• Nie Znaleziono Wyników

V у ■**(**, 1 V-J- summability oî orthonormal series On the equivalence of logarithmic methods oï

N/A
N/A
Protected

Academic year: 2021

Share "V у ■**(**, 1 V-J- summability oî orthonormal series On the equivalence of logarithmic methods oï"

Copied!
7
0
0

Pełen tekst

(1)

A N N A L E S S O C IE T A T IS M A T H E M A T IC A E PO LO N A E Series I : C O M M E N TA TIO N E S M A T H E M A T IC A E X X I I I (1983) R O C Z N IK I P O L S K IE G O T O W A R Z Y S T W A M A TEM A TY C ZN EG O

Sé ria I : P R A C E M A T EM A T Y C Z N E X X I I I (1983)

L u c y n a R e m p u l s k a (P o z n a n )

On the equivalence of logarithmic methods oï summability oî orthonormal series

1. Let

• oo

(1 ). ^ ^ ( a ? ) (а?е<0, 1»

* = 0

be a real orthonormal series with coefficients ck such that

O O

о

i.e. the orthonormal series of L 2. Denote by Sn(x) the wth partial sum of (1). Consider the following matrices X {<1) = ||X k (n, g)|| and the sequences

= {Y k (r, q)}tL0 (q = 1 ,2 ,3 ) : X 0( n , q ) = l ( g = 1 , 2 , 3 ) , '

■**(**, q) = 1

V - J -

U |- 1

p = 0

-1 к - 1 У — n + 1

p = 0

, n P -, v. k —1 P

H

p = 0 m —0

Jc n + 1

V у

X—i st—i m-\-1

p —0 m —0

if 3 = 1 ,

if q = 2 ,

if 3 = 3

(1 < к < n) n = 0 , 1, Х к{п, q) — 0 if к > n)j

r , ( r , î ) s 1 (2 = 1 , 2 , 3 ) ,

(2)

?k(r, 3) = 1 +

У rp+i Z l; «4-1 log (1 T ) zZ p + 1

p = 0 k - 1

г ~ г Vr»+‘

log(l —r)'Z-J z Z p + 1 2

n = 0 JP = 0

, . k—l n p

t1 " 1-) y r»+i у у 1 log (1 — r ) z _ j Z_ j Z-i m + 1

71 = 0 J3 = 0 7 » = 0

if 3 = 1,

if g = 2 ,

if 3 = 3

(ft = 1 , 2 , . . . ; r e (0, 1 ));

We shall say that the series (1) is summable by the method X^q) (X{q)- summable) at xQ e <0, 1> to s if the sequence

П

(2 ) Z„(e, X<«>) ■**(», f l W ® )

A = 0

is convergent at x0 to s. We shall say that the series (1) is summable by the method Y{q) at x0 to s if

(3) P (x 0, r, Y (q))-^-s as r — >1 —, where

(4) P (x 0, r, Y(3)) = Yk (r,q)ek<pk (x0) for r e (0,1).

k = 0

The methods X (1) and Y(1) are called the logarithmic methods o f sum- mobility ([1 ], [3]); the method X (3) is the Cesàro method (G, 1).

Two methods of summability are called the equivalent methods in I?

if the summability of the series (1 ) in the set E of positive measure by one of these methods implies the summability of (1 ) to the same sum almost everywhere in P by the other method ([4]).

In this paper we shall prove that the methods X {q\ T (<z) are equivalent in L 2 for 3 = 1 and q = '2 .

2. First we shall give six lemmas on the summability of numerical series. Let Sn be the nth partial sum of the numerical series

00

' (5) 2 1"*

*=0

(uk are real numbers). The means L n(X^), P (r, Y(a)) and the summability we define as above. Clearly, the methods X {q) and Y {q) {q — 1 , 2 , 3) are the regular methods of summability of the series.

L emma 1. The series (5) is X^-summable to s i f and only i f it is X (3)-

summable to s.

