• Nie Znaleziono Wyników

A method for tuning the stiffness of building blocks for statically balanced compliant ortho-planar mechanisms

N/A
N/A
Protected

Academic year: 2021

Share "A method for tuning the stiffness of building blocks for statically balanced compliant ortho-planar mechanisms"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

A method for tuning the stiffness of building blocks for statically balanced compliant

ortho-planar mechanisms

Blad, T. W.A.; van Ostayen, R. A.J.; Tolou, N.

DOI

10.1016/j.mechmachtheory.2021.104333

Publication date

2021

Document Version

Final published version

Published in

Mechanism and Machine Theory

Citation (APA)

Blad, T. W. A., van Ostayen, R. A. J., & Tolou, N. (2021). A method for tuning the stiffness of building blocks

for statically balanced compliant ortho-planar mechanisms. Mechanism and Machine Theory, 162, [104333].

https://doi.org/10.1016/j.mechmachtheory.2021.104333

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Mechanism

and

Machine

Theory

journalhomepage:www.elsevier.com/locate/mechmachtheory

A

method

for

tuning

the

stiffness

of

building

blocks

for

statically

balanced

compliant

ortho-planar

mechanisms

T.W.A.

Blad

,

R.A.J.

van

Ostayen

,

N.

Tolou

Department of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 16 September 2020 Revised 21 December 2020 Accepted 11 March 2021 Keywords: Compliant mechanisms Ortho-planar mechanisms Static balancing Buckling

a

b

s

t

r

a

c

t

In this paper a method is demonstrated for tuning the stiffness of building blocks for stat- ically balanced compliant ortho-planar mechanisms. Three post-buckled mechanisms are proposed where the flexural rigidity can be manipulated over a part of their length in order to tune the ratio between the first two critical loads. A sensitivity analysis using fi- nite element simulation showed that the best balancing performance is obtained in these mechanisms when this ratio was maximized. The results were validated experimentally by capturing the force-deflection relations.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Compliantortho-planarmechanisms(COMs)areplanarmechanismsthatallowout-of-planemotionthroughthe deflec-tion offlexible members[1].The advantagesofCOMsovertheir conventionalcounterpartsare theeaseoftheir manufac-turingprocess,theircompactnessandresistancetowear[2].Atthescaleofmicroelectromechanicalsystems(MEMS)these mechanismscanbeappliedinaccelerometers[3],actuators[4]andmicroenergyharvesters[5,6].However,adisadvantage ofminiaturizedcompliantmechanismsisthatasignificantpartoftheinputenergyisstoredasstrainenergyinthe deflect-ingflexiblecomponents[7].Thiscanleadtoalowrangeofmotion,poormechanicalefficiencyandhighnaturalfrequencies

[8].Especiallyformicroenergyharvestingapplications,thesedrawbackscangreatlyreducetheoverallefficiency[9]. Inordertoovercomethisproblem,thestiffnessofthemechanismcan bereducedbystaticbalancing.Staticbalancing uses anegativestiffnesselement asabalancer thatcounteracts thepositive stiffnessofthemechanism. Asa result, zero stiffness canbe obtainedover a certain workingrangeif thepositive stiffnessis ofthe samemagnitudeasthe negative stiffness[10].Negativestiffnesscanbeobtainedincompliantmechanismsbypreloadingaflexibleelementinpostbuckling

[11].A MEMS gravimeter is demonstratedby Middlemiss etal. [12]that features a proof mass on top ofan anti-spring mechanism. Withincreasingdisplacement,theanti-springsoftenedandthesystemwasabletoreacharesonantfrequency of2.3Hzintheverticalorientation.Anotherstaticallybalancedcompliantmechanism(SBCM)wasdevelopedandstudied by Tolou et al. [13]. This mechanism was fabricated using deep reactive-ion etching and achieved a near zero stiffness characteristicoverasmallrangeofmotion.Kuppensetal.[14]demonstratedaSBCMinwhichthepreloadingwasinduced by a MEMS compatible thinfilm process. The resulting mechanismcombined the positive stiffness of a linear guidance mechanismwithapostbuckledflexuretoachievestaticbalancing.

Corresponding author.

E-mail address: t.w.a.blad@tudelft.nl (T.W.A. Blad). https://doi.org/10.1016/j.mechmachtheory.2021.104333

0094-114X/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

(3)

T.W.A. Blad, R.A.J. van Ostayen and N. Tolou Mechanism and Machine Theory 162 (2021) 104333

Fig. 1. Slender beam with a uniform cross-section that can be preloaded in the axial direction to achieve the buckled shape extending out of plane.

