• Nie Znaleziono Wyników

Activity of Water in Aqueous Acetamide Solutions Within the Temperature Range 298.15-358.15 K

N/A
N/A
Protected

Academic year: 2021

Share "Activity of Water in Aqueous Acetamide Solutions Within the Temperature Range 298.15-358.15 K"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N.I V E R S I T A T I S L 0 D Z I E N S I S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ FOLIA CH IM I C A 8 , 19BB_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

M a r i a n Woldan*

A C T I V I T Y OF WATER IN A Q U E O U S A C E T A M I D E S O L U T I O N S W I TH IN THE TE M P E R A T U R E RANGE 2 9 8 . 1 5 - 3 5 8 . 1 5 K

On the ba sis of our values of the r e l a t i v e pa rt ial molal en t h a l p y of wa ter in aq ue ous a c e t a m i d e solutions' a c t i v i t y , a^, and a c ti vit y co ef fic ie nt , fj, of w a te r and p r e s s u r e of wate r vapour over the aq ue ous a c e t a m i d e s o l u t i o n s and the os mo t i c p r e s s u r e of these s o l u t i o n s have been ca lc ula te d. From the an a l y s i s of ch an g e s of these fu nc t i o n s on the c o n c e n t r a t i o n of a c e t ami de in s o l u t i o n and t e m p e r a t u r e the c o n c l u s i o n that ac e t a m i d e has a small d i s o r d e r i n g effe ct on wa ter s t r u c t u r e has been drawn.

Fr om d e n s i m e t r i c [ l ] , v i s c o s i m e t r i c [2] and t h e r m o c h e m i c a l [3] i n v e s t i g a t i o n s it fo ll ows that the m o l e c u l e s of a c e t a m i d e have litt le d i s o r d e r i n g e f fe ct on wa ter structure. This e f fe ct incre­ ases wi th the rise of the c o n c e n t r a t i o n of a c e t a m i d e in the s o l u ­ tion and d e c r e a s e s when the t e m p e r a t u r e increases. In the p r e s ent p a pe r we have e x a m i n e d the i n t e r a c t i o n s am ong w a t e r and a c e t a m i ­ de m o l e c u l e s on the ba sis of the d e p e n d e n c e of a c t i v i t y c o e f f i ­ cien t of wate r in aq ue o u s a c e t a m i d e s o l u t i o n s on the c o n c e n t r a ­ tion of s o l u t i o n and te mperature. U t i l i z i n g the values of a c t i ­ vity of wa ter in the aq ue ous a c e t a m i d e s o l u t i o n s the p r e s s u r e of w a te r vapo ur over the i n v e s t i g a t e d s o l u t i o n s and their o s m o ­ tic p r e s s u r e in the c o n c e n t r a t i o n range of AcNHg 0-4 m o l e . k g - ^ of wa ter w i t h i n the t e m p e r a t u r e range 2 9 8 . 1 5 - 3 5 8 . 1 5 K have been c a l c u l a t e d .

#

R e s e a r c h and D e v e l o p m e n t C e nt re for S t a n d a r d R e f e r e n c e M a ­ t e r i als W Z O R MAT - B r an ch in Ł ódź.

(2)

Ex p e r i m e n t a l

The m e t h o d of p u r i f i c a t i o n of a c e t a m i d e and the p r o c e d u r e of the m e a s u r e m e n t s of e n t h a l p y of s o l u t i o n of a c e t a m i d e in w a te r have been d e s c r i b e d p r e v i o u s l y [3] .

It is kn own that the a c t i v i t y of so lv e n t at g i ve n t e m p e r a t u r e one can c a l c u l a t e from e q u a t i o n

a i ^298 15) is the ac ti vit y of s o l v e n t in the s o l u t i o n at 298.15 K; R is the gas constant;

T is the t e m p e r a t u r e in Kelvin;

Lj(y) is the d e p e n d e n c e of the r e l a t i v e p a r t ial mo lal e n t h a l p y of so lv e n t in the s o l u t i o n on the t e m p era tu re ; in case of aq ue o u s a c e t a m i d e s o l u t i o n s the valu es of Lj were taken from l i t e r a t u r e [3] and they have been d e s c r i b e d by equation:

_

2

L i (t ) = Aj + A 2 m + Aj m ( 2)

w h er e m is molal c o n c e n t r a t i o n of a c e t a m i d e in the solution.

