• Nie Znaleziono Wyników

Effectiveness of Stochastic Dominance in Financial Analysis

N/A
N/A
Protected

Academic year: 2021

Share "Effectiveness of Stochastic Dominance in Financial Analysis"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA O E C O N O M IC A 194, 2005

G ra ży n a T rzp io t*

EFFECTIV EN ESS OF STO CH ASTIC D O M IN A N C E IN FINANCIAL ANALYSIS

Abstract

I o rtfo lio analysis can be regarded as a p ro b lem o f ch oosing the best investm ent project lro m all possible investm ents. I his choice dep en d s on, the u n iq u e for each investor, utility fu n ctio n an d the d istrib u tio n оГ the re tu rn оГ the investm ent p ro ject. U nlike M V criterio n , SD c riterio n is o p tim a l fo r a class o f utility fu n ctio n and a d d itio n ally we e la b o rate with all value o f the re tu rn o f the investm ent project. W e will p resen t the resu lts o f analysis the p ro p e rties ol the op tim al efficient set according S I) criteria fo r asy m m etric d istrib u tio n .

Key words: asym m etric d istrib u tio n , stochastic do m in an ce criterio n , efficient set.

I. IN T R O D U C T IO N

P o rtfolio analysis poses the problem o f choosing o f the best prospect from all possible alternative random prospects (portfolio). T his selection depends on the investo r’s utility function and on prob ab ility d istribution o f the prospects. In general the analysis proceeds in tw o steps. F irst for a g ro u p o f investor having the sam e class o f utility fun ctio n all possible alternative random prospects we divide in two sets: efficient set and inefficient set. T h e set arc constructed so th a t for any p ro sp ect G in the inefficient set exist at least one prospect F in efficient set w ith the p ro p erty th a t no investor prefers G to F and there is a t least one investor w ho prefers F to G. Secondly, an individual investor chooses his m ost preferred portfolio from an efficient set according his individual utility function.

In this p ap e r we deal w ith characterizatio n o f optim al efficient set. T he efficient set is optim al when it is a subset (n ot necessarily p ro p e r) o f every

Professor, D e p a rtm e n t o f Statistics, U niversity o f E conom ics in K atow ice.

(2)

possible efficient set. Each no p roper subset o f an optim al efficient set is a subset (n o t necessarily proper) o f every possible efficient set. M arkow itz (1952) and T o b in (1958) introduce M V criterion (M V - m ean variance) for characterize an efficient set. A ccording to this criterion, prospect belong to efficient set if there no o th er prospect with the sam e or larger m ean and a sm aller variance o r the sam e o r sm aller variance and a larger m ean. T he efficient set is optim al if cither the class o f utility function is q u ad ratic o r prospects arc norm ally distributed. L im itations o f q u a d ra tic utility function have been discussed by: P ra tt (1964), A rrow (1965), M anoch and Levy (1970). T h e rcccnt em pirical study (M andelb ro t, 1963; F am a, 1965) suggests th a t the d istrib u tio n o f stock price, the area in which p ortfo lio analysis has been applied - arc essentially non-norm al.

S tochastic d om inance as a criterion in po rtfolio analysis was introduced by Q u irk and S aposnik (1962), F ish b u rn (1964), H a d a r and Russelll (1969), H an o ch and Levy (1969, 1970) and m any m ore. In co n tra st to efficient set for criterion M V and the efficient set for SD criterion is optim al for w hole class o f utility functions (n ot only for q u a d ra tic one). A d dition ally SD criterion ulilizes all inform ation in th e probability d ist­ ributions. T h ere arc m any em pirical w orks describing relatio n sh ip between the op tim al efficient set for [ /, and U 2, the efficient set for criterion MV and the efficient set for SD criterion. In this paper we derive p aram etric criteria fo r optim al efficient set when we have a set o f prospects with asym m etric distributions.

II. S O M E T H E O R E M S O N S T O C H A S T IC D O M IN A N C E

Definition 1. F o r two random variables X and У with d istributions F and G, we say th a t X F S D У if and only if

F ( x ) ^ G ( x ) for all x e R .

Definition 2. F o r two random variables X and У with d istrib ution s F and G, we say th a t X SSD У if and only if

t t

J F (x )d x ^ J G (x)dx lo r all t e R ,

— CO — 00

if b o th integrals exists.

Definition 3. U l is th e set o f all n o n -d c crc asin g u tility fu n c tio n [ /, = {u: u! 0}.