However,alltheseSBCMshadadegreeoffreedom(DOF)intheplanefromwhichtheyweremanufactured,resultingin missingoutontheadvantagesofCOMs.Inthiswork, amethodispresentedtotunethestiffnessofmechanismsthatcan beusedasbucklingblocksinthedesignofstaticallybalancedcompliantortho-planarmechanisms(SBCOMs).

In Section 2 the method isintroduced fortuning the stiffnessof mechanisms consistingof post-buckled beams. Fur-thermore,themechanicaldesignoftheprototypesandtheexperimentalmethodsare discussed.Theresultsareshownin

Section3anddiscussedinSection4.Section5liststhemostimportantconclusions.

2. Methods

2.1. Bucklingofaslenderbeam

Fig.1schematicallydepictsaslenderbeamwithauniformcrosssectionwithalength,L,andflexuralrigidityofEI.The initiallyflatbeamcanbebuckledbycompressingthebeamoveradistanceofdL,aprocesswhichiscalledpreloadingand resultsinthebeamassumingapost-buckledshapethatextendsout ofplane.Theout-of-planedisplacementasafunction of theaxial coordinate,y

(

x

)

,corresponding toan applied axialload, P,is governedby thefollowing differentialequation

[15]. d4y dx4 + P EI d2y dx2 =0 (1)

WhereEI istheflexuralrigidityofthesectionwhichisacombinationoftheelasticmodulus,E,andthesecondmomentof inertia aroundthebendingaxis,I.Thisisahomogeneousfourth-orderdifferentialequation forwhichthegeneralsolution isgivenasfollows. y

(

x

)

=Asin



λ

EIx



+Bcos



λ

EIx



+Cx+D (2)

Where A,B,C,Dare unknown constants that depend on the boundary conditions ofthe beamand

λ

are the eigenvalues corresponding tothecriticalloadsofthebeamsuchthat

λ

2=P

crit.Thesecriticalloadsarethecompressiveloadsatwhich the system will lose stabilityand buckle.Any continuoussystem hasan infinitenumber of criticalloads, Pcrit,i ,where i denotes the number of the critical load and corresponding buckling mode. The critical loads are ordered by increasing magnitudesuch thatthefirstcriticalload, Pcrit, 1,istheloadcorrespondingtolowest value.Thetranscendental eigenvalue problemcanbeexpressedbythefollowingequation[16].

T

(

λ)

z=0 (3)

Where T is a matrixconsisting oftranscendental functions in

λ

, andz is a constant eigenvector containingA,B,C,D.The critical loadsofthebeamare representedby thenon-trivialsolutions of

λ

forz=0,andthe modeshapescan befound by substitutingtheresultin(2).Solvingthiseigenvalueproblemfora beamwithfixedboundaryconditionsatboth ends yieldsthefollowingfirstandsecondcriticalloads.

Pcrit, 1=

(

2

π

)

2EI

L2 , Pcrit, 2=

(

2.85

π

)

2EI

L2 , (4)

Whenthepreloadisapplied,theaxialforce,P,onthebeamrapidlyincreasesuntilthefirstcriticalloadisreachedand the beambeginsto buckle.Dueto theslendernessof thebeamthecriticalload isreachedalmostinstantly [17].Beyond the point of buckling, the axial force remains equal to the first critical load andthe displacement field of the beam is describedbythefirstbucklingmode,whichisthelowestenergyconfiguration.Inthisconfigurationthebeamisinastable equilibriumwherethepotential energy,Eeq,stable ,isequal tothework doneby thepreloading,W,whichcanbe foundby thefollowingequation.

W=  dL

0

Pdx≈ Pcrit, 1dL (5)

Whenthebeamisactuatedintheout-of-planedirection,anunstableequilibriumcanbefoundwherethedisplacement field of the beam is described by the second buckling mode. Similar to the stable equilibrium, the axial force (i.e. the reaction force onthe fixed boundarycondition) is equal to the second critical loadin thisconfiguration [18].Moreover,

(4)

Fig. 2. a) Proposed mechanisms (A, B, C) in unloaded and post-buckled configurations and b) their critical load ratios as a function of the design parameters

αand β;

β= 0 . 1 , β= 0 . 2 , β= 0 . 3 .

the potentialenergyinthisconfigurationisequaltotheworkthat wouldberequiredtopreloadthebeaminthesecond bucklingmode,Eeq,unstable ≈ Pcrit, 2dL.

