• Nie Znaleziono Wyników

UDC 539.3 HOT STAMP PRESSURE ON ELASTIC HALF-SPACE TAKING INTO ACCOUNT IMPERFECT THERMAL CONTACT THROUGH THIN INTERMEDIATE LAYER

N/A
N/A
Protected

Academic year: 2021

Share "UDC 539.3 HOT STAMP PRESSURE ON ELASTIC HALF-SPACE TAKING INTO ACCOUNT IMPERFECT THERMAL CONTACT THROUGH THIN INTERMEDIATE LAYER"

Copied!
9
0
0

Pełen tekst

(1)

Scientific Journal of the Ternopil National Technical University

2019, № 4 (96) https://doi.org/10.33108/visnyk_tntu2019.04 ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 539.3

HOT STAMP PRESSURE ON ELASTIC HALF-SPACE TAKING INTO

ACCOUNT IMPERFECT THERMAL CONTACT THROUGH THIN

INTERMEDIATE LAYER

Bohdan Okrepkyi

1

; Tetyana Pyndus

2

; Borys Shelestovs’kyi

2

1

Ternopil National Economic University, Ternopil, Ukraine

2

Ternopil Ivan Puluj National Tehnical University, Ternopil, Ukraine

Summary. The solution of the axially symmetric contact problem of thermal elasticity concerning circular cylindrical isotropic stamp pressure on elastic isotropic half-space, taking into account imperfect thermal contact through thin intermediate layer between the stamp and half-space is developed in this paper. The half-space surface outside the contact area is free from external forces. Tangential stresses in the contact area are equal to zero. Constant temperature is given on the free end face of the cylinder. The lateral surface is thermally insulated and the free half-space surface is maintained at zero temperature. The method of temperature fields determination in the cylinder and half-space, as well as the normal contact stresses under given assumptions is developed. The temperature field, displacement, and stress are represented by unknown coefficients determined from infinite systems of linear algebraic equations. Numerical calculations for defining the temperature and the normal stress temperature component in half-space in the contact area for different values of the intermediate layer thermal conductivity coefficients are carried out.

Key words: stamp, half-space, temperature, imperfect thermal contact, thermal conductivity coefficients, contact stresses.

https://doi.org/10.33108/visnyk_tntu2019.04.013 Received 24.12.2019

Statement of the problem. Determination of contact deformations and stresses taking

into account temperature factors is an important task for the investigation of the machine parts and structural elements strength in places of their interaction while calculating structures on the elastic basis for their rational use and base loading capacity.

Analysis of the available investigations. The influence of temperature factors on the

nature of bodies contact interaction is investigated in [1–4]. Particularly, the axisymmetric contact problems of thermal elasticity concerning hot circular stamp pressure on isotropic half-space and layer are solved in papers [2–3], and for elastic circular cylinder on elastic half-space, taking into account imperfect thermal contact are solved in paper [4] articles [2–3]. However, the problems of thermal conductivity and thermoelasticity taking into account the conditions of imperfect thermal contact of bodies through thin layer intervals have not yet been properly investigated.

The objective of the paper is to develop the solution of the axisymmetric contact

elasticity problem concerning pressure of hot circular stamp with flat base on the elastic isotropic half-space with imperfect thermal contact through thin intermediate layer and find formulas for temperature and normal contact stresses determination; to investigate the influence of the intermediate layer thermal conductivity coefficients on the distribution of the normal stresses temperature component.

Statemant of the problem. Let us assume that rigid circular cylindrical stamp of radius

R and length L with the flat base is pressed by force Р into the isotropic elastic

(2)

Tangential stresses on the contact area are  rz 0. At the free cylinder end face the constant temperature Т0 is given. Thermal contact between bodies is carried out through thin

intermediate layer [5, 6]. The free surfaces of the cylinder and the half-space are maintained at zero temperature or thermally insulated. Under given assumptions it is necessary to determine the temperature fields and contact stresses.

Let us introduce the cylindrical coordinate system r, , z, which center is located on the half-space surface, and axis 0z is directed along the cylinder axis. All the values indicated by the upper index «1» are referred to the half-space, and those without indices – to the cylinder.

