• Nie Znaleziono Wyników

Simulations of birefringent gratings as polarizing color separator in backlight for flat-panel displays

N/A
N/A
Protected

Academic year: 2021

Share "Simulations of birefringent gratings as polarizing color separator in backlight for flat-panel displays"

Copied!
12
0
0

Pełen tekst

(1)

Simulations of birefringent gratings as

polarizing color separator in backlight

for flat-panel displays

Man Xu1,2, H. Paul Urbach1,2, and Dick K.G. de Boer2 1Optics Research Group, Delft University of Technology

Lorentzweg 1, 2628 CJ Delft, The Netherlands 2Philips Research Laboratory

High Tech Campus 36, 5656 AE Eindhoven, The Netherlands M.Xu@TUDelft.NL

Abstract: A color and polarization separating backlight can be obtained by using a surface-relief grating made of birefringent material as an outcou-pling structure on top of the lightguide. A rigorous finite element diffraction model was applied to study the polarization effect of such a grating. The diffraction of plane waves by the anisotropic grating was studied for general conical incidence.

© 2007 Optical Society of America

OCIS codes: (050.1950) Diffraction gratings; (160.1190) Anisotropic optical materials; (160.3710) Liquid crystals.

References and links

1. Y. Taira, D. Nakano, H. Numata, A. Nishikai, S. Ono, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, E.G. Colgan, “Low-power LCD using a novel optical system,” SID 02 Digest, 1313-1315 (2002).

2. F. Yamada, S. Ono, Y. Taira, “Dual layered very thin flat surface micro prism array directly molded in an LCD cell,” Eurodisplay 2002, 339-342 (2002).

3. Dick K. G. de Boer, Roberto Caputo, Hugo J. Cornelissen, Chris M. van Heesch, Eefje J. Hornix, Martin J.J. Jak, “Diffractive grating structures for colour-separating backlights,” Photonics in Multimedia, Proc. SPIE 6196, (2006).

4. www.gsolver.com

5. X. Wei, H.P. Urbach, and A.J.H. Wachters, “Finite Element Model for Three-Dimensional Optical Scattering Problems,” J. Opt. Soc. Am. A , 24, 866 (2007).

6. Max Born and Emil Wolf, “Rigorous diffraction theory,” in Principles of Optics, (The University Press, Cam-bridge, 2005), pp.633-673.

7. K. Rokushima and J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. A , 73, 901 (1983). 8. E.N. Glytsis and T.K. Gaylord, “Rigorous three-dimensional coupled-wave diffraction analysis of single and

cascaded anisotropic gratings,” J. Opt. Soc. Am. A, 4, 2061 (1987).

9. S. Mori, K. Mukai, J. Yamakita and K. Rokushima, “Analysis of dielectric lamellar gratings coated with anisotropic layers,” J. Opt. Soc. Am. A, 7, 1661 (1990).

10. J.B. Harris, T.W. Preist, E.L. Wood and J.R. Sambles, “Conical diffraction from multicoated gratings containing uniaxial materials,” J. Opt. Soc. Am. A, 13, 803 (1996).

11. L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made wiht anisotropic materials,” J. Mod. Opt. , 45, 1313 (1998).

12. Xiuhong Wei, Three Dimensional Rigorous Model for Optical Scattering Problems, PhD thesis, Optics Research Group, Delft University of Technology, August 2006.

13. J.P. Berenger, “Perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, 114(2), 185-200 (1994).

(2)

1. Introduction

Liquid crystal displays (LCDs) have been adapted to a broad range of applications as conve-nient flat panel displays. But the light efficiency of the current LCD systems is below 10%. The low efficiency is mainly because of the use of the absorption-based polarizers and color filters. The absorption by the polarizers and color filter is approximately 50% and 70%, respectively. Therefore, alternative approaches for polarization- and color-separation have to be considered. Ideally one would like to use one device which can separate both color and polarization and which is not based on absorption. By applying a diffraction grating on the lightguide in the LCDs, colors can be separated[1][2]. If the grating is made of anisotropic material, one can achieve that light of one polarization is diffracted and light of the orthogonal polarization is not[3]. The configuration of such a backlight for LCDs is shown in Fig. 1. This structure was placed in a side-lit configuration with a cold-cathode fluorescence lamp (CCFL). The grooves of the grating are filled with a birefringent material having its optical axis parallel to the grooves. The ordinary refractive index of the birefringent material is matched to the grating material, whereas its extraordinary refractive index is significantly higher. As a result, light with polar-ization parallel to the grooves is diffracted, whereas for the relevant angles of incidence, the light with polarization perpendicular to the grooves is totally reflected back into the lightguide.

