• Nie Znaleziono Wyników

Elastic scattering in geometrical model

N/A
N/A
Protected

Academic year: 2021

Share "Elastic scattering in geometrical model"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Elastic

scattering

in

geometrical

model

Zbigniew Plebaniak

a,

,

Tadeusz Wibig

a,b

aNationalCentreforNuclearResearch,AstrophysicsDivision,CosmicRayLaboratory,ul.28PułkuStrzelcówKaniowskich69,90-558Łód´z,Poland bFacultyofPhysicsandAppliedInformatics,UniversityofŁód´z,ul.Pomorska149/153,90-236Łód´z,Poland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received20May2016

Receivedinrevisedform31August2016 Accepted31August2016

Availableonline6September2016 Editor:L.Rolandi Keywords: Elasticscattering Opticalmodel Crosssection Cosmicrays

Theexperimentaldataonproton–protonelasticandinelasticscatteringemergingfromthemeasurements attheLargeHadronCollider,callsforanefficientmodeltofitthedata.Wehaveexaminedtheoptical, geometricalpicture and wehave foundthe simplest,lineardependence ofthismodel parameterson thelogarithmoftheinteractionenergywiththesignificantchangeoftherespectiveslopesatonepoint corresponding totheenergyofabout300GeV.Thelogarithmicdependenceobservedathighenergies allows one to extrapolate the proton–proton elastic, total(and inelastic) cross sections to ultra high energiesseenincosmicrayseventswhichmakesasolidjustificationoftheextrapolationtoveryhigh energydomainofcosmicraysandcouldhelpustointerpretthedatafromanastrophysicalandahigh energyphysicspointofview.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The process of elastic scattering of hadronshas been studied experimentallyinawideenergyregionformorethanhalfa cen-tury.Inthe1960’swiththeavailablecenterofmass(c.m.s.) ener-giesof

s

=

4–6GeV itwasfoundthat theconventional “diffrac-tion cone” mechanism failed what was clearly visible at larger transferredmomenta.Additionaldataattheenergies of

s

=

19, 20,23, 28, 31, 45, 53, 62 GeV were published in the middle of 70’s. At the end of the previous millennium the range of avail-ableenergiesends around2TeV. Onlyrecentlytheresultsofthe TOTEMcollaborationattheLHConelasticppscatteringprocesses at

s

=

7TeV werepublished[9,12].

Themeasurements attheLHC at7TeV c.m.s.collisionenergy setthenextpoint onanenergyscalewheretheoptical modelof hadrons can be examined. The observed so far evolution of the protonshadowprofileandthe energydependenceofthe param-eters describing its shape could be extended towards the limit of the ultra high-energy cosmic rays (UHECR), where important questionsofphysicsandastrophysicsarestillunanswered.Itis ex-pectedthat theanswerscould be linked (also)to some extentto thevalueoftheproton–protoncrosssectionsataround1020eV of laboratoryenergy.

*

Correspondingauthor.

E-mailaddress:zp@zpk.u.lodz.pl(Z. Plebaniak).

Manyphenomenologicalmodelsofprotonhavebeenproposed. As itissaid by DremlininRef. [39] [....]“Mostofthemaspiretobe ‘aphenomenologyofeverything’relatedtoelasticscatteringofhadrons inawideenergyrange.Doingsointheabsenceofapplicablelawsand methodsofthefundamentaltheory,theyhavetousealargenumber ofadjustableparameters.Thefreeparametershavebeendeterminedby fittingthemodelresultstotheavailableexperimentaldata.” [...] Indepen-dentoftheirsuccessandfailure,wearesurethat,“inthelongrun,the physicalpicturemaybeexpectedtobemuchmoreimportantthanmost ofthedetailedcomputations”. (thelastcitationisfromthe1969 pa-perbyChengandWupublishedinthefirstvolumeofPhys.Rev. D

[36]).

2. Phenomenology of the scattering process

The elasticscatteringamplitude F

(

s

,

t

)

describingthe proton– protonscattering

d

σ

el

d

|

t

|

=

π

|F

(

t

)

|

2

,

(1)

couldbeparameterizedinmanywaysstartingfromthesimple ex-ponential exp

(

Bt

)

proposedalreadyin1964by OrearinRef.[54]. Newdataallowsformoresophisticatedform. Itwas proposedby BargerandPhillips[56]in1973intheform

F

(

s

,

t

)

=

i



A

(

s

)

e12B(s)t

+



C

(

s

)

eφ(s)e12D(s)t



,

(2)

whichcanbeusedfor7TeVLHCscatteringdataexplicitly[45,50], ormodified,asproposed,e.g.,inRef.[42]

http://dx.doi.org/10.1016/j.physletb.2016.08.064

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Table 1

Theextrapolatedcrosssectionsinmbathigherenergies.

