• Nie Znaleziono Wyników

Measurement of the top quark mass in the $t\bar{t}\rightarrow$ dilepton channel from $\sqrt{s}=8$ TeV ATLAS data

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the top quark mass in the $t\bar{t}\rightarrow$ dilepton channel from $\sqrt{s}=8$ TeV ATLAS data"

Copied!
22
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the top quark mass in the t t ¯ → dilepton channel from

s = 8 TeV ATLAS data

.TheATLAS Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received8June2016

Receivedinrevisedform21July2016 Accepted8August2016

Availableonline24August2016 Editor:W.-D.Schlatter

Thetopquarkmassismeasuredinthet¯tdilepton channel(lepton=e,μ)usingATLASdatarecorded intheyear2012attheLHC.Thedataweretakenataproton–protoncentre-of-massenergyofs

=8 TeV and correspond toan integratedluminosity of about20.2 fb1.Exploitingthe template method,and usingthedistributionofinvariantmassesoflepton–b-jet pairs,thetop quarkmassismeasuredtobe mtop=172.99±0.41 (stat)±0.74 (syst) GeV,withatotaluncertaintyof0.84 GeV.Finally,a combination withpreviousATLASmtopmeasurementsfrom

s=7 TeV datainthet¯tdilepton andtt¯lepton+ jets channelsresultsinmtop=172.84±0.34 (stat)±0.61 (syst) GeV,withatotaluncertaintyof0.70 GeV.

©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Themassofthetopquark (mtop) isanimportantparameterof theStandardModel (SM)ofparticlephysics.Precisemeasurements ofmtop provide crucial informationfor globalfits ofelectroweak parameters[1–3]whichhelpassesstheinternalconsistencyofthe SM and to probe its extensions. In addition, the value of mtop affectsthe stability ofthe SM Higgspotential, whichhas cosmo- logicalimplications[4–6].Manymeasurementsofmtop havebeen performedby the Tevatronand LHC Collaborations. Combining a selection of those, the first Tevatron+LHC mtop result is mtop= 173.34±0.27 (stat)±0.71 (syst) GeV,withatotal uncertaintyof 0.76 GeV [7].Meanwhile, a number ofnewresults havebecome available [8–13],some ofwhich aremore precisethan theabove combination. The latest ATLAS results in the t¯tlepton+jets and tt¯dilepton decay channels, both with electrons (e) and muons(μ)inthefinalstate[14],aremtop=172.33±0.75 (stat)± 1.02 (syst) GeV andmtop=173.79±0.54 (stat)±1.30 (syst) GeV, respectively.

ThisLetterpresentsanewmeasurementofmtopobtainedinthe tt¯dilepton decay channel using 2012data takenat a proton–

proton (pp) centre-of-mass energy of

s=8 TeV, with an inte- gratedluminosityofabout20.2 fb1.Theanalysisexploitsthede- caytt¯W+Wbb¯→ +νν¯bb,¯ whichisrealisedwhenboth W bosonsdecayintoachargedleptonanditscorrespondingneutrino.

In theanalysis, thett decay¯ channelsee, eμ and μμ (including

τe, μ) are combinedandreferred to asthe dilepton channel.

Single-top-quark eventswiththe samelepton final states are in-

 E-mailaddress:atlas.publications@cern.ch.

cluded in the signal. Given the larger data sample compared to Ref.[14],theeventselectionwasoptimisedtoachievethesmallest total uncertainty. The measurement is based on the implemen- tation of the template method described in Ref. [14], which is calibrated using signal Monte Carlo (MC) samples. Consequently, thetopquarkmassmeasuredinthiswaycorrespondstothemass definitionusedintheMCprogram.

2. ATLASdetector

TheATLASexperiment[15]attheLHCisamulti-purposeparti- cledetectorwithaforward–backwardsymmetriccylindricalgeom- etryandanear4π coverageinsolidangle.1Itconsistsofaninner tracking detector surroundedby a thinsuperconducting solenoid providing a 2 T axialmagnetic field, electromagneticandhadron calorimeters,andamuon spectrometer.The innertrackingdetec- torcoversthepseudorapidityrange|η|<2.5.Itconsistsofsilicon pixel,siliconmicrostrip,andtransitionradiationtrackingdetectors.

