• Nie Znaleziono Wyników

Geometrical scaling and the dependence of the average transverse momentum on the multiplicity and energy for the ALICE experiment

N/A
N/A
Protected

Academic year: 2022

Share "Geometrical scaling and the dependence of the average transverse momentum on the multiplicity and energy for the ALICE experiment"

Copied!
6
0
0

Pełen tekst

(1)

Larry McLerran

a,b,c

, Michal Praszalowicz

d,

aPhysicsDept.,Bldg. 510A,BrookhavenNationalLaboratory,Upton,NY11973,USA

bRIKENBNLResearchCenter,Bldg.510A,BrookhavenNationalLaboratory,Upton,NY11973,USA cPhysicsDepartment,ChinaCentralNormalUniversity,Wuhan430079,China

dM.SmoluchowskiInstituteofPhysics,JagiellonianUniversity,S.Lojasiewicza11,30-348Krakow,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received31July2014

Receivedinrevisedform19November2014 Accepted21December2014

Availableonline24December2014 Editor:J.-P.Blaizot

We review therecent ALICE data oncharged particlemultiplicity inp–p collisions,and show that it exhibits GeometricalScaling(GS)withenergydependencegivenwithcharacteristicexponentλ=0.22.

Next,startingfromtheGShypothesisandusingresultsoftheColorGlassCondensateeffectivetheory, wecalculatepT asafunctionNch includingdependenceonthescatteringenergy W .Weshow that

pTbothinp–pandp–Pbcollisionsscalesintermsofscalingvariable(W/W0)λ/(2+λ)N

ch/S where S ismultiplicity-dependent interactionareainthetransverseplane.Furthermore,wediscusshowthe behavioroftheinteractionradiusR atlargemultiplicitiesaffectsthemeanpTdependenceonNch,and makeapredictionthatpTathighmultiplicityshouldreachanenergy-independent limit.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Recently, the ALICE Collaboration has published charged par- ticle spectra from p–p collisions at three LHC energies 0.9, 2.76 and7TeV.Thisdata,togetherwithp–PbandPb–Pbdatahasbeen subsequentlyusedtoconstructotherquantities,inparticulartotal multiplicity and mean pT asa function of charged particle mul- tiplicity Nch [1,2]. Thisdependence has beennext testedagainst hypothesisofGeometricalScaling(GS)proposedinRef.[3]witha conclusionthat“ALICEp–pandp–Pbdataatlowandintermediate multiplicitiesarecompatiblewiththeproposedscaling”withsub- stantialdeparture from scalingat largermultiplicities [2].In this Letter weshow that GSworks infact muchbetter, provided one takesintoaccount energydependenceoftheinteraction radiusat fixedmultiplicity.

The paper is organized asfollows. First we introduce the ba- sicconcepts ofGeometrical Scalingfor pT spectraandshow that the ALICEdataexhibit GS over a limitedrageof pT withenergy dependence determined by the characteristic exponent λ=0.22.

Thisvalue isslightlylower thanthe one foundfromthe analysis [4]ofsinglenon-diffractiveCMSdata[5],andtheonefound[6]in DeepInelasticScattering(DIS)[7].Next,wederivetheformulafor

*

Correspondingauthor.

E-mailaddresses:mclerran@me.com(L. McLerran),michal@if.uj.edu.pl (M. Praszalowicz).

meantransverse momentumanddiscussmultiplicity dependence oftheinteractionradius.Weuseresultsofthecalculations[8]per- formed within the Color GlassCondensate (CGC)effective theory [9]. Finally we discussthe energy dependence of the interaction radiusandshowthatverygoodscalingofmean pT isseeninthe ALICEdata.Wealsoarguethatthecharacterofthe energydepen- dencechangesforlargemultiplicitieswheretheinteractionradius should reachenergy-independent value.Suchbehaviorhastestable phenomenologicalconsequences.Wefinishwithconclusions.

Multi-particleproductionatlow andmoderatetransversemo- mentaprobesthenonperturbativeregimeofQuantumChromody- namics (QCD). Yet at high energies an overall picture drastically simplifies due to the existence of an intermediate energy scale, thesaturationmomentum Qs(x).Particle productionproceedsvia gluon scattering whose distribution is determined by the ratio pT/Qs(x) where Bjorken x corresponds to the longitudinal gluon momentum. Therefore,on dimensionalgrounds, thegluon multi- plicitydistributionisgivenintermsoftheuniversalfunctionF(

τ

) [11–13]

dNg

dyd2pT

=

SF

( τ )

(1)

where

τ =

p

2 T

Qs2

(

x

)