Energy (√s) 14 TeV 24 TeV 30 TeV 57 TeV 95 TeV

Fagundes et al.[41] 108.6±1.2

Bourelly et al.[27] 103.63±1.0

Petrov et al.[55] 106.73

Block, Halzen et al.[26] 107.30

Islam et al.[48] 110.00 Jenkovszky et al.[50] 111.00 Block[22] 133.40±1.6 AKENO[53] 104±26 124±34 Fly’s Eye[18] 120±15 AUGER[3] 133.20±13 Telescope Array[1] 170.00±50 This work 105.56 115.8 120.33 132.66 143.09 F

(

s

,

t

)

=

i



A

(

s

)

e12B(s)tG

(

s

,

t

)

+



C

(

s

)

eφ(s)e12D(s)t



,

(3)

orinthe numberofpossibilities inspected byKhoze, Martinand RyskininRef.[51].

Adifferentmodificationwas proposed by Menonand collabo-ratorsinRef. [35]who considertheparameterizationofthe scat-teringamplitudeasasumofOrearexponentials[54]:

F

(

s

,

t

)

=

n



i=1

α

ieβit

.

(4)

Theyobtained,withthesummationofuptosixcomponents, per-fect fits to the ISR data from 19.4 GeV to 62.4 GeV [40]. Their ‘model-independent’ analysis of elastic proton–proton scattering data [16,17,40]was extended to higher energies andthe param-eters

α

i and

β

iwereexpressedasfunctionsoftheavailablec.m.s.

energy.PredictionsforLHCweregiventhereandarelisted inthe

Table 1.

On the other handthe absorption processes can be naturally studiedinageometricalframework.Thecorrespondencebetween interactiongeometryandthemomentumtransferspaceisdefined withthe Fourier transform withthe help of the profile function

(

s

,

b

)

(ortheeikonal



)

F

(

s

,

t

)

=

i



0 J0



b

−t



(

s

,

b

)

b db

=

=

i



0 J0



b

t



{

1

exp [

−(

s

,

b

)

]

}

b db

.

(5)

Thisgivesthepossibilitytoapplytheform-factorformalismtothe hadroninteraction

(

s

,

t

)

=

C

(

s

)

Gp

(

t

)

Gp

(

t

)

whereC

(

s

)

worksfor

theabsorptioncoefficient.

(

s

,

b

)

= (

1

i

α

)



0 J0

(

qb

)

G2p,E

(

t

)

f

(

t

)

f

(

0

)

q dq

,

(6)

(q

=

t). This formalism has beenproposed anddeveloped by Bourrely,SofferandWusincelate70’s[28–30]using

Gp,E

(

t

)

=

1



1

t

/

m21

 

1

t

/

m22

 ,

f

(

t

)

=

f

(

0

)

a 2

+

t a2

t

.

(7)

The initial simple model withsix free parameters (at high ener-gies) becomes atthe LHC energies much more complicated[31].

Theasymptoticformhasbeeneventuallyestimatedandcompared withthenumericalresultsinRef.[27].

The pure geometrical picture of protonscattering andthe re-lation of the scatteringamplitude to the transmissioncoefficient (

||

)appearsalreadyin1968inthepaperbyChouandYang[37]. The main point there is to find the (mean) opaqueness, which maybe,ingeneral,acomplex-valuedfunction,forthegivenvalue of the impact parameter. It is quite natural to assume that the hadron hastheinternal structuredefinedby thedensityfunction

ρ

(

x

,

y

,

z

)

.Taking z asacollisionaxiswecandefineahadron pro-file D

(

b

)

=



−∞

ρ

(

x

,

y

,

z

)

dz

,

(8)

andfortwocollidinghadronstheconvolutionis

(

b

)

= (

b

)

=

i Kpp



−∞



D

(

b

b

)

D

(

b

)

d2b

.

(9)

Any particular model could be fully characterized by the gener-alized opacity: the eikonal function



(in the impact parameter space) as itis written in Eq.(5).Its particular shape can be ob-tainedusingdipoleelectromagneticformfactorslikeitisdone,for example,inRef.[37]similartotheonegiveninEq.(7).

Another interesting way of introducing



is to use the evo-lution ofthe imaginarypart ofthe profilefunction

(

s

,

b

)

=

1

exp [

−(

s

,

b

)

] whichcouldbe, accordingto Ref.[34],determined using the nonlinear differential logistic equation. The concept is that it includes, in a natural way, saturation effects expected as energygrows.Thisassumptionleadsto

(

s

,

b

)

=

1

e(bb0)/γ

+

1

,

(10)

where b0 and

γ

areproton radial scaleparameters whichdefine the cross section scaling properties. A very similar profile func-tion was foundasa specialcaseofthemodel ofRybczy ´nskiand Włodarczykwhere shapesofcollidingprotons aredefinedby the event-by-eventfluctuationsoftheradiusoftheprotoninthe‘black disk’ picture [57]. Ifthefluctuationsare negligiblethe blackdisk limitisretained,whileforthecrosssectionfluctuationsdescribed bythegammadistribution,anotherextremeisobtained:the Gaus-sianprotonprofile.

