• Nie Znaleziono Wyników

Hydrodynamics and Elasticity: Class 3

N/A
N/A
Protected

Academic year: 2021

Share "Hydrodynamics and Elasticity: Class 3"

Copied!
1
0
0

Pełen tekst

(1)

Hydrodynamics and Elasticity: Class 3

Ostrogradski-Gauss theorem For a volume V enclosed by a surface Σ and a vector field A Z

Σ

A · dS = Z

V

(∇ · A)dV. (1)

Stokes theorem For a surface area Σ spanned on a closed contour γ I

γ

A · d` = Z

Σ

(∇ × A) · dS. (2)

1. Prove the following identities for a scalar field φ and a vector field A I

Σ

φdS = Z

V

∇φdV, (3)

I

Σ

dS × A = Z

V

(∇ × A)dV. (4)

2. Prove the basic properties of material elements and hydrodynamic balance equations:

(a) Show that the deformation (stretch) of a material line in a velocity gradient is D

Dtd` = (d` · ∇)u. (5)

Apply this to show that an integral along a material curve with endpoints P (t) and Q(t) of a scalar function θ(r, t) satisfies

d dt

Z Q(t) P (t)

θ d` = Z Q

P

Dθ Dtd` +

Z Q P

θ d` · ∇u. (6)

Then show that an integral over a closed material loop C(t) satisfies d

dt I

C(t)

u · d` = I

C

Du

Dt · d`. (7)

(b) Find the deformation of a volume element to be D

Dt(dV ) = (∇ · u)dV. (8)

Check that for an incompressible flow Dt(dV ) = 0. Apply this result to show that if ρ(r, t) is the fluid density, the mass balance equation takes the form

d dt

Z

V (t)

ρ(r, t)dV = 0. (9)

Extend this to show that for an arbitrary scalar function θ(r, t), the transport equation is d

dt Z

V (t)

ρ(r, t)θ(r, t)dr = Z

V

ρDθ

DtdV, (10)

(c) Find the deformation of a surface element D

Dt(dS) = (∇ · u)dS − ∇u · dS (11)

and apply it to show that an integral over a material surface S(t) of a scalar function θ(r, t) takes the form

d dt

Z

Σ(t)

θ ndS = Z

Σ

 Dθ

Dt ndS + θ(∇ · u) ndS − θ∇u · ndS



, (12)

where n is the outward oriented normal unit vector of the surface S.

Cytaty

Powiązane dokumenty

Small-amplitude waves in deep water Show that in deep water with small-amplitude waves on the surface, the particle paths are circular, with the radius of the circles

Slip boundary condition A viscouis, incompressible fluid is flowing in a circular pipe of radius R under the action of a constant pressure gradient −G parallel to the pipe axis..

Stress and strain: elastic equilibria 1. Find the deformation of this rod under its

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union.. Example for

Milestones on the research path were the efficient nu- merical technique of weighted average flux to solve the shallow water equations, muttimodal method to solve the sloshing

W artykule przedstawiono analizę porównawczą przemieszczeń obliczonych za pomocą programów bazu- jących na metodzie elementów skończonych: ADINA, Autodesk Robot Structural

Autorka recenzowanej książki motywuje rezygnację z podziału na kryjówki w getcie i po „stronie aryjskiej” w następujący sposób: „w opisie kryjówek –

164 of the Executive Penal Code- the period up to 6 months prior to the expected parole or end of sentence is required, if necessary, to prepare the sentenced person for life