(2)

http://dx.doi.org/10.1016/j.physletb.2014.12.046

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. Multiplicitydistributionofchargedparticlesinp–pcollisionsat0.9TeV(blueup-triangles),2.76TeV(reddown-triangles)and7TeV(blackfullcircles)plottedas functionsofpT(left)andasfunctionsofthescalingvariable

τforλ=0.22 (right).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

isthescalingvariable.Here

Qs2

(

x

) =

Q02



x0

x



λ

(3)

isthe saturation momentum, Q0 is an arbitraryscale parameter forwhichwetake1 GeV/c,andforx0 wetake103.Ouranalysis ofGSpresentedinthepresentpaperisnotsensitivetotheactual value ofx0 and/or Q0,butonly to thevalue of λ.Bjorken x’sof colliding partons for mid rapidity production take the following form

x

=

pT

W

.

(4)

HereW=√

s isthescatteringenergyandS isatransversearea whichwill be specified later. Eq. (1)exemplifies the property of theparticlespectra knownasGeometrical Scaling(GS)where an observablethatinprincipledependsontwokinematicalvariables, suchaspTandW (orBjorkenx),dependsinpracticeonaspecific combinationof them through the scaling variable.In Eq. (1) we havesuppressed strong couplingconstant

α

s whose dependence onpT isexpectedtointroduceweakGSviolation.

Eq.(1)appliestothescatteringofsymmetricsystems(pp,AA).

For pA scattering, which we will also discuss here, there are in principletwo saturationscales:theoneoftheproton Qs(p)=Qp, andthat of thenucleus, Qs(A)=QA [14,15]. Thisissue hasbeen discussedinRef.[3]withaconclusionthat forhighenoughmul- tiplicitiesandforcentralrapiditiesthetwoscalesshouldhavethe sameenergydependence,meaningthat Qp/QA=const.Thiscon- ditionisenoughforGSoftheform(1)toholdforpAcollisionsas well.Atestofthisassumptionwillbeprovidedbytheforthcoming pAdataatadifferentLHCenergy.

Geometricalscaling[16]hasbeenintroduced inthecontextof DISatHERAandlaterextendedtoparticleproductioninhadronic collisions[4,17,18].Thesaturationscaleappearsduetothenonlin- eareffectsinpartonevolutionwithgrowingenergy.Thisevolution is in general described by the JIMWLK equation [19] which for large Nc reducesto the Balitsky–Kovchegovequation [20]. These equationspossesstravelingwavesolutionswhichexplicitlyexhibit GS[21].

Agooddescriptionoflargeenergyscattering,orequivalentlyof smallBjorkenx’s,istheeffectivefieldtheory[9]oftheColorGlass Condensate(CGC) (for an introduction andreview seeRef. [10]).

Inthe theory ofthe CGC,hadronsafter acollision stretch inthe longitudinal direction strong gluonic fields that are coherent in

thetransverse planeover theradius 1/Qs.Multi-particleproduc- tion proceeds by the decay of these flux tubes, and it has been shownthatthedominantcontributioncomesfromtheproduction ofgluonswithpTQs.Thismechanismisabletoexplaindiffer- ent features of highenergy p–p collisions including e.g. negative binomial distribution[22] orridge correlationsin highmultiplic- ityevents[23].In thispaperwe shallusepredictionsofthe CGC effectivetheoryfortheinteractionradiiasfunctionsofgluonmul- tiplicityinp–pandp–PbcollisionsdiscussedinRef.[8].

AnimmediateconsequenceofEq.(1)isthat pT spectraatdif- ferent energies fall on one universal curve ifplottedin terms of thescalingvariable

τ

.1 ThequalityofGSdependsonthevalueof theexponentλ enteringthedefinitionofthesaturationscale(3).

Inordertodetermineλinamodel-independent wayweemploya methodofratioswhereweconstruct

Rik

( τ ) =

dN

(

Wi

, τ )

dyd2pT



dN

(

Wk

, τ )

dyd2pT (5)

which,accordingto(1),shouldbe equaltounityifGSispresent.

