• Nie Znaleziono Wyników

Phase / rad

N/A
N/A
Protected

Academic year: 2022

Share "Phase / rad"

Copied!
36
0
0

Pełen tekst

(1)

High Resolution

Transmission Electron Microscopy HR TEM/ HREM

TEM LAB

II

IMIM PAN – KRAKÓW – 2019 Jerzy Morgiel

j.morgiel@imim.pl

(2)

Contrast in TEM

„Amplitude contrast”

„Phase contrast”

HREM

Diffraction contrast

Mass/Thickness contrast

resolution ~ 2 nm /limited by diffraction at

objective aperture/

resolution ~ 0.2 nm

/limited by “lenses” /

(3)

“idea” of PHASE CONTRAST

• electron plane wave interact with crystal in a way:

„some electrons passing regions of positive potential, i.e. atomic nuclei are accelerated,  is reduced and the phase is advanced by an amount proportional to the

potential at the scattering site /in reference to “passing” i.e. nondiffracted beam/

• for a thin crystal i.e. <10 nm (weak phase object - WPO) :

= amplitude changes caused by inelastic scattering are small

= phase changes caused by elastic /dyf/ scattering are small __(electrons are diffracted only once!)

one can regard crystal as a weak phase object and apply kinematical theory of electron diffraction

(otherwise multiple scattering =>dynamical theory)

J.L.Hutchinson, School on EM, Berlin 2000

(4)

Phase contrast is generated when primary and scattered beams recombine

for a WPO with ~/2 phase shift nearly no amplitude contrast

1949 - Scherzer: relation between

phase shiftand {f/defocus + C

s

/obj. ast.. + 1/d/diff. angle }

C

S

2f

2

dla jednego  (1/d)!

sin  is close to unity over large range of 1/d

hkl

at

„Scherzer focus” f

Scherzer

= - C

S1/2

S

wave function in image plane: 

T

(R) = F.T.

-1

{F.T. [(k)] exp(-i )}

image contrast depends on: I(R) = 

T

(R) 

2

(5)

TEM IMAGE SAED PATTERN

Specimen OL

Proj.

Lens

Remove OLA Specimen

OL Apert.

Intermediate Lens

Proj.

Lens

1st Image

OL

Back Focal Plane Remove SAA

2nd image

Intermediate Lens

Conditions for HREM imaging and Selected Area Diffraction

change lens strength!

BF

HR

(6)

Usual d

Usual d-- spacings (10 spacings (10 Å -Å -1 Å1 Å) >>> ) >>>  Radius of Ewald sphere (R

Radius of Ewald sphere (R E E= 1/ = 1/  )>>> g spacings)>>> g spacings

ZOLZZOLZ FOLZFOLZ SOLZSOLZ

R REE OO

g ghk0hk0hk0hk0 000000

Conditions for obtaininf electron diffraction/ Ewaldasphere

g

hkl

- diffraction vector in reciprocal space

s - deviation from exact Bragg condition

(7)

Lattice imaging/ lattice fringes

„tilted beam”

illumination

„on axis” two beam illumination

„on axis” two beam illumination

lattice imaging structure imaging

optical axis

spacing of fringes/ spots equals to spacing of diffracting planes

fringes/ spots may show no relation with position of planes/ atomic columns !!!

(8)

000

hkl

1/g 1/g

hkl hkl

=d =d

hklhkl

Lattice Fringes Lattice Fringes

g

hkl

g

hkl

HREM : Lattice imaging

HREM : Lattice imaging

(9)

Imaging Imaging

with only 1 with only 1 beambeam

Diffraction Diffraction contrast contrast (BF,DF) (BF,DF) Defect Defect Analysis Analysis

OL Aperture OL Aperture

Imaging with Multiple Imaging with Multiple Beams (HREM)

Beams (HREM)

Increasing number Increasing number of beams increases of beams increases resolution!

resolution!

HREM : Structure imaging

HREM : Structure imaging

(10)

7 beams HREM (lattice) image 7 beams HREM (lattice) image

002 111 111

111 111

002

(002)(002) (002)(002)

(111) (111)

(111) (111)

HREM : Structure imaging

HREM : Structure imaging

(11)

HREM : The imaging step HREM : The imaging step

(002 (002

)) (111 (111

)) (111 (111 ))

++ ++

(12)

HREM - Part I.

