• Nie Znaleziono Wyników

Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\sqrt{^{S}NN}=5.02$ TeV p + Pb collisions measured by the ATLAS experiment

N/A
N/A
Protected

Academic year: 2022

Share "Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\sqrt{^{S}NN}=5.02$ TeV p + Pb collisions measured by the ATLAS experiment"

Copied!
24
0
0

Pełen tekst

(1)

Physics Letters B 763 (2016) 313–336

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √

s

NN

= 5 . 02 TeV p + Pb collisions measured by the ATLAS experiment

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received23May2016

Receivedinrevisedform14August2016 Accepted24October2016

Availableonline29October2016 Editor:D.F.Geesaman

Measurements ofthe per-eventcharged-particle yieldas afunctionofthe charged-particletransverse momentumandrapidityareperformedusing p+Pb collisiondatacollectedbythe ATLASexperiment at the LHC ata centre-of-massenergy of s

NN=5.02TeV.Charged particlesare reconstructedover pseudorapidity |η|<2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset correspondingtoanintegratedluminosityof1 μb1.Theresultsarepresentedintheformofcharged- particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared betweencentralandperipheral p+Pb collisionsaswellastocharged-particlecrosssectionsmeasured

inpp collisions.The p+Pb collisioncentralityischaracterizedbythetotaltransverseenergymeasured

in4.9<η<3.1,whichisinthedirectionoftheoutgoingleadbeam.Threedifferentestimationsof the numberofnucleonsparticipatinginthe p+Pb collisionare carriedoutusingtheGlaubermodel and twoGlauber–Gribovcolour-fluctuationextensionstotheGlaubermodel.Thevaluesofthenuclear modificationfactorsarefoundtovarysignificantlyasafunctionofrapidityandtransversemomentum.

A broadpeakisobservedforallcentralitiesandrapiditiesinthenuclearmodificationfactorsforcharged- particle transverse momentum values around 3 GeV. The magnitude ofthe peakincreases for more centralcollisionsaswellasrapidityrangesclosertothedirectionoftheoutgoingleadnucleus.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Proton–nucleuscollisionsatultrarelativisticenergiesprovidean opportunity to understand the role of the nuclear environment inmodifying hardscatteringrates. Severalphysicseffects areex- pectedtoinducedeviationsfromasimpleproportionalitybetween the scattering rate and the number of binary nucleon–nucleon collisions[1].First,nuclear shadowingeffectshavelongbeenob- servedindeep-inelasticscatteringonnuclei,aswellasinproton–

nucleuscollisions,indicatingthatnucleonsembeddedinanucleus have a modified structure. This modification tends to suppress hadron production at low to moderate momentum, and is ad- dressedbyavarietyoftheoreticalapproaches[2,3].Someofthese approachesdescribe hadronproductioncrosssectionsintermsof a universal set of nuclear parton distribution functions (nPDF), whichareparameterizedasmodificationstothefreenucleonPDFs [4–12]. Second, energy loss in “cold nuclear matter” is expected to modify hadron production rates at high transverse momen- tum (pT) [13–16]. Third, a relative enhancement of hadron pro-

 E-mailaddress:atlas.publications@cern.ch.

ductionratesatmoderatemomentaisobservedinproton–nucleus collisions [17], which can be attributedto initial-state scattering oftheincomingnucleon[18,19]orradialfloweffects[20].Finally, the appearance of “ridge-like” structures in high-multiplicity pp and p+Pb events [21–25] suggests that small collision systems havethesamehydrodynamicoriginasPb+Pb events[26],orthat therearealreadystrongcorrelationsintheinitialstatefromgluon saturation [27]. All these effects can be explored experimentally by the measurement ofcharged-hadron productionasa function oftransversemomentum.