Introducing new scaling variable b

ˆ

=

b

/

b0

(

s

)

to Eq. (10) the protonprofilesatisfiesthe(modified)geometricalscaling(if

γ

/

b0 isconstant) d

σ

el dt

b 2 0



f

|t|

b20



2

,

(11)

(3)

andeventuallythescatteringpicturetendstotheblackdisklimit when the energy goes to infinity (b0

→ ∞

):

σ

tot.

σ

el.

b20 (

σ

el.

/

σ

tot.

=

1

/

2).

InthepaperbyIslam,LuddyandProkudin[49]theprofile func-tion

(

s

,

b

)

waschosenarbitrarily[47]

(

b

,

s

)

=

g

(

s

)

1 1

+

e(bb0)/γ

+

1 1

+

e−(b+b0)/γ

1

.

(12) ThecomparisonofEq.(12)withEq.(10)showsaninteresting sim-ilarity. The results of the Islam model agree withthe measured data above ISR energies quite well [49], however, at 7 TeV the agreementisnotasperfect[44].

Itisknownfora longtime,that thegeometricalscalingholds belowISR energies(

s

<

20GeV).TheanalysisbyBrogueira and DiasdeDeus[34]showsthatstartingfromthehighestISRenergy theprotonappearstobegettingblackerandedgieralready,inSPS at

s

=

200GeV itbecomesquiteclearandthistendency contin-uouslybecomesmorevisibleastheenergygrows.

Inthe series of papers ofBlock and co-workers there is pro-posedthe “Aspenmodel” [21,25].The eikonal function



in this modelisasumoffourseparatecomponentsrelatedtoindividual

qq gg, gq interactionsandtheoddeonexchange

(

s

,

b

)

=

i

σqq

(

s

)

A

(

b

,

μqq

)

+

σgg

(

s

)

A

(

b

,

μgg

)

+

+

σqg

(

s

)

A

(

b

,

μqg

)

+

σodd

(

s

)

A

(

b

,

μodd

)



,

(13) with A

(

b

,

μ

)

K3

(

μ

b

)

. The model is used mainly for the esti-mation andextrapolationof thetotal (elastic andinelastic) cross sectionsto extremelyhighenergies. Its agreementwith high en-ergyscatteringdataisnot perfect,asitisshownin[24] forLHC 7 TeV.ThemodifiedBesselfunctionappearsintheAspenmodelas aresultof convolutionsofthe hadrondensities distributedagain

[37]inthewaywhichleadstodipoleelectromagneticformfactor fromsimilartotheoneshowninEq.(7).

3. The modification of the simplest model

The predictions for the simplest models of hadrons are well known (see, e.g., Ref. [23]). From the geometrical point of view, thegeneralpictureissuchthatprotonsbecomeblacker,edgierand larger(BEL)[46]. Oneofthesimplestandquiteobvioushadronic matterdistributions istheexponentialone

ρ

h

(

r

)

=

m3h

8

π

e

mh|r|

.

(14)

Thecomplexformoftheeikonalcouldbedefinedusingthe

λ

fac-tor which defines the ratio of the real to the imaginary part of the



λ(

s

)

=

 ((

b

,

s

))

((

b

,

s

))

.

(15)

Theenergydependenceof

λ

hasbeenknownquiteaccuratelyfor alongtime anditwassmoothlyparameterized,e.g.,byMenonin Refs.[40,52].Forthepresentcalculationwehaveslightlymodified thissolution.InFig. 1 ourdependency of

ρ

(

s

)

isshownin com-parisonwithselecteddata.

TheexponentialformofEq.(14)hasbeenusedinRef.[58]and the results of scatteringcross section were given there. In gen-eraltheagreementwiththedataisseenbelowandattheregion ofthefirstdip(

|

t

|

<

0

.

7 GeV2).The diffractive-likepictureofthe scatteringdifferentialcrosssectionisrathersatisfactorythere,but thedeficitofhighermomentatransfers(

|

t

|

>

1 GeV2)isthe essen-tialdefectofthesimple modelingeneral. Toobtain thesolution closer to the high p experimental distribution we have exam-inedaslightlymoresophisticatedhadronicmassdistribution: we

Fig. 1. Ratioofthe realandthe imaginarypartofthescatteringamplitude ρ=  (F(b,s)) / (F(b,s)).Solidcurveistheresultoftheparameterization ofλ(s)from Ref.[40,52]modifiedslightlybyususedinthepresentwork.Pointsrepresentdata from[6,8,11,14,43].

Fig. 2. Profilefunctionsforthreeenergies(√s=19GeV,546GeVand7TeV)used inthepaper.

haveusedinstead oftheone exponentialdistribution thesumof two withdistinct exponentsm1 andm2 anddifferent normaliza-tionfactorsc1 andc2.

ρ

h

(

r

)

=

1 8

π

c1m31em1|r|

+

c2m32em2|r|

.