The boundary conditions for temperature, stress and displacement are as follows:

(

)

0 , , 0 T= T z= L Ј r< R . (1)

(

)

0 , , 0 T r R z L r ¶ = = Ј < ¶ . (2)

(

)

1 0 , 0; T = z= RЈ r< Ґ . (3) ,

(

z= 0; 0Ј r< R

)

. (4) . (5) ,

(

z= 0;r= R

)

. ,

(

z= 0;r= R

)

. (6)  1

0; 0 z U   z  r R (7)  1

0 0; z z R r       (8)  1

0 0; 0 r z z r       (9)

where l z,l 1z are thermal conductivity coefficients;

(3)

2 2 1 r r r        is Laplace operator; 0 1 2 c c T T d d d g d -=

т

, 32 0 2 c c T T d d d g g d * -=

т

,

2d

is intermediate layer thickness; 0 2 0 l *= l d, 0 0

2

h

l

d

=

; a0* 2a d0

= ;l 0,a0 – are coefficients of intermediate layer thermal conductivity and heat transfer;

0

h

is contact conductivity; 0

c

T is external environment temperature;

 – is the value of the stamp vertical movement.

Solution of boundary value problems for thermal conductivity and thermal elasticity equations.

It is known [7] that in the axisymmetric case the thermoelastic potential and the temperature field for isotropic body are determined from the equations:

2 1 1 T T         , 2 0 T   , (10)

and temperature stresses and displacements are derived by the formulas:

( )T z u z     ,   2 2 1 2 T z r r r             , ( ) 2 T rz    2 , r z     (11)

where T is the coefficient of linear temperature expansion;  , are shear modulus and Poisson ratio.

In order to determine the temperature field in half-space, we introduce Hankel transform of T1

 

r z, zero-order function

 

   

1 1 0 0 , , , . T z r T r z J z dr   

 (12)

Applying to the second equation (10) the integral Hankel transformation and using its properties, we determine 1

 

, T r z by arbitrary function  1

 

:

 

 

1 1 0 0 , T e J d  

      , (13)

where J0

 

 is Bessel function of the first kind of valid argument; ρ = r/R; ζ= Ζ/R; η= ξR. Using Fourier method, the general solution to equation (10) is as follows:

(4)

where к,В С Dк, к, к,

k 0,

are arbitrary constants; I0

 

кr is Bessel function of the first kind of imaginary argument;

, к к

  are eigenvalues determined from boundary conditions.

The thermoelastic potential  is determined from the first equation (10) in the form:

1 1

 

0

 

0 1 1 1 , . 2 1 Т е J d    

             (15)

The components of temperature stresses and displacements are calculated by formula (12). With formulas for temperature stresses and displacements, it is possible to solve the problem under mechanical boundary conditions. For this purpose it is necessary to add the components of stresses and displacements from the biharmonic potential

 

1 to the values calculated according to formulas (12).

Thus, in order to determine the displacements and stresses in the isotropic half-space we have the following relations:

 1

 

 

 

1 2 0 1 1 1 1 0 1 1 1 2 z U e J d b R b R                    

 

  

1 1 1 0 1 0 1 1 1 1 2 1 T R J d             

 ,  1 31

 

1

 

 

1 1 2 0 0 2 z b b e J d R R                    

(16)

 

 

1 1 1 1 0 1 0 1 1 T e J d             

,  1 1

 

1

 

3 1 2 1 0 2 r z b b e J d R                 

 

 

1 1 1 1 1 1 0 1 1 1 T e J d              

. where 1 1 1 1 1 1 1 1 1 1, 2 1 1, 3 ; b   b   b           1 1 ,

  are Lame coefficients; U1z,  1z, r z1 are components of the displacement vector and tensor stresses in elastic half-space; i

i1, 2

are arbitrary functions.

The heat conductivity problem solution is given in paper [8].

The temperature field in the contact area of two bodies is found by the formulas: a) for cylindrical area:

(5)

b) for half-space:

(

)

(

)

(

)

1 0 0 1 , 0 , 1 ; N k k k T r a a J m r r = = +

е

< (18)

where Xk

(

k= 0,N

)

, Y Y0, 1 are derived from the system of linear algebraic equations [8].

 1  1  1  1

, ,0 0 ,1 1 0 0, N n k k n n n k A X B Y B Y D n N     

(19)  2  2  2

, 0,0 0 0 0, N n k k n k A X B Y D n N    

 1  2  1  1  2  2  1  2 , , , , ,0 , ,1 , 0,0 , 0,0 , , n k n k n n n n

A A B B B B D D are known quantities.