Fig. 1. Configuration of the polarized color-separating backlight.

The principle and performance of both the non-polarized and polarized version of color-separating backlights have been discussed in a previous paper [3]. In a color-color-separating back-light the back-light distribution, which contains a multitude of angles and mainly three wavelengths, is diffracted into three slightly overlapping angular distributions for the main colors. We showed experimental results of the (polarized) color-separated angular distribution of the light extracted from a structure like that of Fig. 1. We also showed simulations using a commercially available computer program [4], based on rigorous coupled wave theory for non-birefringent materials. We were able to make a good comparison between measured and simulated data in the plane perpendicular to the grooves. However, it was not possible to do simulations for other (conical) directions. Note that in general a backlight contains light of several directions and all these should be taken into account to understand its efficiency.

(3)

are in the plane perpendicular to the grooves (normal incidence) and for wave vectors with conical incidence.

2. Configuration

The example and numerical values that we use are similar to those of Ref.[3]. The geometry and configuration of the grating in our study is depicted in Fig. 2. A surface-relief grating with a period of 400 nm and duty cycle of 0.5 is applied onto a lightguide made of polycarbonate. The grooves of the grating are filled with a birefringent material which is liquid crystal (LC) having its optical axis along the grooves. The wavelength dependent refractive indices are shown in Table.1. The grating is rectangular and the depth of the grooves is 140 nm.

k x z θ φ φ=π/2 φ=0 y Lightguide PC Aniso Air Ω 400 nm 200 nm 140 nm

Fig. 2. Configuration of the grating with the computational domain Ω.

λ Polycarbonate n LC no LC ne

450 1.61 1.54 1.82

535 1.58 1.53 1.77

632 1.58 1.52 1.76

Table 1. The refractive indices of polycarbonate and of liquid crystal for three colors.

3. Theory

3.1. Anisotropic media that are translation invariant with respect to one direction

For a configuration that consists of isotropic materials and that is translational invariant with respect to one coordinate, say the y-coordinate, it is well-known that Maxwell’s equations are equivalent to a system of two coupled second order partial differential equations for only the components Ey and Hy [6]. This is also true when the sources and fields depend on the y-coordinate by a factor eikyy, for some k

y. When ky= 0, the two partial differential equa-tions for Eyand Hy are uncoupled and therefore one can separate s- and p-polarization. For s-polarization, Hyvanishes whereas for p-polarization Eyis zero. When ky6= 0, the two partial differential equations are coupled and the polarizations mix.

(4)

The time-harmonic source-free Maxwell equations in non-magnetic anisotropic materials are,

∇ × E = iω µ0H, (1)

∇ × H = −iωε0ε E, (2)

where ε0and µ0are the dielectric permittivity and the magnetic permeability of vacuum respec-tively, and ε is the relative dielectric permittivity of the anisotropic crystal which is a complex symmetric tensor of rank 2 given by:

ε =   εxx εxy εxz εyx εyy εyz εzx εzy εzz  , (3)

with respect to the cartesian coordinate system (x, y, z). We write the tensor ε as a sum of its real and imaginary parts,

εi j= εi j0 + iε 00

i j, (i, j = x, y, z) (4)

The real and imaginary parts of ε commute, which means that for any vector v we have,

ε0ε00v = ε00ε0v. (5)

This implies that the tensors ε0and ε00have the same eigenvectors and that therefore they can be diagonalized on the same (orthogonal) basis.

The configuration and the material properties are assumed to be invariant with respect to translations in the y-direction, but may vary in a cross-sectional plane y = constant. Hence ε may be a function of (x, z): ε(x, z).

We consider an electromagnetic field which depends harmonically on y, i.e. ∂

∂ yE = ikyE, (6)

∂ yH = ikyH, (7)

for some real ky. It is easy to see that by using Maxwell’s equations, the x- and z-components of the electromagnetic field can be expressed in terms of the y-components:

(5)

N =  ω2ε0µ0εzz− k2y −ω2ε0µ0εxz −ω2 ε0µ0εzx ω2ε0µ0εxx− k2y  , (11) Q = N  0 −1 1 0  =  −ω2 ε0µ0εxz −(ω2ε0µ0εzz− k2y) ω2ε0µ0εxx− k2y ω2ε0µ0εzx  , (12)