(16)

ThefourparametersofthedistributionproposedinEq.(16)are thesubjectofthefittingprocedure. Thevaluesofm1 andm2 are notmuchdifferentfromeachother,aswellasthevaluesofc1and

c2andtheprofilesobtainedeventuallyfromEq.(14)andthese ad-justedusingEq.(16)arequitesimilar.Theprofilesobtainedinthe present work atthree specific and characteristic energies (low – 19GeV,high,themiddleSPS:546GeV,andrecentLHC7TeV)are shown,asexamplesinFig. 2.Presentedprofilefunctions

(

b

)

are describedbyfollowingequation:

(

b

)

=

1

e−(b)

,

(17)

where

(

b

)

iscalculatedusingEq.(9).

Multicomponentgeometrical modelsof highenergyscattering appearasaresultofthedecompositionoftheinteractingnucleon intoconstituentsofdifferentnature,whichcouldhave,thus, differ-entdistributionsontheimpactparameterplane.In“Aspenmodel” of Block and Halzen [26], interacting protons are compounds of quarks andgluons. This approachleads to the three (qq, gg and qg)differentpartsofthehighenergyeikonalprofilefunction,see Eq.(13).

Anotherideawhichleadstothetwocomponentsystemisthe one proposed by Bialas andBzdak [20]. The proton is there de-composedintoapairofaquarkandadiquark.Theaverageradius

(4)

Fig. 3. Thedifferentialelasticcrosssectionsfromourmodelforc.m.senergiesof19 GeV,546GeVand7TeVshownasafunctionofthe(|tσtot)according tothe suggestionofEq.(11)comparedwiththemeasurements[4,9,12,19,33].

ofthe diquark distributionis significantly largerthan that ofthe remaining single quark constituent. Thissimple idea isimproved by the additionof the realpart tothe forward scattering ampli-tudeandisexaminedby CsorgoandNemesinRef. [38]whereit isshownthatitcanbesuccessfullyappliedtotheLHCenergiesof 7TeV.

The other model ofIslam, Luddyand Prokudin[49] describes thehighenergyproton–protonscatteringassumingthat nucleons havethehard innercoreandthediffractive,softoutercloud.The amplitude isthesumofthehard core–corescatteringdominated athigh

|

t

|

valuesandthesoft,low

|

t

|

scatteringoftheoverlapping clouds.

4. Results

Proton profiles shown in Fig. 2 were obtained with the ad-justmentprocedureusingthedataofthedifferentialelasticcross sections.Wepayourattentiontoreproducethemain characteris-ticsofthemeasureddistributions:

– theslopeatthelowmomentumtransfer, – thepositionofthefirstdiffractivepeak,

– thebehavior afterthepeakandtheslopeathighmomentum transfers.

Theaccuracyoftheobtaineddatadescriptionforthethree charac-teristicenergiesisshowninFig. 3.Wehavepresentedourmodel predictionsofthedifferentialcrosssectiondistributionasa func-tion of the product of the value of the momentum transfer and thetotalcrosssectionwhichfollowstheideaofRef.[34]givenby Eq.(11).

Fourparametersm1,2 andc1,2 were foundfortenenergydata sets starting from

s

=

20 GeV, through five energies of ISR (23–62GeV)anSPSpointat546GeV,twoTevatronmeasurements at0.6and2TeV andtheLHCdatasetmeasured atc.m.s.energy of7 TeV. Allthe parameter valuesadjusted individually for each energy are given in Figs. 4 (a) and (b) as solid symbols. Recent LHC data obtained at the energy of 8 TeV are not included for thefittingprocedureofourmodelbecauseofthelowmomentum transferrange

(

0

.

029

<

|

t

|

<

0

.

195

)

[13]covered.Anyway,wetried to usethem forthe slope ofthe differentialelastic cross section determinationandtheresultisgiveninFig. 5.

Comparingthevaluesobtainedfordifferentenergies weseea clearregularity.TheresultsinFig. 4suggestasimpleformofthe low and high energy asymptotics for all the four parameters. It seemsthatthedependencetendstogetlinearinlogarithmicscale forallfourparameter cases.The linesare showninFig. 4 bythe

Fig. 4. Thevaluesofadjustedparametersm1,2 (a)andc1,2(b)areshownbythe solidsymbols.Dashedlinesshowasymptoticlinearenergydependencies(forhigh andlowenergies)ofallparameters.Solidlinesarethesmoothoverallenergy de-pendencieseventuallyadoptedfortheresultspresentedinthiswork(Figs. 2,3,5 and6).

Fig. 5. Calculated slopesoftheelasticdifferentialcrosssectionsasafunctionof interactionenergy.Lineshowsourmodelpredictions,pointsarefitstothe experi-mentalresultsfrom[3,4,7,10,13,19,33]intherangeof0.1<|t|<0.3GeV2. dotted lines. The relatively small number of high energy elastic scattering experiments providing differential elastic cross section distributions ofthequalityandrangegoodenoughforourmodel parameterestimationproceduredoesnotallowustomakestrong conclusions,buttheobtainedevidencelooksquiteimpressive. Ad-ditionally thegenuinecharacter oftheproposed parameterization is confirmed by the fact that the change from low to high en-ergy regime is located at approximately the same energy point. Thechancecoincidenceofsuchbehavior isratherunbearable.