Inpractice Rik1 in awindow

τ

min<

τ

<

τ

max.Forparticles of small pT (i.e. small

τ

),comparableto ΛQCD and/orpionmass,we donotexpecttheargumentsthatleadtoGStobeapplicable,and forlarge pT weenterintoadomainoflargeBjorken x’s(4)where GSisexplicitlyviolatedandperturbativeQCDtakesover.InEq.(5) wehaveassumedthatthenumberofchargedparticlesispropor- tional to the number of produced gluonsand the proportionally factor does not depend on energy (so-called parton–hadron du- ality). We have checked by explicit calculations of mean square deviations of Rik’s from unity that the best value of λ for the ALICE datathat givesthesmallest

χ

2 over thelargestinterval in

τ

is equal to0.22 [24]. This isillustrated in Fig. 1where in the leftpanel weplotdN/dyd2pT asfunctionsof pT andasfunctions of √

τ

for λ=0.22 (right panel). We see that spectra at differ- entenergiesoverlapwithinawindowupto√

τ

4.Inordernot to bebiasedby the logarithmic scaleof Fig. 1,we constructtwo ratios R12 andR13 corresponding to the LHC energies W1=7, W2=2.76 andW3=0.9 TeV,respectively.Theseratiosareplotted inFig. 2whereagainweplotthemasfunctionsof pT (leftpanel) andasfunctionsof√

τ

(rightpanel).Weseerelativelygoodscal- ing where the weakrise Rik’s with√

τ

can be attributed to the residualdependenceofλupon p2T [17].

The behaviorof ratiosRik shownin Fig. 2 isalmost identical asinthe caseofthe CMSdataanalyzed inRef. [4]. Howeverwe

1 Inwhatfollowsweshalluse

τwhichforλ=0 reducestopT/Q0.

(3)

Fig. 2. RatiosR12(i.e. 7TeVto2.76TeVreddown-triangles)andR13(i.e. 7TeV to0.9TeVblueup-triangles)plottedasfunctionsofpT (left)andasfunctions ofscalingvariableτ forλ=0.22 (right).(Forinterpretationofthereferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

havefoundin[4]that λCMS=0.27 ratherthan0.22 andthatthe GSwindow extendsto slightlyhigher

τ

.This maybe duetothe differenteventselection(single non-diffractiveatCMSvs. inelas- ticin ALICE)anddifferent pseudorapidity coverage (|

η

|<2.4 at CMS vs. |

η

|<0.3 at ALICE). In a recent study of GS in prompt photon production [25] the optimalrange ofλ turned out to be 0.22–0.28.These differencesinλ maybe infact dueto some ad- ditionalweak energydependence of the multiplicity distribution (1),like the one of

α

s or some energy dependence ofthe unin- tegratedglue.Moreoverone shouldbareinmindthatthereisno factorizationtheoremformultiparticleproductioninkT-dependent gluon densityformalism. StudyingALICE datawe have found for example[24],thatbetterGSqualityisachievedforthedifferential cross-section,ratherthan forthemultiplicity,withλ0.32.Fur- therdiscussionoftheseissueswillbepresentedelsewhere[24].

HavingestablishedtheexistenceofGSintheALICEdatawecan nowproceedtotheanalysisoftotalmultiplicityandpT.Inorder tocalculateintegralsoverpTweneedaJacobian:

pT

= ¯

Qs

(

W

) τ

1/(2+λ)

,

dp2T

=

2

2

+ λ

Q

¯

s2

(

W

) τ

−λ/(2+λ)d

τ ,

(6) wherewehaveintroducedanaverage saturationscale

Q

¯

s

(

W

) =

Q0



W

Q0



λ/(2+λ)

,

(7)

whichcanbethoughtofasasolutionoftheequation

Qs2

( ¯

Qs

/

W

) = ¯

Qs2

.

(8) Notethatduetoourchoice ofx0=103 inEq.(3) pT and Q0 in Eq.(7)areinGeVandW isinTeV.

Itfollowsthat dNg

dy

=

A SQ

¯

s2

(

W

)

(9)

where A isanintegralovertheuniversalfunctionF(

τ

) A

=

2

π

2

+ λ



τ

2λ F

( τ )

d

τ

(10)

andassuch isenergy-independent.Theconstant A can, however, dependonparticlespeciesproducedinthecollision.

TheuniversalfunctionF(

τ

)isnotknownfromfirstprinciples, however,in mostphenomenologicalapplications wheregood de- scriptionofthepT spectraisgivenintermsofTsallisparametriza- tion,onecanshowthat[26]

which is energy-dependent. Here again pT and Q0 in Eq. (12) are in GeV and W is in TeV. It follows that for the ALICE data

τ

max700, 1300 and 1700 for scattering energies W = 0.9,2.76 and 7 TeV, respectively. Since n is here numerically the highest power, the contributions of the unphysical tail, i.e. from

τ

>

τ

max,are dumped approximatelyas(1/

τ

max)n/21 multiplied by a small coefficient (n

κ

)n. Therefore in what follows we shall neglect finite energy effects on the integrals of F(

τ

). We have checkednumericallythatthecontributiontothemeantransverse momentumcomingfromthiseffectisatthepermillelevel.