For proton-lead (p+Pb) collisions, assuming that the initial parton densities are the incoherent superposition of the nucle- onic partondensities, theper-event particleproduction yieldcan be estimated by the product σNN× TPb.Here σNN is the cross section for the analogous nucleon–nucleon collision process and

TPb isthe average value ofthe nuclear thicknessfunction over adistributionoftheimpactparametersofprotonsincidentonthe nuclear target. It canbe thought ofas aper-collision luminosity.

Thenuclearmodificationfactor, RpPb,isdefinedastheratioofthe measured charged-particle production yield in p+Pb collisions, normalized by TPb, to thecross section ofthe charged-particle productionyieldinpp collisions:

http://dx.doi.org/10.1016/j.physletb.2016.10.053

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

RpPb(pT,y)= 1

TPb

1/Nevtd2NpPb/d ydpT d2σpp/d ydpT

, (1)

where Nevt is the number of p+Pb events, d2NpPb/d ydpT is thedifferentialyield ofchargedparticlesin p+Pb collisionsand d2σpp/d ydpT isthedifferentialcharged-particleproductioncross sectioninpp collisions.Bothnumeratoranddenominatorarepre- sentedintermsofy,therapidityinthenucleon–nucleoncentre- of-massframe. Inthe absenceofinitial-state andnucleareffects, the ratio RpPb is expected to be unity at high pT [28]. Another measureofnuclearmodificationisthequantity RCP,whichisde- finedtobe:

RCP(pT,η)=TPb,P

TPb,C

(1/Nevt,C)d2NpPb,C/dηdpT

(1/Nevt,P)d2NpPb,P/dηdpT, (2) andcanbeconstructedwithouttheneedfora pp referencespec- trum. The indices“P” and“C” labelperipheral (large impact pa- rameter)andcentral(smallimpactparameter)centralityintervals, respectively. The RCP is presented as a function of pseudorapid- ity(η) ratherthan y sincebothnumeratoranddenominatorare fromthesame collidingsystems.Measurementsof RpPb and RCP provideusefulinputforconstrainingmodelsofshadowing,energy lossandradial floweffects.Theyshould alsoprovideusefulinput forthe determinationof nuclear partondistribution functions,in particularasafunctionofprotonimpactparameter[6].Theabso- lutevaluesofthenuclearmodificationdependontheTPbvalues andshouldbeinterpretedwithrespecttotheassumptionsunder- lyingtheparticularmodelusedtocalculatethenormalization.

A recent ATLAS publication [29] has reported measurements of the mean charged-particle multiplicity asa function of pseu- dorapidity and collision centrality and explored the relationship betweenthecentralitydependenceoftheparticleproductionand modelsoftheinitialnucleargeometry.Theresultspresentedhere utilize the same centrality definition and geometric models, but build uponthat workby exploring the pT, η and y dependence ofper-eventcharged-particleyieldsinp+Pb collisionsatacentre- of-massenergy

sNN=5.02TeV andcomparing that dependence totheexpectationsfrom pp collisionsthroughthequantitiesRpPb andRCP.

Thesemeasurementsare anextension ofasimilar programme carried out at the Relativistic Heavy Ion Collider, where all ex- perimentsreportedtheabsenceofcharged-particlesuppressionat 2<pT<10GeV in d+Au collisions [30–35], in contrast to the strong suppressionfound in Au+Au collisions [31,33].Measure- ments ofnuclear modification factors asa function oftransverse momentum in a narrow pseudorapidity window relative to the centre-of-mass frame |ηCM|<0.3 have been reported by ALICE integratedovercentrality[36,37]anddifferentiallyforseveralcen- trality classes [38,39]. Similarly, CMS results have been reported integratedovercentralityandinabroaderpseudorapiditywindow,

|ηCM|<1[40].

2. TheATLASdetector

TheATLASdetector[41]attheLargeHadronCollider(LHC)cov- ers almost the entire solid angle1 around the collision point. It

1 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupwards.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ beingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedinterms ofthepolarangleθasη= −ln tan(θ/2).Angulardistanceismeasuredinunitsof

R

(η)2+ (φ)2.

consistsofaninnertrackingdetectorsurroundedbyathinsuper- conducting solenoid, electromagnetic and hadronic calorimeters, andamuonspectrometerincorporatingthreelargesuperconduct- ingtoroidalmagnets.