(3)

Equivalence of logarithmic methods of summability 111

P roo f. Using the Abel transformation, we have

x/c=0 m=0 ' fc=о

* \-1 1 1

+<W+1)Z fcTTi,(Z<3,)l = A“+ 'B”’ *=o

n - 1 к .m к * + l . _ i

*•«">-v^SSS^ *+s|S^SZ *■*">+ fc=o m=o jj = o ' # = o p =o

» fc

+ГГ?тт( 7c=0 p = 0 ^

7а_ П /r-i П * 7/. _ _ A

/с — 0 2 тГ^|-<’-«-

' '

(n = 1, 2, ...). If-the sequence UW(X (3)) is convergent to s, then B n->s as n->oo,

and, by the Toeplitz theorem ([2], p. 427), An-> 0 as n-> oo.

If the sequence {Ln(X(2))} 'is convergent to s, then <7n->0 and B n->s as n->oo. Hence the lemma is proved.

L emma 2. Suppose that the series (5) is X^-summable to s. Then o{nlogn) i f q = 1,

o(n) i f q = 2 , 3 ; n - * o o . P roo f. We prove (6) for q = 1. We have

£ „ (V » )

( S Vc=0 m ) " S ' k —0 fc + 1 ■8„

Write

Clearly,

/ n+l-

in+ l(v > ) - £ „ = 2 ; — 8n+1 'A = 0

and the sequence {Zn} is convergent to s if {Ln(X{1))} is convergent to s.

Hence (wlogw)"-1 Sn = o(l) and we have (6). Lemma 2 in the cases q — 2, 3 follows by Theorem 3 of [2], p. 522, and Lemma 1.

Z.

. n +1

- I S & + 1 V J _

Jfc + l

* = 0 s*-

(4)

L emma 3. I f the series (5) is summable to s by the method X (1) (X (2)), then it is summable to s by the method Y(1) (У(2)).

P ro o f. We shall give the proof for q = 2. From the definition of Yk (r, 2) we have

for any fixed r e (0,1). Hence the function P(r, Y(2)) is defined in (0, 1) and

00

F ir , Y « ) = j T Yt {r, 2 )uk

k ~ 0

.0 0

n

- t 1 - ^ y r»+i у 1 log(l — r) XLi Х- j 7г + 1

n = 0 fc=0

oo n к

_ -(Д--»-)2 y ^ + i у у

log(l — r) X- j Xu x L i

' n = 0 k —0 p = 0

1 P + 1

OO

s 3) - r „ +1(r, 3 ))i„ (V 2>).

n = 0

The convergence of sequence {Ln(X ^)} to s and the properties of Yk(r, 3) imply the existence of lim P (r, Y(2)) = s ([2], p. 513). The proof is com-

, r-> 1 —

pleted.

L emma 4. Suppose that q (q — 1, 2) is a fixed number. I f the series (5) is Y^-summable to s, then the series

(8) ] ? ( L k ( X ^ ) - L k_ ,(X ^ )) 0)

&-=0 is Y(s+1)-summable to s.

P ro o f. Let q — 1. Using the Abel transformation we have

(9) P (r, r “>) = j ^ ¥ t (r,l)<

* = 0

(1 - r ) oo к

У r*+i V —- — L k(X{1)) log(l — r) X— ■ 4 ' k=о j XLI p + 1 p=o r

OO

^ ( r t ( f ,2 ) - r w (r ,2 ) ) i l ( I l 1l) fc = 0

for r e (0,1). By (9) and (7),

Yn{r, 2 )L n(X {1))->0 as л-»оо, г e (0,1),

(5)

Equivalence of logarithmic methods of summability 113

and

oo

(10) P (r, Y<0) = 2 1 Xk (r, 2)(Lk( ^ ) - L t ^ (X ^ )]

k —o

(L ^ iX ^ ) = 0). The Y(1)-summability of (5) to s and (10) imply the Y(2)- summability of the series (8 ) to s. The proof for q = 2 is analogous.

L e m m a 5. I f the series (5) is Y^-summable to s and i f

oo

( 1 1 ) ^ ^ l o g ( f c + l ) < oo,

k = l

then (5) is convergent to s.

P roo f. Write

Y u lhlog(lc + l), rn — 1 --- - (n = 1, 2 , ...),

к=п n

If rn e (0, 1 ), then

n oo

Г <2,) - Я „ = Y ( r ‘ (*'».2 ) - l ) « t + У r t (r„,2)% s 7 „ + Z„.