(3)

Definition 4. U 2 is the set o f all non-decreasing and concave utility function U 2 = {m: u' ^ 0, u" ^ 0}.

Definition 5. F o r tw o prospects X and У with d istrib u tio n s F and G, an investor with utility function и prefers F if and only if

Е (« (Х ))> Е (ы (У )).

Definition 6. F o r tw o prospects X and У with d istrib u tio n s F an d G, X dom in ates У in U, a class o f utility function if and only if

Е (Ы(Х ))^ Е (Ы (У )),

with a strict inequality for som e u.

Definition 7. A n efficient set for a class o f utility fu nction U is defined as a set o f prospects with the property th a t for any p rosp ect G outside the set, th ere exists a prospect F in the set, which do m in ates G in U.

Definition 8. A n efficient set is optim al if and only if n o p ro p e r subset o f it is efficient.

Definition 9. T h e M V efficient set is defined as a set o f prospects with the prop erty th a t for any prospect G outside the set, there exists a prospect F in the set such th a t

Е ( Х ) ^ Е ( У ) and И * К И У )

w ith a t least one strict inequality (the existence o f integrals is assum ed). Definition 10. T h e F S D efficient set is defined as a set o f prospects w ith the prop erty th a t for any prospect G outside the set, there exists a prospect F in th e set such th a t F F S D G.

Definition 11. T h e SSD efficient set is defined as a set o f prospects with the p ro p e rty th a t fo r any p rospect G outside the set, th ere exists a prospect F in the set such th a t F SSD G.

T he follow ing theorem s can be used to characterize th e optim al efficient set for U 1 and U 2.

Theorem 1. F o r tw o ran d o m variables X and У with d istrib u tio n s F and G. R an d o m variable X dom inates У by first stochastic d o m in ance (X F S D

У), if E ^ X ) ) ^ Е(ы(У)) in U i (the existence o f integrals is assum ed). Theorem 2. F o r tw o ran d o m variables X and У w ith d istribu tio ns F and G. R an d o m variable X dom inates У by second stochastic d o m in an ­ ce (X SSD У), if E(u(Ar)) ^ Е (ы (У )) in U 2 (the existence o f integrals is assum ed).

(4)

Ш. EFFECT!V EN N ES ANALYSIS KOR ASYMMETRIC DISTRIBUTIONS

Wc derive param etric criteria for optim al efficient set when wc have a set o f prospects w ith asym m etric d istribu tio ns. Wc spccify efficient sets for b o th criterion and then we com pare it. T h e follow ing theorem specifics the optim al efficient set for gam m a distrib utio n.

Theorem 3. Let F aj3 be a family o f gam m a d istrib u tio n with positive p aram eters a and ß the density functions

fa ,ß(x) = (a.ß/ r ß ) e ' axx ß~ l , x > О T hen:

(a) F ^ p F S D F ^ j if and only if a 1 < a2, (a') F Iup SSD F ^ p if and only if ol1 <ol2, (b) F ei/Ji FSD F aJj if and only if ß l > ß 2, (b') Faßi SSD F aJi if and only if ß t > ß 2,

(c) FaiJi F S D Fai ßj if and only if atj ^ a 2 and ß { ~^ß2 w ith at least one strict inequality,

(d) J*"«,,/», SSD F I|JSj if and only if ß l /ß 2 ^ m ,d x ( l,a .l /oc2) with strict inequality a t least when a j a 2 = 1.

L et the prospect have gam m a distribu tion with param eters (a, ß) then any prosp ect can be identified by corresp on din g values (a, ß). A ccording to a) and a') for tw o prospects with gam m a d istrib ution s, which differs only by p aram eter a the one with the sm aller a is preferable. Similarly according to b) and b') for two prospects with gam m a d istribu tio ns, which differs only by p aram eter ß, and a is the sam e for b o th prospects, the larger ß is preferable. U tility function, on which the preference is based, can be chosen arbitrarily from U l or U 2. As the m ean and the variance o f a prospects with gam m a distributions with param eters (a, ß) arc respectively E X = ß/u. and D 2X = Д/а2, it follows th a t in either case - prospects differing in a o r ß, the preferred prospects has the larger m ean and the larger variance. F o r any risk averters interpreting variance as a m easure o f risk, increasing m ean o f the prospect com pensates larger risk.