Therefore,theratiobetweenthecriticalloadscorrespondingtothebucklingmodesthatdescribethedisplacementfields in thestableandunstableequilibriais animportant measuretoidentify thevariation ofpotentialenergy inthebuckled system. Thisvariableisproposedasthecriticalloadratio,CLR,andcanforthesebeamsbefound astheratiobetweenthe firstandsecondcriticalload.

CLR= Pcrit, 1

Pcrit, 2

(6)

Fortheuniformbeamitcan befound thattheCLR=0.49andisindependent ofthegeometryofthebeam.However, by locallymanipulatingtheflexuralrigidityofthebeam, theCLRcanbetuned.AstheCLRapproachesunity,thepotential energyinthestableandunstableequilibriaconvergetothesamevalueandthereforestaticbalancingisachieved.

2.2. Mechanismsfortuningthecriticalloadratio

InordertotunetheCLR,thethreemechanismsshowninFig.2aareproposed.Themechanismshavethesamelength, L,buttheircross-sectionsaremodifiedsuchthatoverafractionoftheirlength,

α

L,where0<

α

<1,theflexuralrigidityis

(5)

T.W.A. Blad, R.A.J. van Ostayen and N. Tolou Mechanism and Machine Theory 162 (2021) 104333

Table 1

Relevant parameters of the manufactured prototypes.

Fixed parameter Symbol Value

Unloaded device length L 20 mm

Axial load displacement dL 0.4 mm

Width of wide segments w 2 mm

Width of narrow segments wf 0.2 mm

Thickness of mechanism t 100 μm

Design variables α Lf

Flexure length A1 0.177 3.54 mm

Flexure length A2 0.605 12.10 mm

Flexure length B 0.361 7.22 mm

Flexure length C 0.563 5.63 mm (each)

reducedto

β

EI,where0<

β

<1.Theportionsoverwhichtheflexuralrigidityofthemechanismsisreducedwillbecalled the flexures. InMechanism A,a singleflexure ispositioned at theendof thebeam; inMechanismB, a singleflexure is positionedinthemiddleofthebeam;andinMechanismC,twoflexuresarepositionedattheendsofthebeam,witheach alength α2L .

Mechanisms A, B,andC can be considered assteppedbeams withsegments ofvarying lengthsandcross-sections in series. The length canbe divided in N segmentswith xn −1<x<xn forn=1:N such that x0=0 andxN =L. Moreover, the flexuralrigidityofsection nisdefinedasEIn .Thesolutionto (1)now becomesa setofN homogeneousfourth-order differentialequationswiththeformof(2)includingtheunknownconstantsAn ,Bn ,Cn ,Dn .Thefixedboundaryconditionsat theendsremain,andattheintermediateboundariesbetweenthesegmentstheboundaryconditionsarefoundbyenforcing continuityandbalancingtheforcesandbendingmoments.Theseboundaryconditionsareformulatedasfollows.

yn

(

xn

)

=yn +1

(

xn

)

, ddxyn

(

xn

)

=dydxn +1

(

xn

)

, d2y n dx2

(

xn

)

= d2y n +1 dx2

(

xn

)

, d3y n dx3

(

xn

)

= d3y n +1 dx3

(

xn

)

(7)

Thecriticalloadscanagainbefoundasthenon-trivialsolutionsof

λ

forz=0ofthetranscendentaleigenvalueproblem of(3).Inthiscase,theCLRisafunctionofonlytherelativelengthsandflexuralrigiditiesofthebeamsegments,whichare definedby theparameters

α

and

β

.InFig.2b,theCLRisplottedforMechanismsA,BandCasafunctionof

α

forthree variationsof

β

.