„Classical” approach = „thin object” + „Scherzer defokus”

( „direct (?) corelation of image with the structure”)

Gun (FEG)

e

-

sample

„thin object”

Objective lens

image HREM

F.T.

V(R)

CTF F.T.

(-1)

(k)

(R) =

(k)*V(R)

(R)*CTF

F.T.{(R)*CTF}

T

(R) = F.T.

(-1)

{F.T.[(R)*CTF]}

I(R) = 

T

(R) 

2

CTF

(13)

HREM - „achievements”

CdTe: [110] zone axis Scherzer defocus

/Stacking fault + edge dislocation; note

bending of SF caused dislocation strain field/

Scherzer underfocus /obj. lens weakened from Gasian „focus”;

atoms „black”

Scherzer overfocus /obj. lens excited

over Gasian „focus”;

atoms „white”

(14)

„atoms” white „atoms” black

Au/ amorphous Ge (CTF + Optical Diffraction Pattern, + HREM Image

(15)

HREM - „light” & „heavy” atoms

NbO

x

Nb O

radiation damage

Hutchinson at. al., JEOL News, 37E(2002)2

(16)

Removal of noise

HR Procesed HR

FT

CTF

mask

(17)

von Rose corrector:

series of two hexapole and two transfer lenses

Astigmatism correction

Hutchinson, JEOL News 37E(2002)2

2-fold astigmatism corrected 3-fold astigmatism corrected

CdSe/C Hutchinson 02

obniżony „phasekontrast”

Au/C, Hewitt 89

silny „phasekontrast”

(18)

cont.

„3- fold astimatism increases diameter of diffraction discs producing spurious contrast up to several nm”

Hutchinson 2002

Granica 3 folia Au

„zlokalizowany”

kontrast na uskoku (po usunięciu

astygmatyzmu trójosiowego)

(19)
(20)

HREM: limitation of „classical” approach; boundaries

Si / CoSi2: type CaF ( difference between d111and d200 ~1.2%)

200 kV, defocus f = -90 nm, thickness = 6 nm

approximation „thin object” O.K. for Si – not O.K. for CoSi2 Coene at. al. Phillips Electron Optics Bulletin, 132(1992)15

111

?

200

intercolumn distance change upto 20% !

focus

(21)

Scherzer

theoretical resolution, information limit

HREM (Ultra HREM) - part II

Image reconstruction - „through focus image series”

„on axis-” or „on - line holography”

way beyond „Scherzer defocus” up to „information limit”

(h1k1l1), (h2k2l2), (h3,k3,l3)

(22)

HREM - „on-axis” holography - application

Ba2NaNb5O15

Coene at al. Electron Optics Bulletin, 132 (1992) 15

images reconstructed (!) from focal series

amplitude phase

exp erimental

images(!)

+ info. o grubości folii

Ba2NaNb5O15

(23)

Computer modelling (!) [0001]

reconstruct. image

HREM - „on-axis” holography - WR/02.2002/

„Scherzer” image [0001]

acquiredrealimage s (!)

(24)

HREM - „of-axis” holography

Gabor Möllenstedt and Düker in 1955 Geometry ofelectronholography

no voltageon biprism positivevoltage on biprism wavesfromobjectandreference

. not overerlap overlap(forming hologram) (positively

chargedwire)

Möllenstedt Biprism

(25)

HREM - „of-axis” holography (c.d.)

Hollography allows to obrain:

3D thin foil thicknessmaps

2D electric & magnetic potential maps

(26)

HREM - „of-axis” holography (cont.)

Applications: observations of quantum doth, quantum wells

(27)

Phase-Modulation at pn-Junctions

x

n p

Phase-Modulation of Electron Wave

t0

t0 t

Phase-Shift at pn-Junction

=   (V

0

t + V

pn

(t – 2 t

0

))

Only valid for kinematic conditions!