The values of the c o e f f i c i e n t s A^, A 2 and Aj have been c a l c u l a ­ ted by the least s q u a r e s m e th od u s in g Odra 1305 c o m p u t e r and they are g i ve n in Table 1. U s in g the valu es of c o e f f i c i e n t s Aj, A^ and A^ the valu es of in the c o n c e n t r a t i o n rang e 0. 2- 4 . 0 mo l e of A c N H 2 on kg of wate r for s e l e c t e d c o n c e n t r a t i o n s of a c e t a m i d e we re c a l ­ culated. The valu es of of w a te r in a q u e o u s a c e t a m i d e s o l u t i o n s as a f u n c t i o n of t e m p e r a t u r e we re d e s c r i b e d by e q u a t i o n R e s u lts ln a 1(T ) 298 .15 ( 1) where 2 (3)

The valu es of the c o e f f i c i e n t s D^, 0 2 and c a l c u l a t e d by the least s q u a r e s m e t h o d u s in g Odra 1305 c o m p u t e r are g i ve n in T a bl e 2.

(3)

S u b s t i t u t i n g e q u a t i o n 3 in e q u a t i o n 1 and u s in g the valu es of a c t i ­ vity of water in aq ue ous a c e t a m i d e s o l u t i o n s at 298. 15 K from l i t e ­ rature data [4] the valu es of a c ti vit y of water, aj, in a q u e ous T a b l e 1

C o e f f i c i e n t s A 1t A 2 and A 3 for e q u a t i o n 2 for aq ue ous a c e t ami de s o l u t i o n s T(K) A , A 2 A 3 298.15 -0 .0 623 38 0 . 6 8 032 2 0. 37 898 4 313.15 -0 .0 485 07 0 . 5 8 397 2 0. 33 838 4 323.15 -0 .0 492 66 0 . 5 4 874 6 0. 306544 333.15 -0 .031007 0.43 244 1 0. 29 299 0 343.15 -0 .0 287 54 0 . 3 7 864 7 0 .218645 T a b l e 2

C o e f f i c i e n t s D 1 , 0 2 and O 3 for e q u a t i o n 3 for aqueous a c e t a m i d e so lu t i o n s ” -1 m o l .kg D1 °2 o ! i I 1 C M O -0 .4 156 99 0. 00 379 8 -0 .0 000 07 0.4 - 0 . 9 337 05 0. 00 971 4 -0 .0 000 19 0.6 - 1 . 6 823 95 0 . C 1 749 5 -0.00003-1 0.8 - 2 .6 617 71 0 . 0 2 714 0 -0 .0 000 53 1.0 -3 .8 71830 0 . 0 3 865 0 -0 .0 000 75 1.2 -5 .3 125 75 0 . 05 202 5 -0.000100 1 . 4 -6 .9 840 05 0. 06 726 5 -0 . 0 001 29 1.6 -8 .886119 0. 08 437 0 -0 .0 001 61 1.8 - 1 1 . 018 91 9 0. 10 334 0 -0 .000196 2.0 - 1 3 . 382 40 3 0. 12 417 4 -0 .000234 3.0 - 2 8 . 660 09 6 0 . 25 632 0 -0 .0 004 77 4.0 - 4 9 . 704 90 9 0. 43 508 7 -0 .0 008 03

(4)

A c t i v i t y of w a te r in a q u e ous a c e t a m i d e s o l u t i o n s wi th in the t e m p e r a t u r e ra nge 2 9 8 . 1 5 - 3 5 8 . 1 5 K mol m .^g-1 X1 298.15 313.15 323.15 333.15 343.15 348.15 358.15 0 .2 0 9964 0 9966 0 9966 0 9966 0 9966 0 .9966 0 9966 0 9966 0 .4 0 9929 0 9933 0 9933 0 9933 0 9933 0 .9933 0 9932 0 9932 0 .6 0 9893 0 9899 0 9899 0 9898 0 9898

0 .

9898 0 9898 0 9898 0 .8 0 9858 0 9865 0 9864 0 9864 0 9864

0 .

9864

0

9864 0 9863 1 .0 0 9823

0

9830

0

9829 0 9829

0

9828 0 .9828

o

9828 0 9828 1 .2 0 9789 0 9798 0 9797 0 9796 0 9796

0 .