2.4. Mechanicaldesign

ThemechanismsfromFig.2aareprototypedfrom0.1mmthickspringsteel (E=190GPa)usingaSpectra-PhysicsTalon 355–15diodepumpedsolid-state(DPSS)UV lasersystemwitha wavelengthof355nm andmaximumpowerof15W at 50 kHzandare showninFig. 4A.The relative differencein flexuralrigidity wasfixed at

β

=0.1, whichwasrealizedby manipulatingthewidthofthebeam. Forallmechanismsthefollowingparameterswerefixed:theunloadedlength,L,the appliedaxialdisplacement,dL,thewidthofthewidesegments,w,thewidthofthenarrowsegments(i.e.flexures),wf ,and thethickness,t.Themechanismswerefabricatedwithflexurelengths,Lf,such thattherelativelengthsoftheflexures,

α

, correspondtothemaximainCLRfoundinFig.2b.ForMechanismA,twomaximawerefoundintheCLRandthereforetwo prototypesweremanufactured.TheseprototypeswillbenamedA1,correspondingtotheoptimumwithashortflexureand A2,correspondingtotheoptimumwithalongflexure.Foreachmechanism,asensitivityanalysisiscarriedoutusingfinite elementsimulationaroundthemaximaintheCLR,andtheirforce-deflectioncharacteristicsweremeasuredexperimentally. AllparametersaredepictedinFig.3andsummarizedinTable1.

Thebeamswere clampedinan aluminumframeconsistingofabaseplateandtwoslidingsides.Thesidesarealigned usingdowelpinsandcanbeclampedtothebasebytighteningtheboltsonthesides.Theassemblyprocesswasasfollows. First, a spacerwitha thickness of0.4mm wasplaced betweenthe sidesand thebase ofthe frame andthe boltswere tightened.Next,thebeamwasmountedtotheframe byclampingitbetweenthealuminumanda PMMAbracket.Inthis state thebeamisstress-freeandthereforenotbuckled.Next,theboltonthesideisreleasedsuch thatthespacercanbe removed andis subsequently tightened againsuch that the sidesof the frame havemoved exactly thethickness of the spacercomparedtothestress-freeconfiguration.Thisintroducesanaxialpreloadandthebeamshouldbuckleoutofplane tooneofitsstablepositions.TheassembledstructureisshowninFig.4C.

2.5. Finiteelementmodel

Tosimulatethemechanicalbehaviorofthepost-buckledbeamsafiniteelementmodelwasbuiltinANSYSusingbeam elements(beam188).The materialisassumedtobe perfectlyelastic withthefollowing properties(E=190GPa,

v

=0.34,

ρ

=7.82g/cm3). Buckling was induced by constraining one end of the beamin all directions, and displacing the other 4

(6)

Fig. 3. Schematic showing the important dimensions of the prototype of Mechanism A in the unloaded position. From this configuration an axial load is applied to induce the buckling of the beam.

Fig. 4. Mechanical design of a) the fabricated mechanisms and c) assembled prototype using a frame to apply axial loading and induce buckling and experimental setup for evaluation of force-deflection behavior; b) overview of components d) close-up of rolling contact and magnet at the interface of the flexure to ensure contact in the unstable region.

end. Smallimperfections were incorporated inthe model to prevent the simulation to crash due tosingularities in this preloading step.Afterthe buckledshape wasachieved, adisplacementwasappliedattheinterface oftheflexure.During thisthereactionforcesarerecordedatregularintervalstodeterminetheforce-deflectionbehavior.

2.6. Experimentalcharacterization

Theforce-deflectioncharacteristicsofthebeamswereevaluatedexperimentallywiththesetupshowninFig.4B.Forthis aFUTEKLRM200forcesensor(1)isconnecttotheprototype(2)anddisplacedbyaPIM-505motionstage(3)fromwhich the internalencoder capturespositiondata.Data wasrecordedusingaNIUSB-6008(4)in100steps witha resolutionof 100

μ

m.Theprobeisfixed tothebeamattheinterface oftheflexureusinga rollingcontactanda magnetasshownin

(7)

T.W.A. Blad, R.A.J. van Ostayen and N. Tolou Mechanism and Machine Theory 162 (2021) 104333

Fig. 5. a) Identification of important points in the normalized load-deflection relation for uniform beam ( ) and Mechanism A2 ( ). b–e) Sensitivity analysis of normalized load-deflection relations of b) Mechanism A1, c) Mechanism A2, d) Mechanism B, and e) Mechanism C. The relative flexure length

αis varied around the optima found inFig. 2 b;

α= 0 . 8 αopt , α= 0 . 9 αopt , α= αopt , α= 1 . 1 αopt , α= 1 . 2 αopt . .