Note that D is the determinant of matrixQ. It is assumed here that D 6= 0. The y−components of Maxwell’s equations (1) and (2) imply:

−iω µ0Hy = ∇ ·˜  0 1 −1 0   Ex Ez  , (13) iωε0εyyEy = −iωε0(εyxεyz)  Ex Ez  − ˜∇ ·  Hz −Hx  , (14)

where ˜∇ is defined by,

˜ ∇ =  ∂ /∂ x ∂ /∂ z  . (15)

By substitution of Eqs. (8), (9) into the right-hand sides of Eqs. (13), (14) we get a coupled system for Eyand Hy,

−iω µ0Hy = −ω2ε0µ0∇ ·˜  1 DQ T  εxy εzy  Ey  + i ˜∇ · 1 DQ T ∂ ∂ x  kyEy ω0µ0Hy  +i ˜∇ · 1 DM ∂ ∂ z  kyEy ω µ0Hy  , (16) iωε0εyyEy = i ω2ε0µ0 D ω ε0(εyxεyz)N  εxy εzy  Ey+ ω ε0 D (εyxεyz)N ∂ ∂ x  kyEy ω µ0Hy  +ω ε0 D (εyxεyz)Q ∂ ∂ z  kyEy ω µ0Hy  + ky ω µ0 ω2ε0µ0∇ ·˜  1 DN  εxy εzy  Ey  −i ky ω µ0 ˜ ∇ · 1 DN ∂ ∂ x  kyEy ω µ0Hy  − i ky ω µ0 ˜ ∇ · 1 DQ ∂ ∂ z  kyEy ω µ0Hy  − i ω µ0 ∆Ey, (17) where M =  ω2ε0µ0εxx− k2y ω2ε0µ0εxz ω2ε0µ0εzx ω2ε0µ0εzz− k2y  . (18)

Note thatM = DN −1. Even when ky= 0, both Eqs. (16) and (17) contain Eyand Hy. Consider the case of a grating made of anisotropic materials which is periodic with respect to the x and invariant with respect to translations in the y-direction. If the material above the grating is isotropic and the incident wave is in the (x, z)-plane perpendicular to the grooves, i.e. when ky= 0, then when the incident field is s- or p-polarized, the total field will be a mixture of both polarizations. In this respect the anisotropic and isotropic gratings totally differ.

Now we consider an anisotropic medium for which the y-axis (i.e. the axis of translational invariance) is principal axis of ε for all points (x, y, z). Then the dielectric tensor is of the form,

(6)

and the coupled system Eqs. (16) and (17) becomes: −iω µ0Hy = i ˜∇ ·  1 DQ T ∂ ∂ x  kyEy ω0µ0Hy  + i ˜∇ · 1 DM ∂ ∂ z  kyEy ω µ0Hy  , (20) iωε0εyyEy = −i ky ω µ0 ˜ ∇ · 1 DN ∂ ∂ x  kyEy ω µ0Hy  − i ky ω µ0 ˜ ∇ · 1 DQ ∂ ∂ z  kyEy ω µ0Hy  − i ω µ0 ∆Ey. (21) Furthermore Eqs. (8) and (9) become

 Ex Ez  = i DN ∂ ∂ x  kyEy ω µ0Hy  + i DQ ∂ ∂ z  kyEy ω µ0Hy  (22)  −Hz Hx  = i D ky ω µ0 N ∂ ∂ x  kyEy ω µ0Hy  + i D ky ω µ0 Q ∂ ∂ z  kyEy ω µ0Hy  + i ω µ0  ∂ /∂ x ∂ /∂ z  Ey, (23)

Now assume again that ky= 0, then Eq. (20) contains only Hyand Eq. (21) contains only Ey:

ω2µ0ε0Hy+ ∂ ∂ x  εxx εxxεzz− εxzεzx ∂ Hy ∂ x + εzx εxxεzz− εxzεzx ∂ Hy ∂ z  +∂ ∂ z  εxz εxxεzz− εxzεzx ∂ Hy ∂ x + εzz εxxεzz− εxzεzx ∂ Hy ∂ z  = 0, (24) ω2ε0µ0εyyEy+ ∂2Ey ∂ z2 + ∂2Ey ∂ x2 = 0. (25)

Then the system is uncoupled for Eyand Hy. Eqs. (24) and (25) imply that when ky= 0 we can distinguish two types of polarization, namely:

S-polarization Hy= 0, Hx6= 0, Hz6= 0, Ex= Ez= 0, Ey6= 0; P-polarization Ey= 0, Ex6= 0, Ez6= 0, Hx= Hz= 0, Hy6= 0.