9796 0 9796 0 9795 1 .4 0 9754 0 9766 0 9765 0 9764 0 9764 0 9763

0

9763

0

9763 1

.6

0 9720 0 9734 0 9733 0 9732 0 9731 0

.

9730

0

9730 0 9730 1.8 0 9686 0 9702

0

9700 0 9699

0

9698

0

9698

0

9698

0

9697 2 .0 0 9652 0 9670 0 9668 0 9667

0

9666

0 .

9665

0

9665

0

9664 3 .0 0 9488 0 9518 0 9514 0 9512

0

9510

0 .

9509

0

9508

0

9507 4 .0 0 9328 0 9374 0 9368 0 9364 0 9361 0

.

9359

0

9358

0

9357 T a b l e 4 A c t i v i t y c o e f f i c i e n t of w a te r in a q u e o u s a c e t a m i d e s o l u t i o n w i th in the t e m p e r a t u r e ra nge 2 9 8 . 1 5 - 3 5 8 . 1 5 K m mol .kg"1 X1 298. 15 313.15 323.15 333. 15 343.15 348. 15 358.15 0 .2 0 9964 1 0002 1 .0002 1 0002 1 0002 1 0002 1 0002 1 .0002 0 .4 0 9929 1 0004 1.0004 1 0004 1 0004 1 0004 1 0003 1 .0003 0 .6 0 9893 1 0006 1 .0006 1 0005 1 0005 1 0005 1 0005 1 .0005 0 .8 0 9858 1 0007 1 .0006 1 0006 1 0006 1 0006 1 0006 1 .0005 1 .0 0 9823 1 0007 1 .0006 1 0006 1 0005 1 0005 1 0005 1.0005 1.2 0 9789 1 0009 1 .0008 1 0007 1 0007 1 0007 1 0007 1 .0006 1.4 0 9754 1 0012 1 .0011 1 0010 1 0010 1 0009 1 0009 1 .0009 1 .6 0 9720 1 0014 1 .0013 1 0012 1 0011 1 0010 1 0010 1 .0010 1 .8 0 9686 1 0016 1 .0014 1 0013 1 0012 1 0012 1 0012 1 .0011 2 .0 0 9652 1 0019 1.0017 1 0016 1 0015 1 0013 1 0 013 1 .0012 3 .0 0 9488 1 0032 1 .0027 1 0025 1 0023 1 0022 1 0021 1 .0020 4 .0 0 9328 1 0049 1 .0043 1 0039 1 0035 1 0033 1 0032 1 .0031

(5)

a c e t a m i d e s o l u t i o n s for s e l e c t e d c o n c e n t r a t i o n s of AcNI^ at 298.15, 313.15, 323.15, 333.15, 343.15, 348.15 and 358. 15 K have been c a l ­ culated. The re su lts are given in Table 3. In Ta ble 4 the values of a c ti vit y c o e f f i c i e n t of water, f j , in aq ue o u s a c e t a m i d e s o l u t i o n s c a l c u l a t e d from kn own re la tio n

a i *i -t J

wh ere x^ is the mo le f r a c tio n of w a te r in the s o l u t i o n are p r e ­ sented. The a n a l ysi s of the e x p e r i m e n t a l e r ro rs and the a p p r o ­ xi ma t i o n s us ing in the c a l c u l a t i o n s pe rm i t s to e s t i m a t e the er ror in ac ti vit y (a ct ivi ty c o e f f i c i e n t ) of w a te r as + 0 .001. The p r e s s u r e of w a te r vapo ur over a q u e ous a c e t a m i d e s o l u t i o n s was c a l c u l a t e d from the e q u a t i o n

Pl - p 0 .3l (5)

w h er e p Q is the p r e s s u r e of water vapo ur over pure water. In the c a l c u l a t i o n s f o l l o w i n g values of p Q w e re used: 31.672, 73.759, 123.337, 199.157, 311.574, 385.435 and 57 8. 086 hPa at 298.15, 313.15, 323.15, 333.15, 343.15, 348.15 and 358.15 K [5] r e s p e c t iv el y. For the pu rp o s e to ob se r v e the d e v i a t i o n of w a t e r - a c e t a m i d e s y s t e m from R a o u l t ’s law the valu es A p = Pj - P 0 -Xi were also ca lc ula te d. The resu lts of the c a l c u l a t i o n s of p^ and A p for aq ue o u s a c e t a m i d e s o l u t i o n s are p r e s e n t e d in Table 5. The valu es of os mo t i c p r e s s u r e of aque ous a c e t a m i d e s o l u t i o n s were c a l c u l a t e d from r e l a tio n