3. Results

InFig.5,theforce-deflectionrelationsresultingfromthesimulations areshownforthenormalizedload

(

F˜=FL2

EI

)

and normalizeddeflection

(

d˜=d

L

)

.Fig.5ashowstherelationsoftheuniformbeamandMechanismA2andidentifiesimportant characteristics of the curve. Fig. 5b–e show therelations forvariations inparameter

α

in Mechanisms A1,A2, B and C, respectively.The relativeflexurelengthisvariedby+/-10%and+/-20%aroundtheoptimuminCLRforeachmechanism as shown inFig. 2. In Fig. 6, the measured force-deflection relations are shown. In Table 1. Relevant parameters of the manufacturedprototypes

Table2thefirsttwocriticalloadsandtheCLRisshownfortheMechanismsA1,A2,BandCattheoptimuminCLRfor eachmechanismasshowninFig.2.

4. Discussion

4.1. Force-deflectionrelationofbuckledmechanisms

The nonlinear force-deflection relations of the post-buckledmechanisms shown inFigs. 5 and6 are characterized by thepointsidentifiedinFig.5a.Theseincludetwostableequilibriumpositionsandoneormoreunstableequilibria.Itcan

(8)

Table 2

First two critical loads and CLR of the mechanisms for the optima found in Fig. 2 b. Mechanism Pcrit,1 [ N] Pcrit,2 [ N] CLR

A1 4.78 7.51 0.64

A2 1.64 2.6 0.64

B 3.24 3.72 0.88

C 2.07 2.67 0.78

be observed thatbetweenthe stableequilibriathemechanismsare relatively compliant,andthe force-deflectionrelation rapidlysteepensforlargerdisplacements.Thissteepeningeffectisaresultofthemechanismsbeingstraightenedandloaded intension.Intheforce-deflectionrelationsofthemechanisms,twobifurcationpointscanbeidentifiedbetweenwhichtwo load paths are present, corresponding to the two configurations of the mechanisms that can be identified as“knee-up” and “knee-down”.This section of thecurve between the bifurcation pointsis identified asthe history-dependentregion (HDR).When actuatedfromoneside tothe other,there isa pointwherethe mechanismsexperiencea snap-through bi-stabilityandchangeconfiguration.ThetwoloadpathsintheHDRarearesultoftheseriesconfigurationsofthemechanism topologiesandarenotobservedintheparalleltopology usedbyKuppensetal.[14].The maindifferenceistherotational degreeoffreedomatthepointwheretheforce-deflectionrelationismeasured.

Depending on themechanism, there isa potential barrierwhich hasto be overcomebefore thesnap-through occurs. ThisisespeciallyevidentinMechanismA1,andcanbeseenfromthesharppeaksintheforce-deflectionrelationcloseto the bifurcation points. Inthe other mechanisms,thesepeaks are smaller,which indicates that forthesemechanismsthe potential barrier islower.Moreover, the area betweentheload paths inthe HDRalsovaries foreach mechanism. Itcan be seenthatforMechanismCtheloadpaths arerelativelyclosetogether,andforMechanismA1theloadpathsenclosea much largerarea. Thesize ofthisarea isa measurefortheenergycaptured inthesystembefore thesnap-through[18]. Whentheloadpathsarefurtherapart,moreenergyisrequiredtoactuatethemechanismandlessbalancingperformance isobtained.

4.2. Criticalloadratioandforce-deflectionrelation

DrawingalinebetweenthebifurcationpointsfindsageneraltrendintheslopeoftheHDR,whichcanslopeupwards, slopedownwardsorcanberelativelyflat.ForMechanismsA2,BandCitcanbeobservedfromFig.5thatmechanismswith an increasingly upwards slopingHDR areobtained when

α

>

α

opt andmechanismswith increasingly downwardssloping HDR areobtainedfor

α

<

α

opt .Moreover,forthesemechanisms theflattestslope oftheHDRis obtainedat

α

=

α

opt (i.e. wheretheCLRismaximized).Therefore,theCLRcaninthesecasesbeusedasatoolforfindingthedesignvariablesthat leadtoathegreatestdegreeofstaticbalancing.However,inMechanismA1theflattestslopewasnotfoundat

α

=

α

opt and theoppositeeffectisobservedfortheslopeoftheHDR.