Lead/liquid-argon(LAr)samplingcalorimetersprovideelectromag- netic(EM)energymeasurementswithhighgranularity.A hadronic (steel/scintillator-tile) calorimetercovers thecentral pseudorapid- ityrange(|η|<1.7).The end-capandforwardregionsareinstru- mented withLArcalorimeters for EMand hadronicenergymea-

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominalin- teractionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeampipe.

Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axispoints upwards.Cylindricalcoordinates (r,φ)areusedinthetransverseplane,φ being theazimuthalanglearoundthe z-axis.Thepseudorapidityisdefinedintermsof the polarangleθ asη= −ln tan(θ/2).Angulardistance ismeasuredinunitsof R

(η)2+ (φ)2. http://dx.doi.org/10.1016/j.physletb.2016.08.042

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

The ATLAS Collaboration / Physics Letters B 761 (2016) 350–371 351

surementsupto|η|=4.9.Themuon spectrometersurroundsthe calorimetersandisbasedonthreelargeair–coretoroidsupercon- ductingmagnetswitheightcoilseach.Itsbendingpowerisinthe rangefrom2.0to7.5 T m.It includesasystemofprecisiontrack- ingchambersandfastdetectorsfortriggering.A three-leveltrigger system is used to select events. The first-level trigger is imple- mentedinhardwareandusesasubsetofthedetectorinformation toreduce theaccepted eventratetoatmost75 kHz.This isfol- lowedby two software-based trigger levels that together reduce the acceptedrate to 400 Hz on average depending on the data- takingconditionsduring2012.

3. DataandMCsamples

Thisanalysisisbasedon pp collision datarecordedin2012at

s=8 TeV.Theintegrateddataluminosityamountsto20.2 fb1 withan uncertaintyof 1.9% determined withthe procedures de- scribedinRef.[16].

Themodelling oftt and¯ single-top-quark signal eventsandof mostbackgroundprocessesreliesonMCsimulations.Forthesim- ulationofsignaleventsthe Powheg-Box program[17–19]isused.

The simulation of the top quark pair [20] and single-top-quark productioninthe W t-channel[21] usesmatrixelementsatnext- to-leading order (NLO) in the strong coupling constant αS, with theNLO CT10[22]partondistributionfunction (PDF)andthepa- rameter hdamp= ∞. The hdamp parameter sets the resummation scale,whichcontrolsthetransitionfromthematrixelementtothe partonshower (PS) simulation.Giventhat theeventselection de- scribedbelowrequiresleptonic decayproductsoftwo W bosons, single-top-quarkeventsinthe s-channelandt-channelare found nottocontributetothesample.

The Pythia (v6.425)program[23] withtheP2011C[24]setof tunedparameters(tune)andthecorrespondingCTEQ6L1PDF [25]

are employed to provide the parton shower, hadronisation and underlying-eventmodelling. Theuncertainties duetoQCD initial- and final-state radiation (ISR/FSR) modelling are estimated with samples generated with the Powheg-Box program interfaced to the Pythia program for which the parameters of the generation arevariedtospantherangescompatiblewiththeresultsofmea- surementsoft¯t productioninassociationwithjets[26–28].

Formtop hypothesis testing, thet¯t and single-top-quark event samplesaregeneratedforfivevaluesofmtopintherange167.5 to 177.5 GeV instepsof2.5 GeV.Foreachmtop value,theMC sam- ples are normalised according to the best available cross-section calculations, which for mtop=172.5 GeV are σtt¯ =253+1315pb [29–34]fort¯t productionand σW t=22.4±1.5 pb[35]forsingle- top-quarkproduction inthe W t-channel.The PDF + αS-induced uncertainties in these cross-sections are calculated using the PDF4LHCprescription[36]withtheMSTW200868% CL NNLOPDF [37,38],CT10 NNLO PDF [22,39] andNNPDF2.3 5f FFN PDF [40], and are added in quadrature with the uncertainties due to the choicesofthefactorisationandrenormalisationscales.