Obeying the boundary condition (9), for stress  z1

 

, 0 and displacement Uz 1

 

, 0 on the half-space surface we get the formulas:

   

1

   

1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 , 0 1 2 1 Z Т b U R Ф J d R b J d b         

           , (20)

 

1

   

1 3 0 0 2 , Z b Ф J d R  

     

 

 

1

 

1 1 2 r R Ф b R          .

Requiring the fulfillment of the boundary conditions (7), (8) we derive the system of integral equations relatively to functions Ф

 

 and  1

 

:

   

0 1 1

   

0

0 0 1 1 , 1 . 2 T Ф J d J d R                

(21)

   

1

1

0 1 0 1 0 1 , 1 . 1 Ф J d b             

(22)

If we introduce function f t

 

by ratio

 

11 1

 

1 1 0 cos , 1 b Ф f t tdt b    

(23)

then equation (22) is satisfied identically, and equation (21) is reduced to Abel integral equation.

 

 

2 2 , o f t dt g t  

   (24)

(6)

2 2 2 ( ) ( ) , t o d g f t d dt t  

    (25) where

 

1 1

   

0 0 2 1 . T g J d R              

 (26)

Substituting expression (26) into formula (25), taking into account (23), we get the function f t( ):

 

1 1

 

0 2 1 cos . T f t d R             

 (27)

Using the stamp equilibrium condition  

 

1 1 2 0 2 z P  R

  d and formulas (20), (23),

the equation (27) is reduced to the following form:

 

2 1 1

 

0 0 1 sin cos 2 T P f t t d R              

. (28)

Let us represent function f t

 

by relation:

 

1

  1

  1 1 2 2 2 0 0 0 0 2 1 1 2 2 1 1 2 , 2 N N k k T k k k k P f t k P t y T k P t y R            

(29) where  1

1 0, k

y kN are unknown coefficients;

2

1 2

k

Pt is Legendre function.

Substituting function f t

 

from (29) and 1

 

0 1

 

2 1

 

02

 

2

1 N k k k k J X J J X            

into

equation (28), taking into account the orthogonality conditions of Legendre functions

2

1 2

k

(7)

   

0,0 1 0 0 1 2 i J d          

;

 

   

2 1 0, 0 2 0 2 k k k k J i J d        

   ,

   

,0 1 1 0 1 2 1 , 0, n n i n J d n N           

 , (31)

  

1

   

, 0 2 2 0 2 1 n n k k k J i n J d          

   ,

 

0 1 cos 1 1 sin 2            ,

 

1 1

 

 

1

1 sin 1 , 1, . 4 2 2 2 1 1 n n n nnn N                                     

 

n x

 are spherical functions.

In order to determine the contact stresses under the stamp, taking into account formulas (20), (23), (29), the following expressions were obtained:

 1

 

 

 

 

 

, 0 P , 0 T , 0 z z z         , (32)  

2 2 1 , 0 2 1 P z P R        , (33)  1   1

  

  

2 0 0 2 0 2 1 1 1 1 2 1 , 1 , 1 N T k z T k k T Y k T                 

 (34)

where T2k1

 

 is Chebyshev function; z P

 

, 0 is force component of stresses;  

 

1

, 0

T z

  is

temperature component of stresses in half-space.

Analysis of the solution. The solution of the temperature problem is to determine the

constants Xk

k0,N

, Y Y0, 1 from the algebraic equations system due to which the

temperature fields at any point of the cylinder and half-space are found.

The numerical example for finding the temperature and temperature component of normal stress in the contact area at * 0

0 0, Tc 0, 0, 3

     is considered.

Figures 1 and 2 show The graphs of the dimensionless temperature component of the normal stress

1 0

, 0 /

T

z TT

     in the contact area at different values of thermal conductivity

(8)

Figure 1. Distribution of temperature component of contact stresses for

1

zz   (dotted line) and

1 1

zz (solid lines): curve

1 1 0 0 1h 0,1; 2h 1; 1 0 3h 5; 1 0 4h  .

Figure 2. Distribution of the temperature component of contact stresses at

1 1

0 1, z z

h  

curve 1 z 0,1; 2 z 0, 5; 3 z 1; 4 z 5.

