• Nie Znaleziono Wyników

Characterizing three-dimensional wave-driven morphological diffusivity in the nearshore

N/A
N/A
Protected

Academic year: 2021

Share "Characterizing three-dimensional wave-driven morphological diffusivity in the nearshore"

Copied!
2
0
0

Pełen tekst

(1)

Delft University of Technology

Characterizing three-dimensional wave-driven morphological diffusivity in the nearshore

Hopkins, Julia; de Schipper, Matthieu A.

DOI

10.9753/icce.v36.sediment.9

Publication date

2018

Document Version

Final published version

Published in

Proceedings of the Coastal Engineering Conference

Citation (APA)

Hopkins, J., & de Schipper, M. A. (2018). Characterizing three-dimensional wave-driven morphological

diffusivity in the nearshore. Proceedings of the Coastal Engineering Conference, 36(2018).

https://doi.org/10.9753/icce.v36.sediment.9

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

CHARACTERIZING THREE-DIMENSIONAL WAVE-DRIVEN MORPHOLOGICAL

DIFFUSIVITY IN THE NEARSHORE

Julia Hopkins, Delft University of Technology, jhopkins@whoi.edu Matthieu A. de Schipper, Delft University of Technology, M.A.deSchipper@tudelft.nl INTRODUCTION

Accurate predictions of the fate of sand nourishments in the nearshore are critical to the management of eroding shorelines. The effectiveness of these nourishments depends on wave and current conditions, which vary with nourishment shape, size, and location. Here, observations of artificial sand mounds, including a new laboratory experiment, are examined to characterize the impact of a range of wave and current conditions on mound evolution and to inform coastal management techniques.

PREVIOUS WORK

Field observations of sand mound evolution are often motivated by nourishment projects directed by state or national institutions. Nourishment profiles are monitored with time resolutions ranging from months to years and compared to measurements of basic wave properties. These studies focus on the general behavior of a nourishment (accrete, erode, move shoreward or not) which has reasonable agreement with water depth and wave height [Hands et al., 1997; Boers, 2005] and can broadly inform the choice of future nourishment locations. More detailed observations of both mound development and wave climate could further test the importance of specific wave properties, including sheltering, refraction, and nonlinear effects. A synthesis of these results would improve predictions of nearshore sand transport, helping nourishment design efficacy among other shoreline management applications,

Analytical models of sediment transport characterize the evolution of a nearshore sand structure as a diffusive process, with the basic relationship of bed elevation 𝑧 over time 𝑡 given as

𝜕𝑧

𝜕𝑡= ∇ ∙ (𝜅∇z) (1) The diffusion coefficient 𝜅 represents multiple effects of wave and currents on sediment motion. By fitting observations of sand structures to known geometric diffusive shapes (e.g. Gaussian) and monitoring their evolution over time, the coefficient can be retrieved from field and laboratory data. However, the physical processes contained in this coefficient and their relative importance for different field conditions have not been fully characterized.

The lab environment provides a unique opportunity to dissect the coefficient in a 3D setting, without the need to initially assume the importance of certain processes as with a numerical model. Observations of a single wave condition and mound shape [Smith et al., 2017] motivate the study of multiple wave conditions proposed here. METHODS

Experimental observations taken in early 2018 of the evolution of a sand mound in a flume will be used to distinguish the relative importance of wave shape, wave

shadowing, current-driven shear stress, wave refraction, and wave energy on morphological diffusivity. Observations will be combined with (1) to determine 𝜅 as a function of bed shear stress owing to waves and currents, and compared to previous studies on the relative importance of waves and currents to mounds both in and out of laboratory settings.

Fig 1: Diffusion coefficient as a function of relative depth for an artificial Gaussian seafloor perturbation using Soulsby (1997)

wave-current shear stress formulas.

We propose a diffusion coefficient 𝜅 that will vary both spatially and temporally to account for nonlinear interactions between mound evolution and the local response of waves and currents. The coefficient can vary vertically owing to shear stress changes as a function of depth and wave height (Fig 1) [Moulton et al., 2014] and horizontally owing to wave shadowing and refraction. DISCUSSION

We examine previous experiments of morphological diffusivity using lab and field nearshore disturbances to identify potential balances between controlling processes based on the outline of the mound, its position, and hydrodynamic measurements. Processes considered include wave breaking, wave skewness [Thornton et al., 1996], wave orbital motion, wave shadowing, and gradients of shear stress owing to both waves and currents around a sand structure [Moulton et al., 2014] which will be discussed in the context of sediment flume experiments and numerical model results.

REFERENCES

Boers (2005), Overview of historical pits, trenches and dumpsites on the NCS, in SANDPIT: Sand transport and morphology of offshore sand mining pits

Hands, Ahrens, and Resio (1997), Predicting Large-Scale, Cross-Shore Sediment Movement from Orbital Speeds, in

Coastal Engineering 1996

Moulton, Elgar, and Raubenheimer (2014), A surfzone morphological diffusivity estimated from the evolution of excavated holes, Geophys. Res. Lett

Smith, Mohr, and Chader (2017), Laboratory experiments on beach change due to nearshore mound placement,

Coast. Eng.

Soulsby (1997). Dynamics of Marine Sands: A Manual for Practical Applications.

Thornton, Humiston, and Birkemeier (1996), Bar / trough generation on a natural beach, J. Geophys. Res

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.005 0.01 0.015 0.02 0.025

Wave Height/Water Depth

D if fu s io n C o e ff ic ie n t (m 2/s )

Cytaty

Powiązane dokumenty

Według raportu Boom and Bust (Boom… 2017) w ostatnim czasie, zwłaszcza w 2016 roku, podjęto wiele działań mających na celu likwidację elektrowni węglowych, a nawet

Na potrzeby realizacji niniejszej pracy wybrano bromowolitową chłodziarkę absorpcyj- ną firmy Shuangliang (Shuangliang 2016). Chłodziarka zasilana jest wodą o temperaturze

Analiza i prognozowanie tendencji zmian wartości potencjału energetycznego w procesie uzyskania projektowanej wytrzymałości betonu, w warunkach występo- wania

Nieco później, w roku 1963, podobną opinię wyra- ziła na łamach „Życia Literackiego” Marta Wyka: „O twórczości Adolfa Rudnickiego pisano i pisze się często i na

huidige huur, gezien hun inkomen, als redelijk beschouwd mag worden. Deze resulaten zijn in overeenstemming met het onderzoeksresultaat dat de huurders over het

Section 4 presents six different stakeholder perspectives on the role of gas in the future Dutch energy system that emerged when stakeholders further articulated and

Wystarczy zajrzeć do spisu treści, by zauważyć, że cały materiał książki dzieli się na trzy Części, poświęcone kolejno: Liturgii Godzin, problematyce

Z wyzyskiem proletariatu przez warstwę posiadającą środki produkcji zwią- zana jest kwestia alienacji. Robotnik doświadcza jej na wielu poziomach 18. Po pierwsze, wyalienowaniu