If we have tw o prospects differing in b oth p aram eters, then from c) we have th a t for all non-decreasing utility function, the preferred prospect should n o t have either the larger a or sm aller ß. I f one o f them has both the larger a and the larger ß, then no preference can be established. These conditio ns can be relaxed if we consider a risk averse utility function (a class oí D A R A functions). In this ease form d), prospect with th e sm aller ß is

(5)

never preferred o r prospect with the larger a is preferred only w hen it is com pensated by increased ß.

The optimal and MV cfficicnt set

If the prospects differs only in a, then from a) and a') the F S D efficient set and the SSD efficient set consist only the prospects with the sm allest a. H ence, the optim al efficient set for utility function from U t o r U 2 consist only one prospect. As m ean and variance o f the prospect with param eters (a, //) arc respectively E X = /У/а and D 2X = /ľ/ а 2, so M V efficient set consist all possible prospect.

Sim ilarly, if the prospects differs only in ß from b) and b'), the optim al cfficicnt set for utility function from i / 1 o r U 2 con tain only one prospect with the largest ß, but all prospects belong to efficient set for M V criterion. In case, if prospects differ only one p aram eters, a or ß, optim al efficient set for t/ ,j o r U 2 arc identical and they are a subset o f M V efficient set.

S uppose th a t prospects differs b oth in a and ß. T h en according c) p rospect belong to the FSD efficient set if and only if, there is no other prospect with the sam e o r the sm aller a and the larger ß o r the sam e or the larger ß and the sm aller a. T hus, the optim al efficient set for U l can co n tain m o re th an one prospect. The optim al cfficicnt set is a subset of the M V efficient set.

Let as consider the g roup o f investors from U 2 an d the prospects differs in both a and ß. T hen according part d) SSD cfficicnt set can be characterised in the follow ing way. F o r any tw o d istribution s F a< ßi an d Fa ß , F^ ß eli­ m inates Fat'P2 from SSD efficient set if and only if

ß j ß 2 > m a x (l, a j a 2) with strict inequality if a j a 2 = 1.

As

E FJ X ) = ß l * and

VFJ X ) = ßja.2 F aißt elim inates F ^ ßj from the M V efficient set if

(6)

/V « i > A 2/ a 2 and

ß l l* 2l> ß 2l a 2

with a t least one strict inequality. H ow ever, if' these co n d itio n hold, we m ust have:

ß i l ^ i ^ ß z l^ i anc^ a i > a 2 o r

ß ilß 2 > m a x (l, a j / a j ) and a l > a 2.

F rom criterion M V we have SSD criterion, but we have n o t the inversion. W e can observe this relation on the example when < a 2 and ß 1/ß 2 '^ m a .x (\, a j a j ) . T h e M V efficient set contains the optim al efficient set for U 2. As an exam ple we choose a prospect with gam m a d istrib u tio n w ith p aram eters (a, ß) defined as:

0 < a 0 < a < < oc, and

0 < ß o < ß < ß l < c c .

Efficient set for SSD criterion contains only one p ro sp ect F aaßi, bu t the M V efficient set contains prospect such a th a t

/? = /?i, a 0 < a < a j , and

a = a , , ß Q < ß < ß v

T h e M V efficient set includes no t only th e optim al efficient set for U 2, bu t can be larger.

Theorem 4. Let F ap be a family o f beta d istrib u tio n with positive p aram eters a an d ß the density functions

(7)

Then:

(a) p F S D FajJ if and only if < a 2, (a') F ^ ß SSD Faj ß if and only if a l < a 2, (b) F aJt F S D F a>ßi if and only if ß Y > ß 2, (b') FaPi SSD F aJi if and only if ß t > ß 2,

(c) Fai ßt F S D F„ußi if and only if a , < a 2 and ß 1 ~^ß2 with at least one strict inequality,

(d) Fai ßt SSD F X iPj if and only if ß i lß 2 ^ m a x ( l , a , / a 2) with strict inequality a t least when a j a 2 = 1.

T he m eth o d o f analysis between the various optim al and the M V efficient set are the sam e when the prospect has gam m a d istrib u tio n . T his theorem describes efficient set for F S D and SSD criterion. As an ap plication of theorem 3 we have the follow ing results:

Theorem 5. Let F„i/} be a family o f %2 d istrib u tio n in real positive param eters ß the density functions

f ß(x) = x > 0

Then:

(a) F Pi F S D F ft if and only if ß l > ß 2, (b) F ßi SSD F ßj if and only if ß t > ß 2.