Conclusions. Applying Hankel integral transform and Fourier method, the solution of

the temperature problem is reduced to the determination of some constants of the linear algebraic equation through which we find the temperature fields and stresses at any point in the cylinder-half-space body system.

The investigations prove that zero temperature on the lateral surface of intermediate layer results in temperature decrease in the contact area. This is due to the fact that the part of heat comes out of the intermediate layer lateral surface. As the result, the temperature component of the normal stress decreases significantly. The influence of the coefficients of thermal conductivity, heat transfer and contact conductivity on the temperature component of contact stresses is shown in Figures 1, 2. Increase of thermal conductivity coefficients and contact conductivity value results in to an in the contact stresses increase.

References

1. Grilickij D. V., Kizyma YA. Osesimmetrichnye kontaktnye zadachi teorii uprugosti i termouprugosti. L'vov:Vishcha shkola, 1981. 135 p. [Іn Russian].

2. Okrepkyi B. S., Shelestovska M. Tysk tsylindrychnoho kruhovoho shtampa na pruzhnyi pivprostir z urakhuvanniam neidealnoho teplovoho kontaktu. Visnyk TNTU. 2006. No. 3. P. 26–33. [Іn Ukrainian]. 3. Okrepkyi B. S. Tysk tsylindrychnoho kruhovoho shtampa na pruzhnyi shar z urakhuvanniam neidealnoho

teplovoho kontaktu. Visnyk TNTU. 2011. Vol. 16. No. 2. P. 42–52. [Іn Ukrainian].

4. Okrepkyi B. S. Osesymetrychna kontaktna zadacha termopruzhnosti pro tysk pruzhnoho tsylindra na pruzhnyi pivprostir z urakhuvanniam neidealnoho teplovoho kontaktu. Visnyk Ternopilskoho derzhavnoho tekhnichnoho universytetu. 2014. No. 2. P. 65–76. [Іn Ukrainian].

5. Podstrigach Ya. S. Usloviya teplovogo kontakta tverdyih tel. DAN USSR. Seriya A. 1963. No. 7. P. 188–192. [Іn Russian].

6. Podstrigach Ya. S. Temperaturnoe pole v sisteme tverdyih tel, soprikasaemyih s pomoschyu tonkogo promezhutochnogo sloya. IFZh. 1963. T. 6. No. 10. P. 129–136. [Іn Russian].

7. Kovalenko A. D. Osnovy termouprugosti. Kiev: Nauk.dumka, 1970. 304 p. [Іn Russian].

8. Okrepkyj B. S. Vyznachennja temperaturnogho polja v systemi til cylindr-pivprostir pry neidealjnomu teplovomu kontakti cherez promizhkovyj shar. Visnyk TNTU. 2013. No. 1. P. 253–262. [Іn Ukrainian]. 9. Uitteker E. T. Kurs sovremennogo analiza. M.: Fizmat., 1963. 343 p. [Іn Russian].

(9)

Cytaty

Powiązane dokumenty

znaczenie dla właścicieli nieruchomości, na której posadowione są urządzenia przesy- łowe (urządzenia służące do doprowadzania lub odprowadzania płynów, pary, gazu,

MATHEMATICAL MODEL TAGUS ESTUARY CALCULATED WAVE HEIGHTS.

We wrześniu 1821 r., po uzyskaniu zgody ministerstwa na połą- czenie zbiorów Szkoły Wojewódzkiej i Towarzystwa, powstało muzeum Publiczne i Szkolne Województwa

Na długo przed prześladowaniami, zanim Kościół, doskonale wolny w tym, co głosi, mógł bez przeszkód potwierdzić swą wiarę przez dostate- czną

Na udział w głosowaniu powszechnym wpływać moŜe: dokonanie przez wyborcę bilansu potencjalnych zysków i strat, wynikających z oddania głosu; specyfika sytuacji

A dynamic simulator for a combined cycle power plant with integrated solar collectors (i.e., an 169 .. ISCC plant) was developed

Pacjenci po przeszcze- pie nerki lepiej ocenili zarówno swoją jakość życia (40% jest „bardzo zadowolonych”, 45% jest „zadowolonych”), jak i rzadziej odczuwa- li

Czy możliwa jest historia społeczna pierwotnego chrześcijaństwa II i III wieku?, w: Kościół –socjologia – statystyka, Księga Jubileuszowa poświęcona księdzu prof..