Interaction constant

(0.00729 V-1 nm-1 for 200 kV) V0 Mean inner potential

( 12 V for Si)

t Specimen thickness

Vpn Potential variation at pn-junction ( 0.7 ... 1.2 V)

t 0 Thickness of dead layers

W.D. Rau et al., PRL 1999

(28)

TEM-Image of FIB-Lamella

Sample: SEMATECH #16, 250 nm Gate Length Thickness of Lamella: 200 nm

(29)

n-MOSFET-Hologram

Hologram

Sample: SEMATECH #16, 250 nm Gate Length, Gate 1 Microscope: Philips CM200FEG ST/Lorentz, UA = 200 kV Biprism Voltage: UF = 160 V, Field of View: w = 860 nm

Fringe Spacing: s = 3.8 nm, Fringe Contrast in Reference-Hologram: µ = 0.05

(30)

n-MOSFET

Phase / rad

Sample: SEMATECH #16, 250 nm Gate Length, Gate 1

Approximation for Depletion Region Potential: Vpn 0.5 V

Amplitude Phase

(31)

p-MOSFET

Sample: SEMATECH #16, 250 nm Gate Length, Gate 2

Approximation for Depletion Region Potential: Vpn  0.7 V

Phase / rad

Amplitude Phase

(32)

Comparison

Sample: SEMATECH #16, 250 nm Gate Length

n-MOSFET p-MOSFET

(33)

„HREM”  HAADF-STEM

(34)

„HREM”  HAADF-STEM

Al72Ni20Co8

(35)

Structure

Structure –– Image relationshipImage relationship

• • Only for very thin crystals (kinematic scattering) and Only for very thin crystals (kinematic scattering) and under proper recording conditions (Scherzer defocus) under proper recording conditions (Scherzer defocus)

HREM image

HREM image contrasts contrasts may be DIRECTLYmay be DIRECTLY interpretedinterpreted in in terms of position of atomic columns

terms of position of atomic columns

• • Otherwise, HREM image contrast interpretation must be Otherwise, HREM image contrast interpretation must be done by

done by MATCHING experimental and CALCULATED/ MATCHING experimental and CALCULATED/

SIMULATED

SIMULATED imagesimages

• • Although a direct retrieval of the structure from Although a direct retrieval of the structure from HREM HREM experimental images

experimental images is usually impossible, though these is usually impossible, though these images

images always contain richalways contain rich crystallographic informationcrystallographic information

(36)

HREM image interpretation HREM image interpretation

•• Useful tools :Useful tools :

•• Electron Microscopy Simulation SoftwareElectron Microscopy Simulation Software

Structure Modeling tools (complex supercells)Structure Modeling tools (complex supercells)

Image Processing (Fourier Analysis) Image Processing (Fourier Analysis)

Time requirements Time requirements

Eye / ruler Eye / ruler

Detail levelDetail level

Fourier Components Fourier Components

Analysis Analysis

Detailed Contrast Detailed Contrast

Interpretation Interpretation

Software for Software for Digital Analysis Digital Analysis

Software for Software for

Image Simulation Image Simulation

Cytaty

Powiązane dokumenty

Legendarny, ośmielę się użyć słowa „kultowy”, miesięcznik „Non-Stop”, który od 1988 roku ukazuje się w nowej, kolorowej szacie graficznej, w 1990 przeżywa poważny

Marek Biarda (Życie kulturalne miasta Siedlce w latach 1975-1989) podjął się trudu przedstawienia problemu życia kulturalnego współczesnych Siedlec. Chronologicznie

A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides

Znajduje to odbicie nawet w proporcjach objętości : II Rzeczypospolitej poświęcono 70 stron, dalszym losom uczelni ponad 100 - ta proporcja wydaje się niespra- wiedliwa dla

47–58 Mariola Sosnowicz, Karolina Tomaszewska, Magdalena Sobczyk, Konrad Łoniewski, Efektywność…..

3 zijn de gemeten RMS (Root Mean Square) waarden gegeven van de verticale versnellingen in het voor- schip tijdens de tweede meetdag. De significante amplitude is twee

The system dynamics model of the AIDS epidemic in Botswana and Uganda proposed here will be used to look at the key economic and social indicators of labor force,

Newman zauważa, że niewielu jest bogatych i niewielu może cierpieć dla Chrystusa, ale wszyscy chrześcijanie mogą modlić się. Szczególnie modlitwa za siebie samego jest