Hence when the y-axis is the principal axis, the splitting in uncoupled s- and p-polarization for ky= 0 is analogous to the isotropic case. But, Exand Ezhave other values than in the isotropic case because Eq. (22) depends on off-diagonal elements of the tensor.

In our specific case, the LC is uniaxial material. For such uniaxial materials, of which the y-axis coincides with the optical axis, the dielectric permittivity tensor is diagonal:

ε =   εxx 0 0 0 εyy 0 0 0 εzz  , (26)

with εxx= εzz= n2oand εyy= n2e. When ky= 0 the s- and p-polarization can be separated. We can choose n = nofor p-polarization and n = nefor s-polarization for analysis.

(7)

3.2. Numerical Method

In a general three-dimensional anisotropic grating problem all the electric and magnetic field components are coupled when ky6= 0. Several authors have studied the scattering of an incident plane wave by an anisotropic grating. The Coupled Wave Method for isotropic gratings has been extended to anisotropic gratings by Rokushima et al. [7], Glytsis et al. [8] and Mori et al. [9]. The Chandezon method (or C-method) has been applied to anisotropic gratings by Harris et al. [10]. Li [11] has extended his Fourier modal method (FMM) to anisotropic gratings. The FMM is a modification of the coupled wave method to improve convergence for the case of TM polarization. In Li’s paper conical incident angles are allowed.

In this paper we apply the Finite Element Method (FEM) [12], [5] to model anisotropic gratings. The FEM is a general numerical method for solving boundary value problems in mathematical physics. When applied to Maxwell’s equations for 2D gratings, a 2D computa-tional domain Ω (Fig.2) in a plane perpendicular to the grooves is defined which has width in the x-direction of one period and which contains all nonplanar and anisotropic materials in its interior. The domain is truncated in the vertical direction by a so-called Perfect Matched Layer (PML)[13]. On this computational domain, a boundary value problem for the vector Helmholtz equation for either the electric or the magnetic field is formulated. (Note that we do not solve the coupled system for the Ey- and Hy-components that was derived in the previous section). The computational domain is meshed using triangles or quadrilaterals and the electric of magnetic field is approximated by edge elements.

The FEM is relatively difficult to implement, especially in 3D. However, it is very flexible because both periodic and non-periodic configurations and all kinds of materials can be mod-eled. In particular, anisotropic and inhomogeneous materials with arbitrary principal axes can be treated without problems. In this respect the FEM differs substantially from the Couple Wave Method and the FMM for which the extension to anisotropic materials is highly non-trivial.

To ensure that the FEM code gives accurate results when applied to the anisotropic gratings considered in this paper, we have compared the results obtained for a flat multi-layer consisting of anisotropic media with an analytic model based on the expansion in terms of plane waves. Such a multi-layer is a very good test case for the FEM code because, in contrast with for example the FMM, the FEM does not simplify when applied to an anisotropic multi-layer. We found that when the edge elements of lowest order are used whith 50 mesh points per wavelength, the computed field is quite accurate for all conical angles of incidence.

3.3. Birefringent gratings

The periodic grating which is applied onto the lightguide, was designed in such a way that for all angles of incidence of interest, only the −1st order is transmitted and propagates. If we consider a plane wave incident from the lightguide on to the grating with wave vector ki and incident angles θiand φi, the tangential components of the wave vector are given by,

kix= k0nicos φisin θi, (27)

kiy= k0nisin φisin θi, (28)

where k0= 2π/λ is the wave number in vacuum and niis the refractive index in the medium of the incident wave. Polar angle θ and azimuthal angle φ are defined and depicted in Fig. 2. The wave vector of a diffracted transmitted wave can be expressed as,

kdx= k0ndcos φdsin θd, (29)

(8)

where ndis the refractive index of the medium into which the light is partially transmitted and φd and θd are diffraction angles. The components of the wave vector of the mth transmitted order and the components of the incident wave vector are related by:

kxd = kix+2π · m

p , (31)

kyd = kiy, (32)

where p is the period or pitch of the grating. The angular directions of the mthdiffracted order can be calculated for varying incident angles θiand φifrom the following equations:

ndcos φdsin θd = nicos φisin θi+mλ

p , (33)

ndsin φdsin θd = nisin φisin θi. (34)

In our grating the pitch p = 400 nm and therefore for most wavelengths and for the angles of incidence 48◦≤ θi≤ 90and 0≤ φi≤ 90only the −1storder is propagating. For blue light with short wavelength the −2nd transmitted order is also propagating, but only for very large incident angles.