IT = - In a^ (6)

w h er e is the pa rt ial mola l volu me of water. With r e ga rd for the small d e p e n d e n c e of the pa rt ial molal v o lu me of. w a te r in a q u e ous a c e t a m i d e s o l u t i o n s on c o n c e n t r a t i o n in the c a l c u l a t i o n s the valu es Vj equal to mo lal volu me of w a te r at g i ve n t e m p e r a ­ ture were taken. The o b t a i n e d valu es of o s m o t i c p r e s s u r e of aq ue ous a c e t a m i d e s o l u t i o n s are g i ve n in Ta ble 6 .

(6)

T a b l e 5 The p r e s s u r e of wa ter vapo ur ov er the a q u e o u s a c e t a m i d e s o l u t i o n s

w i t h i n the t e m p e r a t u r e range 2 5 8 . 1 5 - 3 5 8 . 1 5 K [hPa]

m 298. 15 313.15 323 . 15 333. 15 m o l .k g '1 Pi A p Pi A p Pi Ap Pi A p 0 .2 31 .56 0 o o 73 .51 0 .02 122.92 0 .03 19B .48 0 04 0 .4 31 .46 0 .01 73 .26 0 .02 122.51 0 .05 197. 81 0 07 0 .6 31 .35 0 02 73 .01 0 .04 122.08 0 .06 197. 13 0 10 0 .8 31 .24 0 02 72 .76 0 .05 121.66 0 .07 196 .45 0 12 1 .0 31 .13 0 02 72 .50 0 .05 121.23 0 .08 195. 74 0 11 1.2 31 .03 0 03 72 .26 0 06 120.83 0 .10 195. 09 0 14 1 .4 30 .93 0 04 72 .02 0 08 120 .43 0 .13 194 .45 0 19 1 .6 30 00 rr\ 0 04 71 .79 0 .10 120.03 0 .15 193. 80 0 22 1.8 30 .73 0 05 71 .55 0 11 119. 63 0 .17 193. 15 0 25 2 .0 30 .63 0 06 71 .31 0 12 119. 23 0 .19 192. 50 0 27 3 .0 30 .15 0 10 70 .18 0 20 117. 32 0 .30 189. 40 0 44 4 .0 29 .69 0 15 69 .10 0 30 115. 50 0 .45 186. 44 0 67 mol kg-1 343.15 A P 348.15 Pi A p 358.15 Pi A p 0.2 0.4 0.6 0 . 8 1 . 0 1.2 1.4 1 . 6 1 . 8 2 . 0 3.0 4.0 310.51 309.47 308.40 307.33 306.22 305.21 304.19 303.18 302.16 301.14 296.26 291.60 0.06 0.11 0.16 0.18 0 . 16 0.21 0.28 0.33 0.37 0.41 0.64 0.96 384.12 382.83 381.51 380.18 378.81 377.55 376.30 375.04 373.78 372.51 366.47 360.69 0.07 0.13 0 . 2 0 0.22 0 . 2 0 0.25 0.35 0.40 0.45 0.49 0.77 1.16 576.11 574.18 572.19 570.19 568.15 566.25 564.36 562.47 560.58 558.68 549.59 540.89 0.11 0 . 2 0 0.29 0.31 0.30 0.36 0.49 0.57 0.65 0.71 1 . 1 0 1.65

(7)

T a b l e 6

The os mo t i c p r e s s u r e of aq ue o u s a c e t a m i d e s o l u t i o n w i th in the t e m p e r a t u r e range 2 9 8 . 1 5 - 3 5 0 . 1 5 K [kPa]

m mol k g -1 298.15 313.15 323.15 333.15 343.15 348.15 358.15 0.2 467 489 504 517 530 537 549 0.4 922 967 995 1 022 1 048 1 062 1 086 0.6 1 392 1 461 1 504 1 545 1 585 1 606 1 643 0.8 1 863 1 957 2 014 2 071 2 124 2 152 2 202 1.0 2 351 2 469 2 543 2 612 2 681 2 718 2 780 1.2 2 798 2 940 3 029 3 111 3 194 3 237 3 313 1.4 3 246 3 413 3 516 3 614 3 709 3 760 3 848 1.6 3 696 3 887 4 006 4 121 4 227 4 286 4 386 1.8 4 148 4 364 4 498 4 627 4 748 4 814 4 927 2.0 4 601 4 842 4 992 5 137 5 272 5 345 5 471 3.0 6 273 7 142 7 371 7 591 7 796 7 907 8 097 4.0 8 863 9 364 9 676 9 973 10 250 10 399 10 653 D i s c u s s j U m