Eq.(9)canbethoughofasadefinitionofthesaturationscale, whichisessentiallygivenasgluonnumberdensitypertransverse area. One should howeverkeep in mindthat the transverse area itself doesdepend onmultiplicityaswell, sinceitcorresponds to the overlaparea oftwo collidingsystemsatfixed impactparam- eter b. The smaller b the larger S. This dependence will be of importance in the following, where we discuss mean pT depen- denceonmultiplicity.

ItfollowsfromEq.(9)thatparticlemultiplicityinmidrapidity growslikeapowerofthescatteringenergy,whichisinremarkable agreement withthe LHC data [27]. The power of this growth is solelygivenbytheenergyriseoftheaveragesaturationscale Q¯s2. Numerically for λ=0.22, we findthat λ/(2+ λ) 0.099, which again is in agreement with experimental results [27]. From this simple analysiswe conclude that S is energy-independent over theLHCenergyrange(orveryweaklydependentforlargerenergy span).

Whenthisformulaisappliedtominimumbiashadron–hadron collisions, we are basically fixing the averagehadron radius. This average radius seems to be a slowly varying function of energy.

However, and this will be of primary importance in the follow- ing, if we fix dNg/dy and then change energy, then S has to change with energy as well in agreement with Eq. (9). This is becausedifferentradiiaresampledatthedifferentimpactparam- eters. Ifwe varythe densityofparticleper unit area, by varying thesaturationmomentum,andthenrequirefixedmultiplicity,we necessarilywillsampledifferentimpactparameterscorresponding todifferentareas.

Inheavyioncollisions Sisequaltothegeometricaltransverse size of the overlap of the colliding nuclei. As such it is related to the centrality of the event and, in consequence, to the event multiplicity.ItislessclearwhatisgeometricalinterpretationofS inp–pcollisions.Inamodelwithanimpactparameterdependent saturationscale Qsb(b)[29]wehave:

Q

¯

s2S

=



d2rQsb

(

r

)

2

,

(13)

where the integral extends over the overlap area S of collid- ing protonsata givenimpactparameterb.Itisthereforeobvious that alsoin thecaseofp–p scatteringthereshould bea relation between S andmultiplicityinagivenevent.Indeed,thisdepen- dence hasbeen calculated within the CGC framework [8], which

(4)

Fig. 3. EnergydependenceofmeanpT. CompilationofdatafromRef.[28].Solid linecorrespondstothepowerlawbehaviorofEq.(14):0.227×W0.099,whilethe dashedlinecorrespondstotheCMSlogarithmicfitaimedat describingalsolow energydata:0.4130.0171ln s+0.00143ln2s,withW2=s.

predicts that S dependson Nch2/3 linearly, andthen saturatesat some constant value. This behavior has a simple geometrical in- terpretation: number ofparticles produced in hadronic collisions is proportional to the active overlap volume. Once the maximal volumeisreached, furthergrowth ofmultiplicityis duesolelyto fluctuations.

AveragepTcanbeeasilycalculatedusingEqs.(1)and(6)giving



pT

 =



pT dNg dyd2pTd2pT



dNg

dyd2pTd2pT

= ¯

Qs

(

W

)

B

A (14)

where B

=

2

π

2

+ λ



d

τ τ

12−λF

( τ ).

(15)

Eq.(14)hastwoimportantconsequences.First,itgivesrightaway theenergydependenceofpTwhichisillustratedinFig. 3where goodagreementwiththedatatakenfromRef. [28]canbeeseen.

Second, at some fixed energy W0 one can express Q¯s(W0) in termsofthegluonmultiplicity(9),whichgives



pT

|

W0

=

B A



dNg

/

dy A S

(

dNg

/

dy

) |

W0

.

(16)

Note that for fixed dNg/dy interaction size S in Eq. (16) de- pends,asexplained above, onthe referenceenergy W0 andalso ondNg/dy itself,whichisrelatedtothenumberofchargedparti- clesNchinthekinematicalrangeofagivenexperiment:

Nch

=

1

γ

y



y

dNg

dy dy

.

(17)

Herethecoefficient

γ

relatesgluonmultiplicitytothemultiplicity ofobservedchargedhadronswithin therapidity interval y.For ALICEdataused inthispaper y=0.6.Theinteraction radius R characterizingthe volumefromwhich theparticles are produced andwhichis relatedto S=

π

R2,dependsin a naturalwayon the third root ofdNg/dy, i.e. R=R(3

dNg/dy)=R(3

γ

Nch) [8]

andonthecollisionenergyW0.