T h e p ro o f is based on following relation th a t X / 2 is a gam m a distribution w ith param eters a ' = l, ß' = ß/2. A ccording to this theo rem , either U l o r U 2, if the p rospect has x 2 distribution w ith p aram eter ß, then the p ro sp e c t w ith th e larg est ß is th e m o st p re fera b le. O p tim a l efficient sets fo r l / j an d U 2 have only one pro sp ect. T h e p ro sp e ct w ith the largest p aram eter ß has the largest m ean and variance. A ccording the M V criterion all prospects belong to this efficient set. T h e M V efficient set includes the optim al efficient set.

T h e m eth o d used before we can a d o p t for the follow ing th eorem , which characterizes the optim al efficient set for the prospect w ith F -distribu tion .

Theorem 6. L et Flß be a family o f F -d istrib u tio n in real positive param eters a an d ß the density functions

= Г {(а + /Э/2}«{(«//У)х}<«/2>-1 Г(а/2)Г(Д/2)/Г{ 1 + (a//?)x}W2)/2 A ssum e th a t E FaJj(X ) exists ( ß > 2 ) then:

(8)

(a) F Xi'ß SSD FX]J if and only if < x ,> a 2, (h) F ^ Pi SSD FaJi if and only if ß v > ß 2.

If prospect have F distribution with param eters a and ß, then we c a n ’t in sim ple w aypoint ou t the conditions for the optim al sets cither [ / , or U 2. H ow ever, if we consider only U 2, the class o f risk avertcrs, and to the prospects with the sam e ß then the largest a is preferable (p art a)) and considering prospects with the same at, the sm allest ß is preferable (p art b)). It can be show n th a t the prospects with the largest a and ß, when a = ß, have the sam e m ean as an o th er prospects, but prospects the smallest variance. So, if prospects have the sam e p aram eter ß, the M V efficient set and optim al efficient set for U 2 arc identical. In c o n tra st, if prospects have the sam e p aram eter a, th en the one with the sm allest p aram eter ß, which belong to optim al efficient set for U 2, has not only the largest m ean, but also the largest variance. T he M V efficient set co ntain s all prospects and it is m uch largest th an optim al efficient set. In the case th en ß arc bigger th an 4 the variance does not exist and this co m parison are n o t valid.

R E F E R E N C E S

A rro w K .J. (1965), A spects o f the Theory o f R isk Bearing, Y rjo Ja h sso n in S aatjo , H elsinki. B radley M .G ., L eh m an D .E . (1988), In stru m en t effects and sto ch astic d o m in an ce, Insurance

M a th em a tic a n d Econom ics, 7, 185-191.

F a m a E .F . (1965), T h e beh av io u r o f stock m ark e t prices, Journal o f Business, 38, 34-105. F ish b u rn P .C ., L avallc 1. (1995), Stochastic do m in an ce and u ndim ensional grids, M anagem ent

Science, 20, 3, 513-525.

F ish b u rn P.C . (1964), Decision and Value Theory, Jo h n W iley and Sons, N ew Y ork.

F is h b u rn P .C . (1990), Stochastic dom in an ce and m om ents o f d istrib u tio n s, M athem atics o f O peration Research, 5, 1, 94-100.

lla d a r J., R ussell W .R . (1969), R ules fo r ord erin g u n certain p ro sp ects, A m erican Economic R eview , 59, 25-34.

H a n o ch G ., L evy H . (1969), T h e efficiency analysis o f choices in v olving risk, Review o f Econom ic Studies, 36, 335-346.

H a n o c h G ., L evy H . (1970), Efficient p o rtfo lio selection w ith q u a d ra tic a n d cubic utility fu n c tio n , Journal o f Business, 43, 181-189.

Levy H . (1996), In v e stm en t D iversification an d Inv estm en t S pecialization a n d the Assum ed H o ld in g P erio d , A pplied M athem atical Finance, 3, 117-134.

Levy H ., K ro ll Y . (1970), O rd e rin g dom in a n ce w ith riskless assets, Journal o f Financial and Q uantitative A nalysis, 11, 743-773.

M an d e lb ro t B. (1963), T h e variation o f certain speculative prices, Journal o f Business 36, 394-419. M a rk o w itz H .M . (1952), P o rtfo lio selection, Journal o f Finance, 7, 77-91.

M a rk o w itz H .M . (1987), M ean-Variance A nalysis in Portfolio Choice a n d C apital M arkets, Blackw ell, O xford.

(9)

Q uirk J.P ., S ap o sn ik R . (1962), A dm issibility and m easu rab le utility fu n ctio n s, Review o f Econom ics S tu d y , (F eb .) 29, 140-146.