(5)

Fig. 6. Valuesoftheelastic, inelasticand totalcrosssectioncalculatedwithour modelasafunctionoftheinteractionenergycomparedwiththemeasurements. Solidlinerepresentstotalcrosssection,dashedinelasticanddottedlineelasticcross sectionpredictions.PointsareexperimentalresultsfromRefs.[1–3,5,6,8,10,11,15,18, 32,43,53].

Theasymptoticdependenciesandthesmooth connections be-tweenthem showninall fourcasesin Fig. 4by the solidcurves wereusedtoobtainourmodelpredictionspresentedinFigs. 2,3, 5 and6.

Usingthevalues oftheparameters givenby thesolid linesin

Fig. 4somedetailedcharacteristicsoftheproton–protonscattering canbe obtained. Oneofthem isthelow

|

t

|

slope. Itcan be eas-ilyobtainedfrom published dataand we presentthem withour modelpredictioninFig. 5.

Themost importantcharacteristics ofthe proton–proton scat-teringaretheintegratedcrosssections(total,elasticandinelastic). WithourmodelandtheparametersasdescribedinFig. 4theycan becalculated.

ResultsaregiveninFig. 6.Ourmodelpredictionsarecompared therewiththedatafromacceleratormeasurementsandwiththe resultsobtainedbythecosmicrayexperiments:Fly’sEye[18],PAO

[3]and Telescope Array [1]. As it can be seen, the extrapolated modelpredictions arein agreementwithhigh-energy cosmic ray data.

Thenumerical modelpredictions forthe energies higherthan measuredsofaronesstarting fromtheLHC14TeV uptoUHECR energies,are givenintheTable 1.Theyarecompared withsome valuesexistingintheliterature.

5. Summary

Wehavedevelopedamodifiedsimpleopticalmodelofproton– protonscatteringwithfourmodelparameters,whichallowsusto describethehadronicmatterdistributionofcollidingprotons. Val-uesof all the parameters were adjusted to the elastic scattering datainthe widerange ofenergies fromstationarytarget experi-mentbelowISR to the7TeV energyofLHC

|

t

|

distributiondata. Usingthe eikonal parameterizationthe correctdescription ofthe totalandelastic crosssections,theelastic slopeandthe differen-tialelasticcrosssectionatlargevaluesofmomentumtransferhave beenfound.

However,the satisfactorydescription oftheexisting scattering datawasnotthemainresultofourwork.Wehavefound addition-allyasmooth andvery simplebehavior ofall parameter’senergy dependence.

Inparticular,wefound thatforthelow andthehighenergies thereareasymptoticregimeswhichseemtobelinearinthe loga-rithmicscaleoftheavailableinteractionenergy

s.Moreover,the changeofthelowenergytothehighenergyregimeisfoundtobe locatedforallthemodelparametersataroundthesamepointon theenergyscale–

s

=

300 GeV.Its more accurateestimationis

impossiblebecauseofthelackofthedatainthisparticularenergy range.

Thesefactsconstitutethesolidbasefortheextrapolationofthe scatteringcrosssectionsabove energiesavailablefromaccelerator measurements atpresent, up to the ultra-highenergies observed incosmicrays.

In agreement with “BEL” behavior our model shows that the proton becomes blacker and larger as the energy increases. In-creasing of c1 parameter which represents normalization of in-ner core of the proton shows that blackening is faster above

s

=

300 GeV. Other three parameters indicate also a slow in-creaseofhadronicradius.Thanks tothe newparameterizationof thehadronicmatterdistributionweobtainbetteragreementwith scatteringdifferentialcrosssectionacceleratordataforhigher mo-mentatransfersforallavailableenergies.

Using our model, we calculate the predictions for the pp

to-talcrosssectionat

s

=

14TeV,and57TeV,andtheyare

σ

tot pp

=

105

.

56mb and132.66mb,respectively.Fortheinelasticcross sec-tionstherespectivevaluesare:

σ

inel

pp

=

79

.

71mb and98.69mb.

Appendix A. Supplementary material

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttp://dx.doi.org/10.1016/j.physletb.2016.08.064.

References

[1] R.U.Abbasi,etal.,TelescopeArrayCollaboration,Measurementofthe proton-air crosssection with TelescopeArray’sMiddle Drumdetector and surface arrayinhybridmode,Phys.Rev.D92(2015)032007,http://dx.doi.org/10.1103/ PhysRevD.92.032007,arXiv:1505.01860.

[2] F.Abe,etal.,CDFCollaboration,Measurementoftheantiproton–protontotal crosssectionat√s=546and1800GeV,Phys.Rev.D50(1994)5550–5561, http://dx.doi.org/10.1103/PhysRevD.50.5550.