In the following we shall use a slightly modified formulafor

pT,whichtakesintoaccountnonperturbativeeffectsandcontri- butionsfromtheparticlemassesencodedinaconstant

α

:



pT

|

W0

= α + β

Nch

R

(

3

γ

Nch

)|

W0

.

(18)

Fig. 4. R(N1g/3)for threedifferentenergies.Thelowestsolid(black)curvecorre- spondstotheparametrization(19)atW0=7 TeV,whereastwouppersolidcurves correspondto(19)multipliedbytheenergy-dependent factor(W0/W)λ/(2+λ)for W=2.76 TeV (red)and0.9 TeV(blue).Highmultiplicitysaturationisschematically depictedbydashedlines.Verticalthindashedlinescorrespondtothehighestmul- tiplicitiesanalyzedbytheALICECollaborationat0.9 TeV(mostleftblue),2.76 TeV (middlered)and7 TeV(mostrightblack).(Forinterpretationofthereferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Here

α

andβareconstantsthatdonotdependonenergy.Formula (18)hasbeenproventoworkvery wellinp–pat7TeVandalso inp–Pbcollisionsat5.02TeVattheLHC[3].

The interaction radius R(3

dNg/dy) has been calculated in Ref.[8].HereweshallusetheparametrizationofRef.[3]:

Rpp

(

x

)

=

⎧ ⎨

0

.

387

+

0

.

0335x

+

0

.

274 x2

0

.

0542 x3 if x

<

3

.

4

1

.

538 if x

3

.

4

[

fm

],

(19)

forp–pcollisionsat7TeVand RpPb

(

x

)

=

⎧ ⎪

⎪ ⎨

⎪ ⎪

0

.

21

+

0

.

47 x if x

<

3

.

5 1

.

184

0

.

483 x

+

0

.

305 x2

0

.

032 x3 if 3

.

5

x

<

5

2

.

394 if x

5

[

fm

],

(20)

forp–Pbcollisionsat5.02TeV.

In our analysis of the 7 TeV ALICE data, it turns out we are only sensitive to radii where we are in the first interval for the dependence of R on multiplicity. This is the region where im- pactparameterisvarying.Intheveryhighmultiplicityregion,the radiussaturatesandatlowerenergiesithappensforlowermulti- plicities.

The energydependenceof(18)followsfromthe generalform givenbyEq.(14).Inordertofindanexplicitformulaformean pT atanyscatteringenergyW ,i.e. forpT|W,onehastorecompute R(3

γ

Nch),but–asaconsequenceofEq.(14)–oneshouldobtain that



pT

|

W

= α + β

Nch R

(

3

γ

Nch

) |

W

= α + β



W

W0



λ/(2+λ)

Nch

R

(

3

γ

Nch

)|

W0

(21)

whereW0 correspondstotheenergyforwhichtheinteractionra- diushasbeencomputed. Forp–p W0=7 TeV ifweuse Rpp from Eq. (19), and for p–Pb W0=5.02 TeV corresponding to RpPb of Eq.(20).

Eq. (21) implies that the effective interaction radius at fixed multiplicityvarieswithenergyas(W0/W)λ/(2+λ)R|W0.Thisisde- pictedinFig. 4whereweplotR(N1g/3)forthreedifferentenergies.

(5)

Fig. 5. MeanpTinp–pcollisionsforthreedifferentLHCenergies7TeV(fullblack circles),2.76TeV(fullreddown-triangles)and0.9TeV(fullbluedown-triangles) togetherwith theoretical parametrizationsofEq. (21).Solid linescorrespondto theinteractionradiiR showninFig. 4asthesolidlinesaswell,whereasdashed linesshowthechangeinthemultiplicitydependencecausedbysharpR saturation showninFig. 4asdashedlines.(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

Thelowestsolid (black)curve correspondsto theparametrization (19)atW0=7 TeV,whereastwouppersolidcurvescorrespondto (19)multipliedbytheenergy-dependent factor(W0/W)λ/(2+λ)for W=2.76 TeV (red)and0.9 TeV(blue).

Itishoweverclearthatthepowerlawincreaseofeffectivein- teractionradius atlow energieshastotamed atsome point.Itis not possible ina model-independent way to find how thisactu- allyhappens.Therefore wehaveassumedasimplistic modelthat radiiatallenergiessaturateatabout1.5 fm,avaluecorresponding totheCGCpredictionat7 TeV.ThisisshowninFig. 4bydashed linescorrespondingtothesharpcut-offoftheinteractionradii.Of course,the sharpcut-off is a verynaive assumption andin real- itytheapproachtoradiussaturationiscertainlymorecomplicated assuggestedbythedisagreementofthe0.9TeVwithfixedradius saturationhypothesis.Thisissuecan bealsoaddressedbyrevert- ingthelogicandbyextractingtheinteractionradiusfromthedata.