S k ó m ik A ., I rzask alik Г., T rz p io l G . (1999), D om inacje sto ch asty czn e w teorii p o rtfela akcji n a przykładzie G iełdy P apierów W artościow ych w W arszaw ie, Badania Operacyjne i D ecvzie

3 -4 , 5 -19. y J '

l obin J. (1958), L iq uidity p reference as beh av io u r to w ard s risk , R eview o f E conom ic Studies 25, 65-86.

1 rzaskalik Г., 1 rz p io t G ., Z aras K. (1998), M odelowanie preferencji z w ykorzystaniem dominacji stochastycznych, A E , K atow ice.

frz p io t G . (1999), A naliza szeregów czasow ych z w ykorzystaniem stoch asty czn y ch relacji, Prace N a u ko w e A E W roclaw, 817, 189-196

T rzp io l G . (2002), M u lticritcrio n analysis based on m arginal co n d itio n al sto ch astic d o m inance in financial analysis, [in:] M ultiple Objective and G oal Program m ing, ed. 'Г. T rzaskaJik, J. M ichnik, Ser. A dvances in Soft C om p u tin g , S pringer - V erlag, N ew Y o rk , 401-412. ’

Grażyna Trzpiot

A N A L IZ A E F E K T Y W N O Ś C I D O M IN A C JI S T O C H A S T Y C Z N Y C H W Z A S T O S O W A N IA C H F IN A N S O W Y C H

Streszczenie

A n aliza p o rtfelo w a staw ia problem w yboru najlepszego spo śró d m ożliw ych losow ych p ro jek tó w inw estycyjnych. W ybór len zależy od, jedynej d la każd eg o in w esto ra, funkcji użyteczności o ra z od ro z k ła d u p raw d o p o d o b ień stw a ro zw ażan ej inw estycji. W niniejszym o p raco w an iu sk o n cen tro w an o się n a sc harakteryzow aniu zbioru o p ty m aln y ch efektyw nych inwestycji. W o d ró żn ien iu od zbioru efektyw nych inwestycji zgodnego z k ry teriu m m om entów M V , zb ió r efektyw nych inwestycji zgodny z kryterium SD jes t o p ty m aln y d la całych ogólnych klas funkcji użyteczności (nie ty lk o d la funkcji k w adratow ej). D o d a tk o w o k ry teriu m SD w ykorzystuje w szystkie w artości ro zkładu p raw d o p o d o b ień stw a p ro jek tu inw estycyjnego. Wiele p ra c em pirycznych o m aw ia zależności pom iędzy zbiorem efektyw nych inw estycji z kryterium m o m en tó w M V a zbiorem efektyw nych inwestycji zgodnym z k ry teriu m SD . W tym arty k u le p rzed staw io n e zostały wyniki a naliz w ybranych typów ro z k ła d ó w asym etrycznych.

Cytaty

Powiązane dokumenty

EDUKACJA BIOLOGICZNA I ŚRODOWISKOWA | ebis.ibe.edu.pl | ebis@ibe.edu.pl | © for the article by the Authors 2013 © for the edition by Instytut Badań Edukacyjnych 2013

Konieczność krzyżowa- nia się osobników zakażonych tym samym szczepem Wolbachia, na skutek powstania bariery rozrodczej, może zapoczątkować specjację (ryc. 5) (Futuyma, 2008;

Decreasing a cut-in speed could be essential to increase an energy generation and could cause a wider use of the wind turbine, especially in Poland with insufficient windy

organ egzekucyjny, który jest prawnym posiadaczem weksla od czasu jego zajęcia, może wykonać zwrotne poszukiwanie przeciwko indosantom, wystawcy lub innym dłużnikom wekslowym 45..

26 W związku z tym organy administracji podzielono na związkowe (sojuznye) i zespolone (ob′′edinennye).. W sensie deklaratywnym WCIK miał też zawsze określać zakres

Równie częstym zaburzeniem perspektywy pojawiającym się na zdjęciach jest zjawisko zbiegania się pionowych linii.. Przypuśćmy, że

na LubelszczyŸnie i w pó³nocnej Polsce odbêd¹ siê dwa wys³uchania publiczne na temat gazu z ³upków, do których zaproszeni bêd¹ mieszkañcy tych regionów,

Cultural knowledge is inherently integrated, so the problem of content de- velopment of cultural training needs justification form of integration [Клепко