[3] P.Abreu,etal.,ThePierreAugerCollaboration,Measurementoftheproton-air crosssectionat√s=57 TeV withthePierreAugerObservatory,Phys.Rev.Lett. 109(2012)062002,http://dx.doi.org/10.1103/PhysRevLett.109.062002. [4] C.W.Akerlof,etal.,Hadron–protonelasticscatteringat50-GeV/c,100-GeV/c

and 200-GeV/c momentum,Phys. Rev.D14 (1976)2864, http://dx.doi.org/ 10.1103/PhysRevD.14.2864.

[5] G.J.Alner,etal.,UA5 Collaboration,Antiproton–protoncrosssectionsat200 and900GeVc.m.energy,Z.Phys.C32(1986)153–161,http://dx.doi.org/10. 1007/BF01552491.

[6]U.Amaldi,K.Schubert,Impactparameterinterpretationofproton–proton scat-teringfromacriticalreviewofallISRdata,Nucl.Phys.B166(1980)301–320. [7] N.A.Amos,etal.,E-710Collaboration, p p elastic¯ scatteringat√s=1.8TeV from |t|=0.034-GeV/c2 to0.65-GeV/c2,Phys. Lett.B247(1990)127–130, http://dx.doi.org/10.1016/0370-2693(90)91060-O.

[8] N.A.Amos, et al., E710 Collaboration, Measurementof ρ, the ratioof the real to imaginary part of the p p forward¯ elastic scattering amplitude, at

s=1.8-TeV,Phys.Rev.Lett.68(1992)2433–2436,http://dx.doi.org/10.1103/ PhysRevLett.68.2433.

[9]G.Antchev,etal.,TOTEMCollaboration,Proton–protonelasticscatteringatthe LHCenergyof√s=7 TeV,Europhys.Lett.95(2011)41001.

[10] G.Antchev,etal.,TOTEMCollaboration,Luminosity-independentmeasurement oftheproton–protontotalcrosssectionat √s=8TeV, Phys.Rev.Lett.111 (2013)012001,http://dx.doi.org/10.1103/PhysRevLett.111.012001.

[11] G. Antchev, et al., TOTEM Collaboration, Luminosity-independent measure-ments oftotal, elasticandinelasticcross-sectionsat√s=7TeV, Europhys. Lett.101(2013)21004,http://dx.doi.org/10.1209/0295-5075/101/21004. [12]G.Antchev,etal.,TOTEMCollaboration,Measurementofproton–protonelastic

scatteringandtotalcross-sectionat√s=7TeV,Europhys.Lett.101(2013) 21002.

[13] G.Antchev,etal.,TOTEMCollaboration,Evidencefor non-exponentialelastic proton–protondifferentialcross-sectionatlow|t|and√s=8TeV byTOTEM, Nucl.Phys.B899(2015)527–546,http://dx.doi.org/10.1016/j.nuclphysb.2015. 08.010,arXiv:1503.08111.

[14]C.Augier,etal.,UA4/2Collaboration,Aprecisemeasurementoftherealpartof theelasticscatteringamplitudeattheSppS,¯ Phys.Lett.B316(1993)448–454. [15] C.Avila,etal.,E811Collaboration,Ameasurementoftheproton–antiproton totalcross-sectionat√s=1.8-TeV,Phys.Lett.B445(1999)419–422,http:// dx.doi.org/10.1016/S0370-2693(98)01421-X.

(6)

[16] R.Ávila,S.Campos,M.Menon,J.Montanha,Phenomenologicalanalysis con-nectingproton–protonandantiproton–protonelasticscattering,Eur.Phys.J.C 47(2006)171–186,http://dx.doi.org/10.1140/epjc/s2006-02530-x.

[17] R. Ávila, M. Menon, Eikonal zeros in the momentum transfer space from proton–proton scattering: an empirical analysis, Eur. Phys. J. C 54 (2008) 555–576,http://dx.doi.org/10.1140/epjc/s10052-008-0542-5.

[18] R.M. Baltrusaitis, G.L. Cassiday, J.W. Elbert, P.R. Gerhardy, S. Ko,E.C. Loh, Y. Mizumoto, P. Sokolsky, D. Steck, Total proton–proton cross section at

s12 =30TeV,Phys.Rev.Lett.52(1984)1380–1383,http://dx.doi.org/10.1103/ PhysRevLett.52.1380.

[19] R.Battiston,etal.,UA4Collaboration,Proton–anti-protonelasticscatteringat fourmomentumtransferupto0.5-GeV2attheCERNSPScollider,Phys.Lett.B 127(1983)472,http://dx.doi.org/10.1016/0370-2693(83)90296-4,141(1983). [20]A.Bialas,A.Bzdak,Constituentquarkanddiquarkpropertiesfromsmallangle

proton–protonelasticscatteringathighenergies,ActaPhys.Pol.B38(2007) 159–168,arXiv:hep-ph/0612038.

[21]M.Block,Hadronicforwardscattering:predictionsforthelargehadroncollider andcosmicrays,Phys.Rep.436(2006)71–215.

[22] M.M.Block,Ultrahighenergypredictionsofproton-aircrosssectionsfrom ac-celeratordata:anupdate,Phys.Rev.D84(2011)091501,http://link.aps.org/ doi/10.1103/PhysRevD.84.091501.