AnattemptinthisdirectionisbrieflydiscussedinRef.[30].

Wecannowchecktheseideas againstexperimentusingALICE dataonp–p,p–PbandPb–Pbscattering[1,2].Letusfirstconsider the case whereinteraction radii at different energies saturate at differentvaluescorrespondingtothesolidlinesinFig. 4.

Wehaveusedthep–pdataat7TeVasthereferencefittingto itformula(18)withthefollowingresult:

α =

0

.

268 GeV

, β =

0

.

153 GeV fm

, γ =

1

.

138

.

(22) Onewouldnaivelyexpect

γ

3 2

1

y

whichforALICEpseudo-rapidity interval|

η

|<0.3 wouldgive 2.5 rather than 1.138. Predictions for other two LHC energies follow from Eq. (21) with no other parameters. The result is plotted in Fig. 5 and one can see good but not perfect agreement with the data. One can observe that the 2.76 TeV points (red down- triangles) at higher multiplicities tend towards the 7 TeV curve, andthattwolast0.9 TeVpoints(blueup-triangles)seemtoshow thesimilartendency. Thisbehaviorcanbe attributedto thefixed valuesaturationofR asdepictedinFig. 4bythedashedlines.The effectoffixed R isshownbythe dashed linesinFig. 5.Onecan seethat2.76 TeVdatafollowquitecloselythefixedsaturationra- dius prediction starting from Nch17, whereas the 0.9 TeV are wellbelowthedashedline.

It is important to note at this point that the fit leading to Eq. (22) is performed over the multiplicities measured at 7 TeV that correspond to the mostright (black dashed) vertical linein

Fig. 6. MeanpTinp–pcollisionsat7TeV(fullblackcircles),inp–Pbcollisions at5.02TeV(fullbrowndiamonds)andinPb–Pbcollisionsat2.76TeV(fullpurple squares)togetherwithparametrizationsofEqs.(18)and(24).(Forinterpretation ofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Fig. 4.Onecanseethatthefitisdriventotallybythealmostlinear rise ofR with N1g/3 withsome sensitivitytothecurvaturebefore saturation,anddoesnotdependonthevalueofthesaturationra- dius.Onthecontrary,lowerenergydatainfixedsaturationradius scenario,aremoresensitivebothtothecurvatureandthevalueof the saturation radius forwhich,however, we do not havemodel calculation. Therefore our analysiscan be only qualitative atthis point. With moredata athigher multiplicities one could make a globalfittodisentanglethefunctionaldependenceofR onmulti- plicityinamodel-independent way.

AnalogouslywecancalculatepTforp–Pbcollisionsusingthe samevaluesofparameters(22)withR=RpPbofEq.(20).There- sultisplottedinFig. 6.ForcomparisonwealsoplotinFig. 6pT forp–pcollisionsat7TeV.

Finallywewouldliketocheckifmean pTinPb–Pbcanbealso describedbyformula(18).Unfortunatelythereisnocalculationof the interactionradiusdependenceondNg/dy forheavy ioncolli- sions.Makingtheplausibleassumptionthat

RPbPb

=

const

· 

3

Nch (23)

whichsimplystatesthatthesaturationradiuswhereformula(23) should flatten is much larger than in the case of p–p and p–Pb collisions, andshouldnot play anyrole intheregion wheredata for thelatter reactions are available. We haveperformeda fit to thePb–Pbdatausingthefollowingformula



pT



PbPb

= α

PbPb

+ β

PbPb

Nch

3

Nch (24)

obtaining

α

PbPb

=

0

.

43 GeV,

β

PbPb

=

0

.

11 GeV

.

(25) ThedataandthefitarealsoplottedinFig. 6.

Yet another illustration of the mean pT scaling is shown in Fig. 7 where we plot pT as a function of the scaling variable (W/W0)λ/(2+λ)

Nch/Sbothforp–pandp–Pbcollisions.Wesee quitesatisfactoryscalingincontrarytotheclaimofRef.[2]where the scaling variable has not been rescaled by the energy factor (W/W0)λ/(2+λ). We cannot superimpose the Pb–Pb data on the plot in Fig. 7 because we do not know the absolute normaliza- tionofRPbPb (23),whichcanbefoundonlybyexplicitcalculation withintheCGCeffectivetheory.

