï i 0 O 0 G ' O O 0 G ' G ' 0 3 P o co -g cn cn j . * co PO PO • - . - 3 >-cn o. -g co to co >-cn CTi ' j i . - j . -g 1-1 7j (O o r o " 7 3 0 0 0 0 0 0 0 0 0 0 0 0 * 7 7 3 NI PO " • - — " ' - 1- O O O O • - • - (D -g CT-i 4. PO O CO cn 0.1 O '-' D -g -g Cft (ft (ft cn * i A ( j PO - z i -^ c cn (O (O (O — ' j i CO 41 pj PO co o 3 co (ft PO - * . - co PO co 00 ffi O 3 PO 3 3 m m l 3 CD co 03 03 r m - 1 73 73 H 73 II II + - ( H o o n -I -t 73 03 co • r m D " 73 ^ 7J I I 73 73 03 • I i-i n O 7) o o 7) 73 73 7 ! 03 03 r m « 73 73 O 03 73 I 7 ! ,73 I PO • -0 -0 -0 -0 O O "• -73 7) .-73 71 73 73 • • D D CO CO - " r m 73 73 - • 73 • • 73 I 73 CO CO I j - 1 . > . ^ . r r o o cn cn o o

>- mr

z n l

5 %7i

- " . . T i

4 . . - K 3 f l

?'^ TI

U PO co o o - 1-PJ PO o Co E H • CTi PO cn 10 O N PO r-, m i-i

§ 3 ?

1-12 3 V 3 PO

9e

Cytaty

Powiązane dokumenty

Demand by 3 target groups Changing Demand (use phase) - Society - Owner - User Loca�on – Building – unit(unit) Construc�on / Technical characteris�cs Supply by 3 levels

Zjawisko wykorzystania tego samego schematu melodycznego odnotowujemy również w utworach Święty Andrzeju oraz Do świętego Andrzeja Boboli (Patrona Warszawy).. Tu z kolei mamy

In order to better understand the causes of the existing spatial pattern of population change, we employed linear regression to model the effect of different

Analizowane osuwisko Tubendza położone jest w miejscowości Szczepanowice (Pogórze Rożnowskie), ma powierzchnię 49 ha, z czego 16 ha zostało odmłodzonych w maju

Warto było jednak na początku prac zaznaczyć, że oczekiwania badaczy mogą być inne, a powtarzanie się tematów nie jest wadą badań, ale ciekawą wskazówką analityczną, przy

tussen het vloeigedrag van de mengsels met 17 t/m 20% bitumen werd echter bij een vloei van meer dan 22 cm niet geconstateerd: de vloei- tijd voor deze mengsels bij 25 cm

Power function relationship between the averaged depth and bankfull discharge in estuary with different depth conditions: (a) observed depth; (b) hydraulic depth; (c) regime depth;

Pomimo przekonania antiocheńskich członków Synodu o mówieniu do całego Kościoła, uważają oni jednak za ważne, że dwa inne Kościoły główne przyjmą ich decyzję,