As it is seen from Ta ble 3 the v a lu es of a c t i v i t y of water, a ^ in a q u e o u s a c e t a m i d e so lu t i o n s d e c r e a s e wi th the i n c r eas e of the c o n c e n t r a t i o n of a c e t a m i d e in so lu tion. The a c t i v i t y of wa te r in s o l u t i o n s c o n t a i n i n g less than 1 m o l e of a c e t a m i d e in 1 kg of wa ter does not d e pe nd on the t e m p e r a t u r e and it d e ­ c r e a s e s a small as the t e m p e r a t u r e i n c r eas es for mo r e c o n c e n ­ trat ed so lu tio ns . Mo re over, the a c t i v i t y of w a te r di ff e r s a litt le fr om the m o la r f r ac tio n of w a te r in the solution. These c h a n g e s are mo r e vi si b l e in case of the a c t i v i t y c o e f f i c i e n t of water, fj. For all i n v e s t i g a t e d s o l u t i o n s the v a lu es of a c t i ­ vity c o e f f i c i e n t of wa ter are larg er than unity. From this it fo ll o w s that the m o l e c u l e s of w a te r in aq ue ous a c e t a m i d e s o l u ­ tions are more free than they are in pure water. Hence, one co n c l u d e that a c e t a m i d e w e ak ly d i s o r d e r s w a te r structure. This d i s o r d e r i n g effe ct of a c e t a m i d e on the s t r u c t u r e of w a te r

(8)

de-c r e a s e s a litt le w i th the i n c r e a s e of t e m p e ra tu re . It is k n ow n that the a c t i v i t y c o e f f i c i e n t can s e rv e as a m e a s u r e of d e v i a ­ t i on of a g i ve n s o l u t i o n f r om the b e h a v i o u r of ideal so lu tion. As it is seen fr o m T a bl e 4 the aq ue o u s a c e t a m i d e s o l u t i o n s sh ow s m all p o s i t i v e d e v i a t i o n from ideal s o l u t i o n w h ic h d e c r e a s e s wi t h the i n cr eas e of t e m p e ra tu re . S i m i l a r c o n c l u s i o n it fo ll o w s from the a n a l y s i s of re su l t s in T a bl e 5. All i n v e s t i g a t e d a q u e ­ ous a c e t a m i d e s o l u t i o n s sh ow p o s i t i v e d e v i a t i o n from the R a u o l t ’s law. It c o n f i r m s that a c e t a m i d e -has sm all d i s o r d e r i n g e f fe ct on w a te r s t r u c t u r e w h i c h d e c r e a s e s a l i tt le w i t h the i n c r e a s e of te m p e r a t u r e . Finally, it is i n t e r e s t i n g to c o m p a r e the a c t i v i t y c o e f f i c i e n t of w a te r in the s o l u t i o n s c o n t a i n i n g o t he r n o n e l e ­ c t r o l y t e s w i th s i m i l a r n a tu re and d i m e n s i o n of m o l e c u l e s as ac et ami de . The n o n e l e c t r o l y t e c h os en for this p u r p o s e is urea. The v a lu es of a c t i v i t y c o e f f i c i e n t of w a t e r in a q u e o u s urea s o l u t i o n s w e re c a l c u l a t e d fr om L o g v i n i e n k o ’s t h e r m o ­ c h e m i c a l data [6] and the o s m o t i c c o e f f i c i e n t s from l i t e r a t u r e data

[7, 8]. The r e s u l t s are g i ve n in Table 7. As it is s e en from Ta ble 7 the v a lu es of a c t i v i t y c o e f f i c i e n t of w a t e r in a q u e o u s a c e t a m i d e and ur e a s o l u t i o n s w i t h i n the e x p e r i m e n t a l erro r are identical. Thus, it can c o n c l u d e that the i n t e r a c t i o n s w a te r - a c e t a m i d e and w a t e r - urea are similar.

T a b l e 7 A c t i v i t y c o e f f i c i e n t s of w a te r in aq ue o u s n o n e l e c t r o l y t e s s o l u t i o n s at 298. 15 K m mo le k g - * Ac e t a m i d e Urea 0.5 1.0005 1.0000 1.0 1.0007 1.0007 1.5 1.0013 1.0013 2.0 1.0019 1.00 18 2.5 1.0025 1.0022 3.0 1.0032 1.0034 4.0 1.00 49 1.0045

(9)

R e fe re n c e s

[1] W o l d a n M. , T a n i e w s k a-0 s i rt s k a S. , Acta Univ. L o d z ., F o l i a Chim ., J,, 85(1 902).

[2] T a n i e w s k a-0 s i r t s k a S., W o l d a n M., Acta Univ.

L o d z ., F o l i a C h i m . , _ L 103(1902), [3] W o l d a n M . , T a n i e w s k a-0 s i ń s k a S . , Acta U n iv . L o d z ., F o l i a Chim ., JL, 3 (1 98 2 ). [4] K a n g r o W . , G r o e n e v e l d A . , Z. Phys. Chem. N. F., 2 2 , 110 (1 96 2 ). [5] M i s h c h e n k o K. P . , R a v d e 1 A. A . , K r a t k i j spra- vochnik f i z ik o - k h im ic h e s k ik h v e l i c h i n , ed. " K h i m i y a " , Le n in g rad (1 97 2 ). [6] L o g v i n e n k o R . , D o c t o r a l T h e s is , U n iv . Lodz. (1 9 7 2 ). [7] S t 0 k e s R. H., Aust. J . Chem., 20, 2087 (1 9 6 7 ). [ 8 ] E l l e r t o n D . A . , D u n l o p P . J . , 3. Phys. Chem., 70 ( 6 ) , 1831 (1 96 6 ). M a r i a n W o ld an A K T Y W N O Ś Ć WODY W W O D N Y C H R O Z T W O R A C H A C E T A M I D U W Z A KR ESI E T E M P E R A T U R Y 298.15-358.15 K Na p o d s t a w i e w ł a s n y c h w a rt ośc i w z g l ę d n e j c z ą s t k o w e j m o l o w e j e n ­ talpii wo dy w w o d n y c h r o z t w o r a c h a c e t a m i d u o b l i c z o n o a k t y w n o ś ć a, i w s p ó ł c z y n n i k ak t y w n o ś c i f Ł wody, p r ę ż n o ś ć pary w o dn ej nad wo dn ymi r o z t wor am i a c e t ami du oraz ich c i ś n i e n i e os mo tyc zn e. Z a n a l i z y z a l e ż ­ ności tych funkcji od s t ęż eni a a c e t a m i d u i t e m p e r a t u r y w y s n u t o wnio­ sek, o n i e w i e l k i m n i s z c z ą c y m w p ł y w i e a c e t a m i d u na s t r u k t u r ę wody.

Cytaty

Powiązane dokumenty

Tematem tych relacji są przede wszystkim, podobnie jak w rozdziale poprzednim, okoliczności powstania, zamknięcia, zburzenia lub spalenia cerkwi i kaplic oraz ich odbudowa,

Delft University of Technology Minecraft Simeon Nedkov http://blog.ndkv.nl/participatory-urban-planning-with-minecraft/..

In order to confirm the proposed reaction mechanism and to explain the experimental results, geometries of the stationary points (i.e., reagents, products, intermediates, and

Kompromis ten polega na przyjęciu takiego stopnia szczegółowości projektu zmiany programu funkcjonowania instytucji oraz takiego stopnia szczegółowości sposobu wdrażania

Oroby znajdująoe się blisko powiersohnl były tak bardao zni­ szczone, że na obeonym atapla /przed wyklajeniem ceramiki/ nie da się wychwyoió ewentualnych różnlo w materiale

liczne ułamki naczyń tej kultury znajdywano na całej badanej przestrzeni przede wszystklem w ja­ mach paleniskowych.. W jamach z naczyniami zapasowymi atały oałe

Badania dały o wiele pełniejszy obraz stanowiska /cytowanego już w l i ­ teraturze/ niż posiadaliśmy dotychczas^ Wskazały też na celowość dokład­ niejszych innych