Moreover,thevalueoftheCLRcanalsogive informationonhowwellthemechanismscanbe balanced,astheCLRisa measuretoidentifythevariationofpotentialenergyinthebuckledsystembetweenthestableandtheunstableequilibria. Therefore,ifaCLR=1canbeachievedamechanismisexpectedtobestaticallybalancedbetweenthestableandunstable equilibrium positions. Not all mechanisms can be statically balanced, butin that caseit is expected that when theCLR is maximized a design is obtained with a load-deflection relation closest to statically balanced. It can be observed that the maxima of theCLR curves have greater values forMechanisms B andC compared to A1 and A2.As a result, these mechanisms have their load paths closer together,require lower actuation forces andtherefore show a better balancing performance.

However, it is important to note that theCLR only gives a ratio between the variation of potential energy, and it is importanttoconsidertheactualvaluesofthecriticalloadstoo.Ascanbefoundfrom.

Table2,thecriticalloadsofMechanismsA1andBaregreaterthanthecriticalloadsofMechanismsA2andC, respec-tively. Therefore, theCLR of A1 andA2 may be quite similar while A2 clearlyshows a better balancing performance. A similarresultswasfoundforMechanismsBandC,wheretheCLRofBishigher,butduetothelowercriticalloadsabetter balancingperformanceisfoundinC.

4.3. UsageofthebeamsasbuildingblocksforSBCOMs

WhentheMechanismsA,B,CaretobeusedasbuildingblocksforSBCOMs,itisnecessarytopreventtherotationofthe actuationpointtoachieveCLR=1andthedesiredstaticbalancing.Thiscanforexamplebeachievedbydesigningan ortho-planar platform by arranging threeof thesemechanisms ina rotationallysymmetric wayandconnectingtheir actuation points.Asaresult,therotationispreventedbytheaddedstiffnessesofthetwootherelements.However,thisarrangement requires some modificationsto thebuildingblocks inorderto relaxthe in-planedisplacements atthe actuationpointto preventover-constraints.

(9)

T.W.A. Blad, R.A.J. van Ostayen and N. Tolou Mechanism and Machine Theory 162 (2021) 104333

Fig. 6. Simulated ( ) and measured ( O ) force-deflection relations of a) Mechanism A1, b) Mechanism A2, c) Mechanism B and d) Mechanism C.

5. Conclusions

Inthispaperwehaveproposedanddemonstratedamethodtotunetheforce-deflectionbehaviorofbuckledmechanisms basedonalinearbucklinganalysis.Throughlocallymanipulatingtheflexuralrigidityofabeamoverpartofitslength,the ratiobetweenthefirsttwocriticalloadsofthemechanismcanbetuned.Maximizingthisratioresultsinthebestbalancing performanceforagivenmechanism.Asensitivityanalysiswasconductedthroughfiniteelementsimulationandtheresults were validatedexperimentally.Theseproposed mechanismscan be usedbuildingblocksforstatically balanced compliant ortho-planarmechanisms.

DeclarationofCompetingInterest

The authors declare that they have no knowncompeting financial interests or personal relationshipsthat could have appearedtoinfluencetheworkreportedinthispaper.

Funding

ThisworkispartoftheresearchprogrammeRethinkingEnergyHarvestingforMEMS(REH-MEMS)withprojectnumber 14379, whichisfinancedby theStichtingvoordeTechnische Wetenschappen(STW)andtheNetherlandsorganisationfor ScientificResearch(NWO).

References

[1] J.J. Parise, L.L. Howell, S.P. Magleby, Ortho-planar linear-motion springs, Mech. Mach. Theory 36 (2001) 1281–1299, doi: 10.1016/S0094-114X(01) 0 0 051-9 .

[2] L.L. Howell , Compliant mechanisms, in: J.M. McCarthy (Ed.), Proceedings of the 21st Century Kinematics, Springer, 2013, pp. 189–216 .

[3] H. Dong, Y. Jia, Y. Hao, S. Shen, A novel out-of-plane MEMS tunneling accelerometer, Sens. Actuators Phys. 120 (2005) 360–364, doi: 10.1016/j.sna.2004. 12.021 .

[4] S. He, R.B. Mrad, Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator, J. Microelectromechanical Syst. 17 (2008) 532–547, doi: 10.1109/JMEMS.2008.921710 .

[5] K. Tao, S.W. Lye, J. Miao, L. Tang, X. Hu, Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper, J. Micromechanics Microengineering 25 (2015) 104014, doi: 10.1088/0960-1317/25/10/104014 .

[6] M. Han, Q. Yuan, X. Sun, H. Zhang, Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications, J. Microelec- tromechanical Syst. 23 (2014) 204–212, doi: 10.1109/JMEMS.2013.2267773 .