By (11),

*=0 k = n + 1

|FJ<i s ^ j r ^ wt,oe(*+1) | lo g (l-rn)|

i - y »

| lo g (l-O I

( ™ \ 1/2 ^

| ^ ^ l o g ( ^ + l) | ^ lo g (fc + l ) | 1/2,

4=1 ' k=1

oo 1/2 00

^ r * ( r { 2 ^wogi^+i)}1'

к = И/ }С —

W n (± -rn) r i v v „ш+1 Z У — j j , + i î ' s |

|log(l-r„)|»log(» + l ) J \ £K£ i - P

w vW no OO 771 « 'no

2 >+и * 2 1 l d ~Iog(1~r)

p - t - 1 p _

/c= n m = A p = 0 m = n р = 0 Æ =w

"" fc

1 1

j?=o p + 1 \dr 1 — r 0 l | lo g (l-r„ )l\

l (1 - r nf

8 — R o c z n ik i P T M — P r a c e M a te m a ty c z n e t. X X I I I

(6)

Hence

\Vn\ = 0 { w n), \Zn\ = O(log~ll2n) and

( 1 2 ) IP {rn, T (2)) — $ J ->0 a s n-+co.

The Y(2h summability of the series (5) to s and (12) imply the conver­

gence of the sequence {$n} to s. Thus the proof is completed.

Analogously we obtain

L e m m a 6 . I f the series (5) is Y^-summable to s and i f 00

Y.nu\ < oo, n = l

then (5) is convergent to s.

3. Now, we consider the summability of the series (1). We have

L e m m a 7. The series

CO

(13) ^ w lo g (« + l ) ( i n(«, X (1)) -£ „ _ !(# , n=1

00

(W) % n ( L n(æ .,X V )-L n_ ,(x ,X V )f

n ~ l

are convergent almost everywhere in ( 0 , 1 ).

P ro o f. The convergence of (13) is proved in [3 ]. The proof of the convergence of (11) is similar.

Next, we shall present two theorems on the equivalence of methods of summability.

T h e o r e m 1 . The methods X (1) and o f summability of orthonormal series (1) are equivalent in I f .

P ro o f. If the series (1) is ,X(1)-snmmable in a set E of positive measure to 8(x), then it is Y(1)-summable in E to S(x) by Lemma 3.

Suppose t h a t t h e series (1) is Y(1)-summable in E t o 8(x). T h e n ,

by Lemma 4, t h e series

oo

(1 5 ) y ( i „ ( ® , X W ) - i , i ' 4 ) )

n = 0

(Е_г(х, JT(1)) — 0 ) is Y (2)-summable in E to 8{x). Lemmas 7 and 5 imply

that the series (15) is convergent almost everywhere in E to 8(x), which

proves that the sequence L n (x, _X(1)) is convergent almost every where in

E to 8(x). The proof is completed.

(7)

Equivalence o f logarithmic methods o f summability 115

Applying Lemmas 1, 3, 4, 6, and 7, we can prove

T h e o r e m 2 . The Cesàro method (G, 1) (i.e. X ^) and the method o f summability o f orthonormal series (1 ) are equivalent in I f .

References

[1] B. L. K a u fm a n , On Taulier type methods for logarithmic methods of summability, Izy. vuzov., Matem. 1 (1967), 57-62 (in Russian).

[2] K. K n op p , Infinite series, Warszawa 1956 (in Polish).

[3] J . M eder, On the summability almost everywhere of orthonormal series by the method of first logarithmic means, Rozprawy Matematyczne X V II, Warszawa 1959.

[4] 0 . A. Z iza, On the summability of orthogonal series by the Euler methods, Mat.

> Sbornik 6 (1965), .354-377 (in Russian).

Cytaty

Powiązane dokumenty

Summability methods of the Abel type... Summability methods of the Abel

Series (3) is absolutely summable by the classical Abel method... The absolute and strong summability of orthogonal

In this paper, we shall investigate some properties of the summability methods of the Gôrowski type for a numerical series and the Fourier series.. Summability

Abstract. In this paper we shall define the n-harmonic method of summability of the series. In Section 2 we shall investigate the order of the approximation of

In [4] Prullage gave the definition of a limitation method in topological groups and introduced a concept of regularity involving Cauchy sequences.. regular methods are those

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVIII (1989) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXV (1985) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE XXV

Saxena [6 ] and Dwivedi [1] studied the uniform harmonie summability of Fourier series and uniform harmonic summability of Legendre series respectively... of