4. Simulations and discussions 4.1. Normal incidence

As we discussed in Section 3.1, when the principal axis of the anisotropic material is along the grooves and the plane of incidence is perpendicular to the grooves, we can distinguish s- and p-polarized waves. In this case, the polarization is conserved. When the incident field is s-polarized, then one transmitted diffracted order propagates which is s-polarized as well. According to our definition of angles, φd= φi= 0 in this case. We will call this case normal incidence. 0 10 20 30 40 50 60 70 80 90 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Incident θ (degrees) Relative intensity S−polarization 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.2 0.4 0.6 0.8 1 1.2 1.4x 10 −3 Incident θ (degrees) Relative intensity P−polarization 450 nm 535 nm 632 nm (a) (b)

Fig. 3. Relative intensity of the −1st diffracted transmitted order as function of θi for φi= 0 and for three wavelengths namely 450, 535 and 632 nm for (a) s-polarization and (b) p-polarization.

(9)

s-polarization is much larger than that of p-s-polarization. The small nonzero intensity of the trans-mitted order for p-polarization is due to the small mismatch between the refractive index of the polycarbonate and the ordinary refractive index of the LC. It can be seen that the first transmit-ted order appears above a certain incident angle. The 0thtransmitted orders become evanescent above 40◦, and the intensity of the −1st transmitted order then changes abruptly. The field increases as the angle becomes larger. For a side-lit lightguide system, the main rays have in-cident angles θ larger than 48◦. For the angles of interest, the transmission of s-polarization is high comparing to that of p-polarization. But the absolute transmission for s-polarization is still fairly small. This is not a problem in our application. Because the lightguide is very long and therefore the light that reflected back into the lightguide is recycled many times.

4.2. General incidence

In a more general case, when the plane of incidence is not perpendicular to the grooves, the diffracted transmitted field of the s- and p-polarized incident fields couple. Hence the transmit-ted field does not have the same polarization as the incident field anymore. We did simulations for both s- and p-polarized incident fields.The diffracted transmitted field is decomposed into two linear polarized components. One is along the direction of the grooves, which we call

s-0 10 20 30 40 50 60 70 80 90 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 RIss

Incidence angle φ (degrees)

Relative intensity 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 RIps

Incidence angle φ (degrees)

Relative intensity 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.5 1 1.5 2 2.5 3 3.5x 10 −3 RIsp

Incidence angle φ (degrees)

Relative intensity 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.5 1 1.5 2 2.5 3 3.5x 10 −3 RIpp

Incidence angle φ (degrees)

Relative intensity

450 nm 535 nm 632 nm

(10)

polarization. The other is perpendicular to the grooves, which is called p-polarization. Please notice that the definition of the transmitted s- and p-polarizations differs from that of the inci-dent polarizations. The definition of the transmitted polarization agrees with what is customary [3].

In a backlight configuration as that of Fig. 1 light is present with a multitude of angles (Lambertian). Typically, the polar angles θirange from 48◦to 90◦. The distribution in diffracted angles θdhas a typical width of 20◦. The maximum of the distribution for diffracted green light is close to θi= 67◦. With fixed polar angle θi= 67◦, the azimuthal angle φiwas varied from 0◦to 90◦. The calculated intensities of the −1st transmitted order are shown in Fig. 4 for the three wavelengths 450, 535 and 632 nm.

From those figures we can see that for θi= 67◦ the diffracted order becomes evanescent when the incident angle φi is larger than approximately 40◦. The transmitted field strongly depends on the angle. The transmission of s-polarization is relatively high at small incident angle φi, whereas the transmission of p-polarization is low.

The angular distribution of the wave components of the diffracted transmitted field was cal-culated according to the Eqs. (31) and (32), and is illustrated in Fig. 5. To give insight in the angular distribution of the diffracted light, the relative intensity of the −1stdiffracted transmit-ted order from Fig. 4 is plottransmit-ted in Fig. 6 as function of the diffraction angle θd(instead of angle φias is done in Fig. 4). 20 40 60 80 30 210 60 240 90 270 120 300 150 330 180 θ φ 0

Fig. 5. Angular distribution (θd, φd) of the −1stdiffracted order for different colors, blue (450 nm), green (535 nm) and red (632 nm) for θi= 67◦and for varying φi(−90◦≤ φi 90◦).