[7] J.A. Gallego , J.L. Herder , in: Criteria For the Static Balancing of Compliant Mechanisms., American Society of Mechanical Engineers Digital Collection, 2011, pp. 465–473 .

(10)

[8] N. Tolou , V.A. Henneken , J.L. Herder , in: Statically Balanced Compliant Micro Mechanisms (SB-MEMS): Concepts and Simulation., American Society of Mechanical Engineers Digital Collection, 2011, pp. 447–454 .

[9] T.W. Blad, N. Tolou, On the efficiency of energy harvesters: a classification of dynamics in miniaturized generators under low-frequency excitation, J. Intell. Mater. Syst. Struct. 30 (2019) 2436–2446, doi: 10.1177/1045389X19862621 .

[10] K. Hoetmer , J.L. Herder , C.J. Kim , in: A Building Block Approach for the Design of Statically Balanced Compliant Mechanisms., American Society of Mechanical Engineers Digital Collection, 2010, pp. 313–323 .

[11] M. Schenk, S.D. Guest, On zero stiffness, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228 (2014) 1701–1714, doi: 10.1177/0954406213511903 . [12] R.P. Middlemiss, A. Samarelli, D.J. Paul, J. Hough, S. Rowan, G.D. Hammond, Measurement of the Earth tides with a MEMS gravimeter, Nature 531

(2016) 614–617, doi: 10.1038/nature17397 .

[13] N. Tolou , P. Estevez , J.L. Herder , in: Collinear-Type Statically Balanced Compliant Micro Mechanism (SB-CMM): Experimental Comparison Between Pre-Curved and Straight Beams., American Society of Mechanical Engineers Digital Collection, 2012, pp. 113–117 .

[14] P.R. Kuppens, J.L. Herder, N. Tolou, Permanent stiffness reduction by thermal oxidation of silicon, J. Microelectromechanical Syst. 28 (2019) 900–909, doi: 10.1109/JMEMS.2019.2935379 .

[15] S.P. Timoshenko , J.M. Gere , Theory of Elastic Stability, Courier Corporation, 2009 ISBN 978-0-486-47207-2 .

[16] K.V. Singh, G. Li, Buckling of functionally graded and elastically restrained non-uniform columns, Compos. Part B Eng. 40 (2009) 393–403, doi: 10.1016/ j.compositesb.20 09.03.0 01 .

[17] B. Camescasse, A. Fernandes, J. Pouget, Bistable buckled beam and force actuation: experimental validations, Int. J. Solids Struct. 51 (2014) 1750–1757, doi: 10.1016/j.ijsolstr.2014.01.017 .

[18] P. Cazottes, A. Fernandes, J. Pouget, M. Hafez, Bistable buckled beam: modeling of actuating force and experimental validations, J. Mech. Des. (2009) 131, doi: 10.1115/1.3179003 .

Cytaty

Powiązane dokumenty

rozważania zagadnienia „szkody proceduralnej” winno być oceniane działanie podmiotów publicznych tylko w aspekcie szkody spowodowanej względem osób trzecich,

Współczynnik regresji cząstkowej, wyrażający zależność pomiędzy kredytem ogółem i środkami własnymi a dochodem ogółem badanych dużych spółdzielni, przy eliminacji

Jak obecnie stwierdziłem po dokładnej analizie tekstu — cy­ towanie wypowiedzi tego Autora nie było dostatecznie wyczer­ pujące (zwłaszcza przez brak ujęcia w

Tak też doszło do wytoczenia przeciwko Kiepurze procesu o zniesła­ wienie stanu adwokackiego, który w wy­ niku zajęcia stanowiska przez W arszaws­ ką Radę

185 zdeňka nedomová terminological specifics of spa treatment in Russian and czech 201 eWa kaPeLa neologisms of Stanisław Jerzy Lec in Russian translations 217 SWietłana biczak

Based on the cumulative histograms above, we ex- plore the variability and spreading (or dispersion) of the ASTER GDEM slope and roughness with ICESat/ GLAS number of modes and

T. jamnik zdecydowała się także opisać, czym jest Społem — w obszernym przypisie wyjaśnia, że jest to związek, którego nazwę na słoweński można prze- tłumaczyć

On the basis of state of the art literature and an explorative case study into which elements and coordination mechanisms can be found in present day data infrastructures, an