[23] M.M.Block,R.N.Cahn,High-energyp p andpp forwardelasticscatteringand total cross sections, Rev.Mod. Phys. 57 (1985) 563–598, http://dx.doi.org/ 10.1103/RevModPhys.57.563.

[24] M.M.Block,L.Durand,P.Ha, F.Halzen,Eikonal fitto pp andp p scattering

and the edge inthe scatteringamplitude, Phys. Rev.D92 (2015)014030, http://dx.doi.org/10.1103/PhysRevD.92.014030.

[25] M.M.Block,E.M.Gregores,F.Halzen,G.Pancheri,Photon–protonandphoton– photonscatteringfromnucleon–nucleonforwardamplitudes,Phys.Rev.D60 (1999)054024,http://dx.doi.org/10.1103/PhysRevD.60.054024.

[26] M.M.Block,F.Halzen,Forwardhadronicscatteringat7TeV:predictionsfor theLHC:anupdate,Phys.Rev.D83(2011)077901,http://dx.doi.org/10.1103/ PhysRevD.83.077901,arXiv:1102.3163.

[27] C.Bourrely,J.M.Myers,J.Soffer,T.T.Wu,High-energyasymptoticbehaviorof the Bourrely–Soffer–Wumodelforelasticscattering,Phys.Rev.D85(2012) 096009,http://dx.doi.org/10.1103/PhysRevD.85.096009.

[28] C.Bourrely,J.Soffer, T.T.Wu,Newimpactpicture forlow- andhigh-energy proton–protonelasticscattering,Phys.Rev.D19(1979)3249–3260,http://dx. doi.org/10.1103/PhysRevD.19.3249.

[29]C.Bourrely,J.Soffer,T.T.Wu,Impact-pictureexpectationsforveryhigh-energy elasticpp andp p scattering,¯ Nucl.Phys.B247(1984)15–28.

[30] C. Bourrely, J. Soffer, T.T. Wu, pp and pp elastic¯ scatteringat √s = 0.55 to40TeV,Phys.Rev.Lett.54(1985)757–759,http://link.aps.org/doi/10.1103/ PhysRevLett.54.757.

[31] C. Bourrely, J. Soffer, T.T. Wu, Determination of the forward slope in pp and p p elastic¯ scatteringup toLHC energy,Eur.Phys.J.C71(2011)1601, http://dx.doi.org/10.1140/epjc/s10052-011-1601-x.

[32] M.Bozzo,etal.,UA4Collaboration,Measurementoftheproton–anti-proton to-talandelasticcross-sectionsattheCERNSPScollider,Phys.Lett.B147(1984) 392–398,http://dx.doi.org/10.1016/0370-2693(84)90139-4.

[33] M.Bozzo,et al., UA4Collaboration, Elastic scatteringat the CERNSPS col-lideruptoafourmomentumtransferof1.55-GeV2,Phys.Lett.B155(1985) 197–202,http://dx.doi.org/10.1016/0370-2693(85)90985-2.

[34]P.Brogueira,J.D.deDeus,Evolutionequationforsoftphysicsathighenergy, J. Phys.G,Nucl.Part.Phys.37(2010)075006.

[35] P.Carvalho,A.Martini,M.Menon,Eikonalrepresentationinthe momentum-transfer space,Eur.Phys. J. C39(2005) 359–376,http://dx.doi.org/10.1140/ epjc/s2004-02096-7.

[36] H.Cheng,T.T.Wu,Theoryofhigh-energydiffractionscattering.I,Phys.Rev.D 1(1970)1069–1082,http://dx.doi.org/10.1103/PhysRevD.1.1069.

[37] T.T. Chou,C.N.Yang,Modelofelastichigh-energyscattering,Phys.Rev.170 (1968)1591–1596,http://dx.doi.org/10.1103/PhysRev.170.1591.

[38] T.Csörg ˝o,F.Nemes,Elasticscatteringofprotonsfrom√s=23.5GeV to7TeV fromageneralizedBialas–Bzdakmodel,Int.J.Mod.Phys.A29(2014)1450019, http://dx.doi.org/10.1142/S0217751X14500195,arXiv:1306.4217.

[39]I.M.Dremin,Elasticscatteringofhadrons,Phys.Usp.56(2013)3.

[40] D.Fagundes,M.Menon,G.Silva,Model-independentdatareductionsofelastic proton–protonscattering,Eur.Phys.J.C71(2011),http://dx.doi.org/10.1140/ epjc/s10052-011-1637-y.

[41] D.A.Fagundes,M.J.Menon,P.V.R.G.Silva,Ontheriseofproton–proton cross-sections at high energies, J. Phys. G, Nucl. Part. Phys. 40 (2013) 065005, http://stacks.iop.org/0954-3899/40/i=6/a=065005.