(11)

0 10 20 30 40 50 60 70 80 90 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 RIss

Diffracted angle θ (degrees)

Relative intensity 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 RIps

Diffracted angle θ (degrees)

Relative intensity 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.5 1 1.5 2 2.5 3 3.5x 10 −3 RIsp

Diffracted angle θ (degrees)

Relative intensity 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 0.5 1 1.5 2 2.5 3 3.5x 10 −3 RIpp

Diffracted angle θ (degrees)

Relative intensity

450 nm 535 nm 632 nm

Fig. 6. Relative intensity of the −1stdiffracted transmitted order as function of diffraction angle θd, for incident angle θi= 67, and for varying 0≤ φi≤ 90, for the three wave-lengths 450, 535 and 632 nm. RI in the titles is an abbreviation for relative intensity, and the first subscript denotes the polarization of the transmitted field whereas the second subscript indicates the polarization of the incident field.

5. Conclusions

Diffractive outcoupling can be used to make efficient backlights. A diffraction grating contain-ing birefrcontain-ingent material was studied with a rigorous model. The simulation results showed that the diffracted transmitted intensity strongly depends on incident angles and has a high contrast ratio for all angles of interest. The simulation results are in good agreement with experiments. In the case presented here, the efficiencies are not very high (around 2%). Note that these ef-ficiencies refer to one interaction with the grating. For a long lightguide the total extraction efficiency will be much higher. Depending on the application, with a long or short lightguide, a higher extraction efficiency may be desired. This can be achieved by the use of a higher index contrast or by adapting the grating depth[3]. If not all light is extracted before the other end of the lightguide is reached, it is desirable to use a diffusing mirror at that side to recycle the light. To avoid mixing of different colors, we proposed recently[14] a new concept using a grating with a smaller period resulting in the blue light diffracted along the normal and green and red around it. If combined with a suitable pixel lay-out and a proper lens array that directs the light to the desired pixels, an efficient display system can be achieved.

(12)

ma-0 10 20 30 40 50 60 70 80 90 0 200 400 600 800 1000 1200 1400 1600

Contrast ration s/p for s−polarization incidence

Diffracted angle θ (degrees)

Contrast ratio 450 nm 535 nm 632 nm 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 100 Contrast ration s/p

Diffracted angle θ (degrees)

Contrast ratio

450 nm 535 nm 632 nm

(a) (b)

Fig. 7. Contrast ratio between calculated intensities of the s- and p-polarized components of the −1sttransmitted order as function of diffraction angle θdfor θi= 67◦, and for varying 0◦≤ φi≤ 90, (a) for s-polarization incidence, and (b) for unpolarized incident field.

Fig. 8. Measured angular distribution of color-separated luminance for s-polarized (left) and p-polarized (center) light and angular distribution of s/p contrast ratio (right) for color-separating polarized backlight structure with TL 213 (refractive indices of Table 1) as bire-fringent material. (Note that the azimuthal angles are shifted by 90o with respect to those used before.)

terials for variant applications, such as, switchable holographic grating made of liquid-crystal films.

Acknowledgments

Cytaty

Powiązane dokumenty

We use the numerical results of Carslaw's rigorous solution to seek a bet ter understanding of the effect of secondary parameters and try to express this

Whereas a suitable adjustment of the apparent interfacial mobility can minimise the net effect of the nucleation temperature range on the total transformation kinetics, the

Pierwsze wystąpienie w ramach Interdyscyplinarnych Seminariów Naukowych z cyklu „Migotanie znaczeń” odbyło się 14 kwietnia 2014 roku, na którym autor nowo wydanej

Je»eli ramiona k¡ta przetniemy dwie- ma prostymi równolegªymi, to odcinki wyznaczone na jednym ramieniu k¡ta s¡ proporcjonalne do odpowiednich odcinków na drugim ramieniu

17th IPHS Conference, Delft 2016 | HISTORY - URBANISM - RESILIENCE | VOlUme 02 The Urban Fabric | Housing and Neighborhoods | Evaluating the Neighbourhood as a Scale

The solution of the problem of the penetration of the sound field through a flat elastic layer is reduced to solve dual equations in Legendre's polynomials using the

In the preceding paragraph, I argued against the claim that liberal justice necessarily implies this ‘atomistic’ model of society, in which individuals are basically indifferent

– 1 st diffraction order propagates normal to the surface,. – Colours