From thissimpleexercise wemayconcludethat mean pT de- pendenceonchargedparticlemultiplicitycanbewelldescribedin anapproachbasedontheColorGlassCondensateandGeometrical Scaling. More understandingis certainly requiredas farasheavy

(6)

Fig. 7. MeanpTinp–pcollisionsat7TeV(fullblackcircles),2.76TeV(fullred down-triangles),0.9TeV(fullblueup-triangles)andinp–Pbcollisionsat5.02TeV (fullbrowndiamonds)plottedintermsofscalingvariable(W/W0)λ/(2+λ)

Nch/S. Forp–pW0=7 TeV andforp–PbW0=5.02 TeV.(Forinterpretationoftherefer- encestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

iondataareconcerned, although anonset ofGSinnuclear colli- sionshasbeenalreadyreported[18,25].Wehaveestablishedthat ALICEdataonchargedparticlemultiplicityinp–pcollisionsexhibit GeometricalScalingwithinareasonablewindowinscalingvariable

τ

withexponentλ=0.22.Therearesomedifferencesinthevalue ofλextractedfromdifferentexperimentsanddifferentreactions, however,allresultsfallwithinawindow0.22–0.32.Furtherstudies tounderstandthesefineeffectsareclearlyneeded.Themainfind- ingof thepresentwork concernsthe energydependenceofpT whichisgivenbytheenergydependenceoftheaveragesaturation scale Q¯s(W).Ourfinal plot, Fig. 7,demonstrates very goodscal- ingofpTbothinp–pandp–Pbcollisions.Newresultsathigher energies,especiallyinthecaseofp–Pb,willprovideanimportant testoftheseideas.

Wehavealsoarguedthattheinteractionradiiatdifferentener- giesshould forlarge multiplicities converge tosome fixed value.

Such tendency is clearly seen at 2.76 TeV and presumably at 0.9 TeV at multiplicities above 20. Our simplistic sharp cut-off modelfailstodescribe0.9 TeVdata,butthatcouldbepresumably curednotaffectingtheotherenergies,byallowingforasomewhat largervalue ofthe saturationradius andcareful modeling ofthe curvaturebeforesaturation.Wefinditquiteunexpectedthatsuch simpleobservable aspTcanprovidesuchnontrivialinformation ontheenergyandmultiplicitybehavioroftheinteractionradius.

Acknowledgements

This research of M.P. has been supported by the Polish NCN grant2011/01/B/ST2/00492.Theresearch ofL.M.issupported un- derDOEContractNo.DE-AC02-98CH10886.

References

[1]B.B.Abelev,etal.,ALICECollaboration,Eur.Phys.J.C73(2013)2662,arXiv:

1307.1093[nucl-ex].

[2]B.B.Abelev,et al.,ALICE Collaboration,Phys. Lett.B727(2013)371,arXiv:

1307.1094[nucl-ex].

[3]L. McLerran, M. Praszalowicz, B. Schenke, Nucl. Phys. A 916 (2013) 210, arXiv:1306.2350[hep-ph].

[4]L.McLerran,M.Praszalowicz,ActaPhys.Pol.B41(2010)1917,arXiv:1006.4293 [hep-ph];

L.McLerran,M.Praszalowicz,ActaPhys.Pol.B42(2011)99,arXiv:1011.3403 [hep-ph].

[5]V.Khachatryan,etal.,CMSCollaboration,J.HighEnergyPhys.1002(2010)041, arXiv:1002.0621[hep-ex];

V.Khachatryan,etal.,CMSCollaboration,Phys.Rev.Lett.105(2010)022002, arXiv:1005.3299[hep-ex].

[6]M. Praszalowicz, T. Stebel, J. High Energy Phys. 1303 (2013) 090, arXiv:1211.5305[hep-ph].

[7]C. Adloff, et al., H1 Collaboration, Eur. Phys. J. C 21 (2001) 33, arXiv:

hep-ex/0012053;

S. Chekanov,etal.,ZEUSCollaboration,Eur.Phys. J.C21(2001)443,arXiv:

hep-ex/0105090.

[8]A.Bzdak,B.Schenke,P.Tribedy,R.Venugopalan,Phys.Rev.C87(2013)064906, arXiv:1304.3403[nucl-th].

[9]L.D. McLerran,R. Venugopalan,Phys. Rev.D 49(1994) 2233,arXiv:hep-ph/

9309289;

L.D. McLerran,R. Venugopalan,Phys. Rev.D 49(1994) 3352,arXiv:hep-ph/

9311205;

L.D. McLerran,R. Venugopalan,Phys. Rev.D 50(1994) 2225,arXiv:hep-ph/

9402335.

[10]K.Fukushima,ActaPhys.Pol.B42(2011)2697,arXiv:1111.1025[hep-ph].

[11]D.Kharzeev,M.Nardi,Phys.Lett.B507(2001)121,arXiv:nucl-th/0012025.