The simulation of W± or Z boson production in association withjetsisperformedwiththe Alpgen (v2.13)program[41]inter- facedtothe Pythia6 programusingtheCTEQ6L1PDFandthecor- respondingAUET2tune[42].Dibosonproductionprocesses(W W , W Z and Z Z ) aresimulatedusingthe Alpgen programinterfaced tothe Herwig (v6.520)program[43] withtheAUET2tuneandto the Jimmy (v4.31)program[44].Allsamplesare simulatedtaking intoaccount theeffects ofmultiplesoft pp interactions(pile-up) registered in the 2012 data. These interactions are modelled by overlaying simulated hits from events with exactly one inelastic (signal)collisionperbunchcrossingwithhitsfromminimum-bias eventsthat are produced with the Pythia (v8.160) program [45]

usingtheA2Mtune[46]andtheMSTW2008 LO PDF.Forthisanal- ysis,theobservedvaluesofthepile-up-relatedquantitiesμ,the meannumberofinteractionsperbunchcrossing,andnvtx,theav- eragenumberofverticesperevent,areμ=20.7 andnvtx=9.2.

Finally,thesamples undergoasimulation oftheATLAS detec- tor[47]basedon Geant4[48],andarethenprocessedthroughthe same reconstruction software asthe data. A number of samples usedtoassesssystematicuncertainties areproducedwithafaster versionofthesimulationwhich,inadditiontothefullsimulation ofthe tracking,uses smearing functionsandinterpolates particle behaviourandcalorimeterresponse,basedonresolutionfunctions measuredinfull-simulation studies,toapproximatetheresultsof thefullsimulation.

4. Dataselectionandeventreconstruction

Triggers basedonisolated single electrons ormuonswithen- ergy or momentumthresholds of 24 GeV areused. The detector objects resulting fromthe top quark pair decayare electron and muon candidates,jetsandmissingtransverse momentum(EmissT ).

Inthefollowing,thetermleptonisusedforchargedleptons (ex- cluding τ leptons)exclusively.

Electron candidates [49] are required to have a transverse energy of ET>25 GeV, a pseudorapidity of the corresponding EM cluster of |ηcluster|<2.47, withthe transition region 1.37<

|ηcluster|<1.52 between the barrel and the end-cap calorimeter excluded. The muon candidates [50] are required to have trans- verse momentum pT>25 GeV and|η|<2.5. Toreduce thecon- tamination by leptons from heavy-flavour decays inside jets or fromphotonconversions,referred toasnon-prompt (NP)leptons, strictisolationcriteriaareappliedtotheamountofactivityinthe vicinityoftheleptoncandidate[49,50].

Jetsarebuiltfromtopologicalclustersofcalorimetercells[51]

with the anti-kt jet clustering algorithm [52] using a radius pa- rameter of R=0.4. Jets are reconstructed using the local clus- terweighting (LCW) andglobalsequentialcalibration (GSC) algo- rithms[53–55]andrequiredtosatisfy pT>25 GeV and|η|<2.5.

MuonsreconstructedwithinaR=0.4 conearoundtheaxisofa jetwith pT>25 GeV arenot consideredascharged-leptoncandi- dates.Inaddition,jetswithinaR=0.2 conearoundanelectron candidate are removed and finally electrons within a R=0.4 cone around anyofthe remaining jetsare discarded.The identi- fication ofjets containing b-hadrons, b-tagging,isused forevent reconstruction and background suppression. In the following, ir- respective of their origin, jets tagged by the b-tagging algorithm are referred to as b-tagged jets, whereas those not tagged are referred to as untagged jets. Similarly, whether they are tagged or not, jets originating from bottom quarks are referred to as b-jetsandthosefrom(u,d,c,s)-quarksorgluonsaslightjets.The working point of the neural-network-based MV1 b-tagging algo- rithm [56] corresponds to an average b-tagging efficiency of70%

forb-jetsinsimulatedt¯t eventsandrejectionfactorsof5forjets containing a c-hadron and 137 for jets containing only lighter- flavour hadrons.Tomatchtheb-tagging performance inthedata, pT- and η-dependent scale factors [56], obtained fromdijet and tt¯dilepton events, are applied to MC jets depending on their trueflavour.The reconstruction ofthe EmissT isbased onthevec- torsumofenergydepositsinthecalorimeters,projectedontothe transverseplane. Muonsare includedinthe EmissT usingtheir re- constructedmomentuminthetrackingdetectors[57].