[42] D.A.Fagundes,G.Pancheri,A.Grau,S.Pacetti,Y.N.Srivastava,Elasticpp

scat-teringfrom theopticalpoint topastthe dip:anempiricalparametrization fromISRtotheLHC,Phys.Rev.D88(2013)094019,http://dx.doi.org/10.1103/ PhysRevD.88.094019.

[43] L.A.Fajardo,R.Majka,J.N.Marx,P.Némethy,L.Rosselet,J.Sandweiss,A.Schiz, A.J.Slaughter,C.Ankenbrandt,M.Atac,R.Brown,S.Ecklund,P.J.Gollon,J.Lach, J.MacLachlan,A.Roberts,G.Shen,Realpartoftheforwardelasticnuclear am-plitudefor pp, p p, π+p,πp, K+p,and Kp scatteringbetween70 and 200GeV/c,Phys.Rev.D24(1981)46–65,http://dx.doi.org/10.1103/PhysRevD. 24.46.

[44]A.A.Godizov,Currentstageofunderstandinganddescriptionofhadronic elas-ticdiffraction,AIPConf.Proc.1523(2013).

[45]A.Grau,S.Pacetti,G.Pancheri,Y.N.Srivastava,Checksofasymptotiainpp elas-ticscatteringatLHC,Phys.Lett.B714(2012)70–75.

[46] R.Henzi,P.Valin,Towardsablacker,edgierandlargerproton,Phys.Lett.B132 (1983)443–448,http://dx.doi.org/10.1016/0370-2693(83)90344-1.

[47]M.M.Islam,V.Innocente,T.Fearnley,G.Sanguinetti,High-energypp and¯ pp

elasticscatteringandnucleonstructure,Europhys.Lett.4(1987)189. [48] M.M.Islam,R.J.Luddy,A.V.Prokudin,ppelasticscatteringatLHCandnucleon

structure, Mod. Phys. Lett. A 18(2003) 743–752, http://dx.doi.org/10.1142/ S0217732303009897.

[49] M.M.Islam,R.J.Luddy,A.V.Prokudin,NearforwardppelasticscatteringatLHC andnucleonstructure,Int.J.Mod.Phys.A21(2006)1–41,http://dx.doi.org/ 10.1142/S0217751X06028473.

[50] L.L. Jenkovszky, A.I.Lengyel,D.I. Lontkovskyi,Thepomeron andodderonin elastic,inelasticand totalcrosssectionsat theLHC,Int.J.Mod. Phys.A26 (2011)4755–4771,http://dx.doi.org/10.1142/S0217751X11054760,arXiv:1105. 1202.

[51] V.A. Khoze, A.D.Martin, M.G. Ryskin, Elastic scatteringand diffractive dis-sociationinthe lightofLHCdata,Int.J.Mod. Phys.A 30(2015)1542004, http://dx.doi.org/10.1142/S0217751X1542004X.

[52] A.F.Martini,M.J.Menon,Multiplediffractionmodelforproton–protonelastic scatteringandtotalcrosssectionextrapolationstocosmic-rayenergies,Phys. Rev.D56(1997)4338–4349,http://dx.doi.org/10.1103/PhysRevD.56.4338. [53] K.Olive,etal.,ParticleDataGroup,Reviewofparticlephysics,Chin.Phys.C38

(2014)090001,http://dx.doi.org/10.1088/1674-1137/38/9/090001.

[54] J. Orear, R. Rubinstein, D.B. Scarl, D.H. White, A.D. Krisch, W.R. Frisken, A.L. Read,H.Ruderman,Large-anglepion–protonelasticscatteringathigh en-ergies,Phys.Rev.152(1966)1162–1170,http://dx.doi.org/10.1103/PhysRev.152. 1162.

[55] V.A.Petrov,A.V.Prokudin,Thefirstthreepomerons...,Eur.Phys.J.C23(2002) 135–143,http://dx.doi.org/10.1007/s100520100838.

[56] R.J.N.Phillips,V.D.Barger,Modelindependentanalysisofthestructureinpp scattering,Phys. Lett. B 46 (1973)412–414, http://dx.doi.org/10.1016/0370-2693(73)90154-8.

[57]M.Rybczy ´nski,Z.Włodarczyk,Thenucleon–nucleoncollisionprofileandcross sectionfluctuations,J.Phys.G,Nucl.Part.Phys.41(2014)015106.

[58]T.Wibig,Elasticscatteringat7TeVandhigh-energycrosssectionforcosmic raystudies,J.Phys.G,Nucl.Part.Phys.39(2012)085003.

Cytaty

Powiązane dokumenty

53b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 54 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

In summary, all of the MCs underestimate the amount of energy in the forward region relative to the central region, in both the minimum bias data and the underlying event, with

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui;

Sec- tion 3 outlines the data analysis procedures: event selec- tion, energy calibration, determination of the beam po- larization and, finally, evaluation of the vector analyzing

The combined cross section values are given in Table 4 together with statistical, uncorrelated systematic, correlated system- atic, experimental, procedural and total uncertainties.

We demonstrate numerically that proton-proton (pp) scattering observables can be determined di- rectly by standard short range methods using a screened pp Coulomb force