[12]D.Kharzeev,E.Levin,Phys.Lett.B523(2001)79,arXiv:nucl-th/0108006.

[13]D.Kharzeev,E.Levin,M.Nardi,Nucl.Phys.A730(2004)448,arXiv:hep-ph/

0212316;

D.Kharzeev,E.Levin,M.Nardi,Nucl.Phys.A743(2004)329(Erratum);

D.Kharzeev,E.Levin,M.Nardi,Nucl.Phys.A747(2005)609,arXiv:hep-ph/

0408050;

D.Kharzeev,E.Levin,M.Nardi,Phys.Rev.C71(2005)054903,arXiv:hep-ph/

0111315.

[14]Y.V. Kovchegov, A.H. Mueller, Nucl. Phys. B529 (1998) 451, arXiv:hep-ph/

9802440.

[15]A. Dumitru, L.D. McLerran, Nucl. Phys. A 700 (2002) 492, arXiv:hep-ph/

0105268.

[16]A.M.Stasto, K.J.Golec-Biernat,J.Kwiecinski,Phys. Rev.Lett.86 (2001)596, arXiv:hep-ph/0007192.

[17]M.Praszalowicz,Phys.Rev.Lett.106(2011)142002,arXiv:1101.0585[hep-ph].

[18]M.Praszalowicz,ActaPhys.Pol.B42(2011)1557,arXiv:1104.1777[hep-ph];

M.Praszalowicz,in:Proceedingsofthe47thRencontresdeMoriond,LaThuile, 2012,p. 265,arXiv:1205.4538[hep-ph].

[19]J.Jalilian-Marian,A.Kovner,A.Leonidov,H.Weigert,Nucl.Phys.B504(1997) 415,arXiv:hep-ph/9701284;

J.Jalilian-Marian,A.Kovner,A.Leonidov,H.Weigert,Phys.Rev.D59(1998) 014014,arXiv:hep-ph/9706377;

E. Iancu, A.Leonidov,L.D. McLerran, Nucl. Phys. A 692(2001) 583, arXiv:

hep-ph/0011241;

E.Ferreiro,E.Iancu,A.Leonidov,L.D.McLerran,Nucl.Phys.A703(2002)489, arXiv:hep-ph/0109115.

[20]I.Balitsky,Nucl.Phys.B463(1996)99,arXiv:hep-ph/9509348;

Y.V.Kovchegov,Phys.Rev.D60(1999)034008,arXiv:hep-ph/9901281;

Y.V.Kovchegov,Phys.Rev.D61(2000)074018,arXiv:hep-ph/9905214.

[21]S. Munier,R.B.Peschanski, Phys.Rev.Lett.91(2003) 232001,arXiv:hep-ph/

0309177;

S. Munier, R.B. Peschanski, Phys. Rev. D 69 (2004) 034008, arXiv:hep-ph/

0310357.

[22]F.Gelis,T.Lappi,L.McLerran,Nucl.Phys.A828(2009)149,arXiv:0905.3234 [hep-ph].

[23]A.Dumitru,K. Dusling,F.Gelis,J.Jalilian-Marian,T.Lappi, R.Venugopalan, Phys.Lett.B697(2011)21,arXiv:1009.5295[hep-ph].

[24] A.Francuz,M.Praszalowicz,inpreparation.

[25]C. Klein-Bösing,L. McLerran,Phys. Lett.B734(2014) 282,arXiv:1403.1174 [nucl-th].

[26]M.Praszalowicz,Phys.Lett.B727(2013)461,arXiv:1308.5911[hep-ph].

[27]K. Aamodt,et al.,ALICE Collaboration,Eur.Phys. J.C65(2010)111, arXiv:

0911.5430[hep-ex].

[28]V.Khachatryan,etal.,CMSCollaboration,Phys.Rev.Lett.105(2010)022002, arXiv:1005.3299[hep-ex].

[29]P. Tribedy, R. Venugopalan, Nucl. Phys. A 850(2011) 136, arXiv:1011.1895 [hep-ph];

P.Tribedy,R.Venugopalan,Nucl.Phys.A859(2011)185(Erratum).

[30]M.Praszalowicz,arXiv:1410.5220[hep-ph].

Cytaty

Powiązane dokumenty

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

When saturation momentum is the only scale for physical processes, different observables exhibit geometrical scaling (GS).. We show a number of examples of GS and its violation

In summary, all of the MCs underestimate the amount of energy in the forward region relative to the central region, in both the minimum bias data and the underlying event, with

34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei,

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Transverse mass and rapidity spectra were measured in the SPS energy range for three centrality

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c