The contribution of events wrongly reconstructed as tt¯ dilepton events due to the presence of objects misidentified as leptons (fakeleptons),isestimatedfromdata[58].Thetechnique employedusesfake-leptonandreal-leptonefficienciesthatdepend on η and pT,measured inabackground-enhanced controlregion

(3)

Table 1

Theobservednumbersofeventsindataafterthepre-selectionandthefinalselec- tion.Inaddition,theexpectednumbersofsignaleventsformtop=172.5 GeV and backgroundeventscorrespondingtotheintegrateddataluminosityaregiven.Two significantdigitsareusedfortheuncertaintiesofthepredictednumbersofevents explainedinthetext.Thelowerrowsreportthematchingperformanceevaluated formtop=172.5 GeV,usingonesignificantdigitforthestatisticaluncertainties.

Selection Pre-selection Final selection

Data 36 359 9426

tt signal¯ 34 300±2700 9670±770

Single-top-quark signal 1690±110 363±23

Fake leptons 240±240 31±31

Z+jets 212±83 20.6±8.5

W W/W Z/Z Z 57±21 10.2±3.8

Signal+background 36 600±2800 10 100±770

Expected background fraction 0.01±0.01 0.01±0.00 Data/(Signal+background) 0.99±0.07 0.93±0.07 Matching efficiency [%] 78.4±0.2 95.3±0.4 Selection purity [%] 51.6±0.1 69.8±0.3 Unmatched events [%] 34.2±0.1 26.7±0.1 Wrongly matched events [%] 14.2±0.1 3.4±0.0

withlow EmissT andfromeventswithdileptonmassesaroundthe Z peak[59].

TheselectionfromRef.[14]isappliedasapre-selectionasfol- lows:

1. Events arerequired tohave asignal fromthe single-electron orsingle-muontriggerandatleastoneprimaryvertexwithat leastfiveassociatedtracks.

2. Exactly two oppositely chargedleptons are required,with at leastoneofthemmatchingthereconstructedobjectthatfired thecorrespondingtrigger.

3. In the same-lepton-flavour channels, ee and μμ, EmissT >

60 GeV is required. In addition, the invariant mass of the leptonpairmustsatisfym>15 GeV,andmustnotbecom- patiblewiththe Z masswithin10 GeV.

4. In the eμ channel the scalar sumof pT ofthe two selected leptonsandalljetsisrequiredtobelargerthan130 GeV.

5. The presence of at least two jets with pT >25 GeV and

|η|<2.5 isrequired,andatleastone ofthesejetshasto be b-tagged.

The observed numbers of events in the data after this pre- selection,togetherwiththeexpectednumbersofsignal andback- groundeventscorrespondingtotheintegrateddataluminosity,are giveninTable 1.Assumingatopquarkmassofmtop=172.5 GeV, the predicted number of events is consistent with the one ob- served in the data within uncertainties. For all predictions, the uncertaintiesareestimatedasthesuminquadratureofthestatis- ticaluncertainty, a 1.9% uncertainty inthe integratedluminosity, and a number of additional components. For the signal, these are a 5.4% uncertainty in the t¯t cross-section, or a 6.0% uncer- tainty in the single-top-quark cross-section, as given in Sect. 3.

Finally, global 4.1%, 2.2% and 2.8% uncertainties are added, cor- responding to the envelopes of the results from the eigenvector variations of the jet energyscale (JES), the relative b-to-light-jet energy scale (bJES) and the b-tagging scale factors, respectively.

The background uncertainties contain jet-multiplicity-dependent uncertainties of about 40% inthe normalisation of the Z + jets backgroundanda 100% uncertaintyinthenormalisationoffake- leptonbackground.