The inner detector (ID) system is immersed in a 2 T axial magneticfieldandprovidescharged-particletrackinginthepseu- dorapidity range |η|<2.5. The ID tracker is composed of three detector subsystems. Closest to the interaction point is a high- granularitysiliconpixeldetectorcovering|η|<2.7,whichtypically providesthreemeasurementspertrack.Nextisasiliconmicrostrip tracker (SCT), which typically yields four pairs of hits per track, eachprovidingatwo-dimensionalmeasurementpoint.Thesilicon detectorsarecomplementedbythestraw-tubetransitionradiation tracker,whichenablesradiallyextendedtrackreconstructionupto

|η|=2.0.

The calorimetersystem covers thepseudorapidity range |η|<

4.9. Within the region |η|<3.2, electromagnetic calorimetry is provided by high-granularity lead/liquid-argon (LAr) electro- magnetic calorimeters, with an additional thin LAr presampler covering |η|<1.8, to measure the contribution of showers ini- tiated in the material upstream of the calorimeters. Hadronic calorimetryisprovidedby asteel/scintillator-tilecalorimeter,seg- mentedintothreebarrelstructureswithin|η|<1.7,andtwocop- per/LArhadronicendcapcalorimeterscovering1.5<|η|<3.2.The calorimeter coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimized for electromagnetic andhadronicmeasurements,respectively,covering3.1<|η|<4.9.

Theminimum-biastriggerscintillators(MBTS)detectchargedpar- ticlesover2.1<|η|<3.9 usingtwohodoscopes, eachofwhichis subdividedinto16counterspositionedatz= ±3.6 m.

A three-leveltrigger systemis usedto selectevents [42]. The Level-1 trigger isimplemented inhardware and usesa subset of detectorinformationto reduce theeventrateto100 kHz. Thisis followed by two software-basedtriggerlevels which together re- duce theeventratetoabout1000 Hz,whichisrecordedfordata analysis.

3. Datasetsandeventselection 3.1. Eventselectioninp+Pb collisions

The p+Pb collisionswere recorded bythe ATLAS detectorin September 2012usingatriggerthatselected eventswithatleast one hit ineach side oftheMBTS, withthe resultingdatasetcor- respondingtoanintegratedluminosityof1 μb1.Duringthatrun theLHCwas configuredwithaclockwise4 TeV protonbeamand an anti-clockwise1.57 TeV per-nucleon 208Pbbeamthattogether producedcollisionswithanucleon–nucleoncentre-of-massenergy of

s=5.02 TeV andalongitudinalrapidityboostofylab=0.465 unitswithrespecttotheATLASlaboratoryframe.Followingacom- monconventionusedforp+A measurements,therapidityistaken tobepositiveinthedirectionoftheprotonbeam,i.e.oppositeto theusualATLASconventionforpp collisions.Withthisconvention, theATLAS laboratoryframerapidity, y,andthe p+Pb centre-of- masssystemrapidity,y,arerelatedby y=y0.465.

Charged-particletracks andcollisionverticesare reconstructed from clusters in the pixel detector and the SCT using an algo- rithm optimized for minimum-bias pp measurements [43]. The p+Pb events are required to have a collision vertex satisfying

|zvtx|<150 mm, at least one hit in each side of the MBTS, and a difference between the time measurements in the two MBTS hodoscopes of lessthan10 ns. Events containing multiple p+Pb collisions(pile-up)aresuppressedbyrejectingeventsthatcontain asecondreconstructedvertexwithascalartransversemomentum

Cytaty

Powiązane dokumenty

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

For the extraction of photon reconstruction and identifi- cation efficiencies, the photon energy scale, and expected properties of the isolation transverse energy distributions,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,