ThetwojetscarryingthehighestMV1weightaretakenasthe twob-jetsoriginatingfromthedecaysofthetwotopquarks,and thetwoleptonsaretakenastheleptonsfromtheleptonic W de-

cays.Fromthetwopossibleassignmentsofthetwopairs,thecom- bination leading to thelowest averageinvariant mass ofthe two lepton–b-jet pairs (mb) is retained.To estimate theperformance ofthisalgorithminMCsimulatedsamples,thereconstruction-level objectsarematchedtotheclosest generator-levelobjectbasedon a maximumallowed R, being0.1 for leptons and 0.3 for jets.

A matched objectis definedasa reconstruction-level objectthat falls within R of anygenerator-level object ofthat type, and a correct match means that this generator-level object is the one it originated from. Due to acceptance losses and reconstruction inefficiency, not all reconstruction-level objects can successfully be matchedto theirgenerator-level counterparts,resultinginun- matchedevents.Thematchingefficiencyisthefractionofcorrectly matched events among all the matched events, and the selec- tion purity isthe fractionof correctlymatched eventsamongall events,regardless ofwhetherthey could be matched ornot. The corresponding numbers formtop=172.5 GeV arereported inTa- ble 1.

Startingfromthispre-selection,anoptimisationofthetotalun- certaintyinmtop isperformed.A phase-spacerestrictionbasedon the average pT of the two lepton–b-jet pairs (pT,b) is used to obtain the smallest total uncertainty in mtop. The corresponding pT,b distribution is shownin Fig. 1(a). The smallest uncertainty in mtop corresponds to pT,b>120 GeV. The difference in shape between data and prediction is covered by the systematic un- certainty as detailed in Sect. 6. This restriction is found to also increase the fraction of correctlymatched eventsin the tt sam-¯ ple, andreduces the number ofunmatched orwrongly matched events.

Toperformthetemplateparameterisationdescribed inSect.5, an additionalselection criterion is applied, restrictingthe recon- structedmbvalue(mrecob )totherange30 GeV<mrecob <170 GeV.

Applyingbothrestrictions,thenumbersofpredictedandobserved events resulting fromthe final selection are reportedin Table 1.

Using this optimisation, the matching efficiency and the sample purity are much improved as reported in the bottom rows of Table 1, while retaining about26% of the events. Using thisse- lection, and the objects assigned to the two lepton–b-jet pairs, the kinematicdistributions inthe dataare well described by the predictions, as shown in Fig. 1 for the transverse momenta of b-jets and leptons, and for the Rb of the two lepton–b-jet pairs.

5. Templatefitandresultsinthedata

Theimplementationofthetemplatemethodusedinthisanal- ysis isdescribed inRef. [14]. Forthis analysis, the templates are simulateddistributions ofmrecob ,constructedforanumberofdis- cretevaluesofmtop.Appropriatefunctionsarefittedtothesetem- plates, interpolatingbetweendifferent input mtop. Theremaining parameters ofthe functionsare fixed by asimultaneous fittoall templates,imposinglineardependencesoftheparametersonmtop. The resulting template fit functionhas mtop asthe only free pa- rameterandanunbinnedlikelihoodmaximisationgivesthevalue ofmtop that bestdescribesthedata.Statisticallyindependentsig- naltemplates,comprisingtt and¯ single-top-quarkevents,arecon- structedasafunctionofthetopquark massusedintheMCgen- erator. Withinthestatisticaluncertainties, the sumofaGaussian distributionandaLandaufunctiongivesagooddescriptionofthe shapeofthemrecob distributionasshowninFig. 2(a)forthreeval- uesofmtop.Withthissignalchoice,thebackgrounddistributionis independentofmtop,andaLandaufunctionisfittedtoit.Thesum ofthesignaltemplateatmtop=172.5 GeV andthebackgroundis compared to data in Fig. 2(b).It gives a good description of the dataexceptfordifferencesthatcanbeaccountedforbyadifferent

Cytaty

Powiązane dokumenty

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei,