• Nie Znaleziono Wyników

Analiza wrażliwości ze względu na kształt dla pewnej klasy funkcjonałów w optymalizacji konstrukcji

N/A
N/A
Protected

Academic year: 2022

Share "Analiza wrażliwości ze względu na kształt dla pewnej klasy funkcjonałów w optymalizacji konstrukcji"

Copied!
9
0
0

Pełen tekst

(1)

ZESZY TY N A U K O W E P O L IT E C H N IK I ŚLĄSKIEJ 1994

Seria: M E C H A N IK A z. 116 Nr kol. 1231

M artin P. B E N D S 0 E In stitu te o f M ath em atics Technical U n iversity o f Denm ark Jan SO K O Ł O W SK I

System s R esearch In stitu te Polish A cad em y o f Sciences and IN R IA Lorraine, Francja

A N A L IZ A W R A Ż L IW O ŚC I ZE W ZG LĘD U N A KSZTA ŁT DLA P E W N E J K L A SY F U N K C JO N A Ł Ó W W O PTY M A LIZA C JI K O N ST R U K C JI

Streszczen ie. W pracy przedstaw iono zagadnienie analizy wrażliwości funkcjonałów , które w ystęp ują w zagadnieniach optym alnego projektow ania ze w zględ u na m inim aln ą p od atn ość przy jednoczesnej optym alizacji topologii i k szta łtu konstrukcji.

S H A P E S E N S IT IV IT Y AN ALYSIS O F O PT IM A L C O M PL IA N C E FU N C T IO N A L S

Sum m ary. T his paper deals w ith the shape design sen sitiv ity analysis of d om ain d epend en t fun ctionals th at arise in optim al com pliance design for sim u ltan eou s op tim iza tio n o f m aterial and structure.

F O R M E M PF L IN D L IC II K E IT SA N A L Y SE F Ü R EIN E G E W ISSE K LA SSE D E R F U N K T IO N A L E BEI D E R K O N ST R U K T IO N SO P T IM IE R U N G

Zusam m enfaßung. In der A rbeit wurde das Problem der Form em pfindli­

ch k eitsan alyse fü r die Funktionale, welche in den ein e op tim ale P rojektierung unter B each tu n g der m inim alen Nachgiebigkeit bei gleichzeitiger O ptim ierung der T op ologie und der Form der K onstruktion bezw eckten Aufgaben auftreten, d argestellt.

1. IN T R O D U C T IO N

In th is paper we stu d y the sh ap e design sensitivity analysis o f a structural op tim ization problem which encom passes th e design of structural m aterial, the design o f top ology and th e design o f shape.

(2)

38 M .P. Bendsge, J. Sokołowski

T h e stron g interrelation betw een th e fields of optim al design and m aterials scien ce has been un derlined in recent years and op tim al design w ith advanced m aterials and op tim al to p ology design usin g hom ogenization m eth od s have been th e su b ject o f in ten siv e research (B en dsp e and M ota Soares, 1993, P edersen, 1993), and th e w e ll- known lack o f ex isten ce to generalized sh ap e design problem s and th e resulting regularization has provided a natu ral m a th em a tic a l angle to th e sim ultaneous design o f m aterial and overall structure.

2. T H E IN N E R M A TER IA L D E SIG N PR O BLEM FO R F IX E D D O M A IN

In a recen t paper (B endspe et.a l, 1993) on th e o p tim ization o f structures, th e d istri­

bu tion o f m aterial as well as th e m aterial properties them selves have been considered as design variables. T h e goal o f th is stu d y is to form ulate a structural op tim iza tio n prob­

lem in a form th a t en com p asses th e design o f structural m aterial in a broad sen se, w hile encom passin g th e provision o f predicting th e structural topologies and sh apes associated w ith th e o p tim u m distrib u tion o f th e optim ized m aterials. T h is goal is accom p lish ed by rep resenting as design variables the m aterial properties in th e m ost general form p o ssi­

ble for a (lo ca lly ) linear ela stic continuu m nam ely as th e unrestricted set of elem en ts of p o sitiv e sem i-defin ite co n stitu tiv e tensors.

T h e problem we consider is an exten sion o f th e problem o f m inim izing th e com p lian ce of a stru ctu re m ad e o f a given m aterial, to the situ ation where th e m aterial properties th em selv es appear in th e role o f design variables. We form ulate th e problem for a reference dom ain fb

m in / • ud x + u d T ( x ) } (1)

su b ject to :

E > 0

f n * ( E ) d x < M

f n e(u): E : t ( u ) d x = f n E i j u t i j t u d x = i ( u ) for all v 6 U

W e take th e m in im ization over all p ositive, sem i-definite rigidity tensors E ^ u and use the integral over th e dom ain o f som e invariant $ ( £ ) o f th e rigidity tensor as th e m easure of cost. In (1) w e have w ritten th e equilibrium equation in th e weak form , using U to d en o te th e sp ace o f k in em atically adm issib le trial functions. N o te th at w e treat a single loading con d ition s, represented by th e specified b od y forces / and boundary traction P , and w e use th e com plian ce for this loading case as the ob jective for our op tim a l design problem .

N e x t, w e reform ulate problem (1) into a convenient form th at em p h asizes th e role of th e m aterial design:

(3)

Shape sensitivity analysis of optim al. 39

m ax m in i l ( i i , u ) (2)

rigidityE > 0 f n <HE)dx<M with

n(£,u)

= \ J

Eijkitijtkidx - e(u) (3) In (2 ), th e equilibrium requirem ent is represented via m inim ization o f the p oten tial energy (3) w ith respect to deform ation. A lso, the m inim um com pliance problem in (2) is sta te d as a m axim ization o f p oten tial energy w ith respect to design, since the m easure of com pliance equals th e n eg a tiv e o f tw ice th e value of the potential energy at equilibrium .

For ph ysical reasons, th e possible rigidity tensors in th e above design form ulation are restricted to th e set o f p o sitiv e sem i-d efin ite, sym m etric tensors and su itab le cost fun ctions m ust have th e property of frame indifference, for exam ple in term s o f invariants of th e co n stitu tiv e tensor itself:

Case A: $ A( E ) = pA = E ,

C ase B: $b(E) = pB = [EijtiEijkift (4)

i.e., respectively, th e trace and th e Frobenius norm of th e tensor E. For th e sake of sim p lifyin g th e derivation, w e have introduced the resource density fun ctions, p A and pb and w e ch oose to restate th e design problem in the form:

C ase A:

Case B:

max max

density p a rigidityE > 0

°<Pmin^PA^()™ax<oo

I d PAd x <M

*a(E )<p a

max max

d ensity p q rig id ityE > 0

®<Pmin—P B —Pm ax< 0°

/ f t PBd x <M

®b(e) Sp b

min fl(p.4, E, u) u£U

m m I l ( p A, E, u)

(

5

)

(

6

)

T h is separation o f th e design variables provides a separation betw een the properties o f th e tensor E th a t can be optim ized locally (at each point in the structure) and those th at m ust be treated as a distribu ted param eter problem over the full dom ain. In (5) and (6) we have introduced upper and lower bounds on the resource d en sities in order to ensure th a t th e problem is well posed.

W e can perform a sim plification o f problem s (5) and (6) by exchanging th e order of th e m in and m ax operation s in th e tw o inner problem and solve for E (see Bendspe et.

ah, 1993). T h e resultin g reduced problem is for both cost m easures of the form:

m axpec{m in y pc(u): e( u) dx — i ( u

}

(

7

)

w ith th e d en sity being restricted to the closed, convex and weak-* com pact constraint set g in ¿ °°(ft):

(4)

40 M.P. B endsge, J. Sokołowski

Q = { p 6 L°°(Cl)I[ p d x < M , 0 < p min

<

p< pmax < 00}

Jn

T h e design variables can be rem oved entirely from th e problem , and th e resulting problem b eco m es a n on -lin ear and non -sm ooth, convex, a n a ly sis-o n ly problem , for which ex isten ce o f solu tio n is assured, bu t for which solution s m ay not be unique.

W e can also g iv e problem (7) in its equivalent com plem entary energy form as

( 8 )

. f 1'

[

1 ,i i

mi n< m i n / —a: c d x \ t

P€£? 1a 1■Jn P J J

diva —J a-n— P

and w e n o te th a t th e derivation of (7) and (8) both ex ten d readily to th e case o f a co n ta ct p rob lem , for w hich th e con tact condition is stated as a design in d ep en d en t, convex constraint on th e disp lacem en ts. It is th e problem (7) th at we in th e follow ing w ill analyse w ith resp ect to sh ap e variations o f th e reference dom ain.

3. T H E D IS P L A C E M E N T S B A S E D FO R M U LA TIO N

T h e follow in g d om ain fun ctional is considered:

J ( Q ) = m i n j ^ m a x { (^ e (u ):e (u ) - A)pmox, ( i e ( u ) : e ( u ) - \ ) p min}d x

~ L f u d x ~ L p ■ u d r ( x ) + a m ] (9)

w here u belongs to th e convex su b set o f th e S ob olev sp ace I I 1 (SI)3 defined by th e follow ing relation s (in clu d in g th e p ossib ility o f m echanical contact):

u = 0 on To u ■ n < 0 on P2

W e are in terested in th e sh ape derivative, whenever it ex ists, o f th e fun ctional J ( S \ ) , see e.g. Sokołowski and Zolesio, 1992, for a detailed definition and a descrip tion o f the m aterial d erivative m eth od .

To th is en d, a one p aram eter fam ily o f dom ains {Slt }, t 6 [0,<5), is defined as follow s.

fii = T,(Sl) for t£ [0,5)

dSlt = T,(dSl),

r [ = T .fR ) for r = 0 , 1 , 2 .

here Tt = T t( V ) : IR3 —» IR3 is a sm ooth transform ation given by a su fficien tly sm ooth vector field V w ith V ( t , x ) = ^j f ( x)

(5)

S hape sen sitiv ity analysis of optim al. 41

T h en , th e d om ain functional (10) defined in { f ii} , takes the form

(10)

w here u b elongs to th e convex su bset of th e Sobolev space defined by th e follow ing relations:

u = 0 on Fq u • n < 0 on Tj For any t > 0 a minimize!' is denoted by ( u t , A(), so

In order to evalu ate th e sh ape derivative d J ( Q ; V ) , the dom ain functional J ( C l t ) is transported to th e fixed dom ain fi. T h e follow ing notation is introduced, we refer the reader to Sokołowski and Zolesio, 1992, for details, in order to m ake th e functional as well as th e boundary conditions dependent of the dom ain fi only:

/ ' = ~DTi - f o T t , P ‘ = • D T t P o T t

u ‘ = II, O T[

2' = D T P 1 ■ u‘e‘ ( f i = \ { D ( D T t ■ <t>) ■ D T t~~l + ' D i p 1 ■ * ( D ( DT, ■ * ) ) }

7 (t) = det ( D T t ) u ( t ) = \ \ M ( T t ) - n U ,

M ( T t ) = At \. (DTt) ' D T p 1

furtherm ore, th e non penetration condition on Fj takes an equivalent form

(U)

z ‘ ■ n < 0 on Fj

T h e d om ain fun ctional is thus transported to th e fixed dom ain

J t ( Q ) = J ( f i i ) =

[ J

m a x { ( ie ( « ( ) o Tt: e(ut) o 7) - A, o Tt )p,

(

12

)

(13)

Jn

J

r,

^ c(tii) o Tt. e(ut ) o T, - X, o T, )pmin}- f ( t ) dx

[ f* ■ u li ( t ) d x - [ P ‘ ■ u ‘u ( t ) d r ( x ) + \ t 0 T , M

(6)

42 M.P. B endsge, J. Sokołowski

T h e transp orted d om ain functional can be evaluated for any value o f t £ [0 ,6) by a m in im ization procedure, i.e.

mi n i mi z e with respect to (v , A) the following f unct i onal

(i>,A) = [ / m a x { (^ e ‘(u):e'(t>) - \ ) p max, ( ^ e ‘( v ) : e ‘( v) - \ p min) } l ( t ) d x

L

P ‘ ■ v u ( t ) d r ( x )

+

AAfJ (14)

su b ject to th e constraints

v £ v = 0 on To v ■ n < 0 on r 2

In th e follow in g w e assum e, for sim plicity of presentation, th at th e m inim izers of problem (13) are un ique, t 6 [0, ¿). If this is not th e case, we have to invoke th e procedure o f sectio n 3 in B endspe and Sokołowski, 1992, w ith each derivative b ein g given below . N ow , w ith th is assu m p tion , let (u , A) denotes th e unique m inim izer for th e fu n ction al (9).

T h e follow in g n ota tio n is introduced

fli = f i i( V ) = { i £ n | | e ( t i ) :

e(u)

— A = 0 and

e'(u):e(u) > 0 or ^c(u): e(u) — A > 0}

n 2 = n 2(v) = n\n,(v') Xi = characteristic function o f fi;

Xn = characteristic function o f fi, i.e.

, , _ 1 x 6 n 0 o t h e r w i s e

therefore X i(x ) + X2(x ) = Xfl(x ) a -e -

Here e' d en o tes th e derivative of e1 and w e have divided th e dom ain in tw o parts, d ep en d in g on th e size o f th e specific strain energy relative to th e m ultiplier A. W ith this n otation we can now sta te th e result on th e shape sensitivity:

T h e o r e m 1.

If the m i n i mi z e r s o f funct i onal (13) are continuous in / /* ( f l) 3 x IR with respect to the p a r a me t e r t at t = 0+ , then the Eulerian derivative o f the shape funct i onal (3. 1) takes the f ol lowi ng f o r m

(7)

Shape sen sitiv ity analysis of optim al.. 43

d J ( i l - V ) = l i m t^ Ą ( J ( n t) - J ( S l ) ) (15)

(16)

=

[ J

[P m a x X l + /» m m X a ]£ ,( “ ) : e ( u ) d x +

(17) + / m a x { [-e (ii): e(u) - A\pmax, [-e (u ): e(u) - A]pmin}-y'dx +

Jn - -

/ [ ( V / - V ) • u + f • D V ■ u + / • -f Jn

-

^ [(Vi* • V) ■ « +

P D V - u

+

P

• uu/]i/r(z)]

where w e have th at

«' W = i j P -4>) + ' ( D [ D V ■ 4,)) - £>«1 • D V - ’ D V ■ -D4>},

7' = divf/,

u / = d iv r V ’ Z)^

is th e tran sp ose o f the Jacobian m atrix function D<j> ;<j> 1R3 —* 1113 1/(011 = 2Zt 01 |1=0

We refer th e reader to Bendspe and Sokołowski (to appear) for a proof o f T heorem 1. W e remark th at under our assum p tion s, the Eulerian derivative o f the shape functional (9) can b e evalu ated in th e sam e way as for the m ultiple eigenvalues in M yslinski and Sokołow ski, 19S5, Sokołowski and Zolesio, 1992. If the m easure o f th e set

1

fio = {x £ ^ l ^ £(“ ): £(u ) - A = 0}

is not zero th en th e m apping V -* d J (D ; V ) fails to be linear, and only one sided directional derivatives exist.

(8)

44 M.P. B endspe, J. Sokołowski

4. C O N C L U SIO N S

W e have p resented here, on th e basis of B endspe and Sokołowski (to appear) a general fram ew ork for an in tegrated design analysis of shape and topology variations o f structures.

T h e to p o lo g y variations are treated as an inner problem , w ith sh ape variations as an outer level problem . T h e to p ology and m aterial design problem em ployed used a co m p letely free param etrization o f rigidity, bu t th e analysis ex ten d s readily to h om ogen ization based to p ology problem s w ith reduced design indep en dent problem s, as described in e.g. Allaire and K ohn, 1993, and Jog, Haber and B endspe, 1993. W e n ote th at th e integrated sh ape and to p o lo g y and m aterial design form ulation allow s for the treatm ent of problem s w ith sh ape d ep en d en t loadings, such as pressure loads; th ese problem s cannot be han dled by standard to p o lo g y and m aterial design m eth odology based on th e use o f a fixed reference dom ain.

T h e results on derivatives involves dom ain integrals and a com p u tation al im p lem en ta­

tion is straightforw ard. In order to preserve consistency w ith th e com p u tation al procedure for th e solu tion o f th e an alysis problem , it is recom m ended th at th e sen sitiv ity analysis is carried ou t for th e d iscretized problem sta tem en t before im plem entation. C om p u tation al exp erien ce and d eta ils on th e derivation for a discretized version o f th e problem are the su b jects o f a forth com in g study.

R E F E R E N C E S

A llaire, G.; K ohn, R .V . (1993): ’’O ptim al Design for M inim um W eight and C om p liance in P lan e Stress using E xtrem al M icrostructures.” European J. M ech. A , 1993 (to appear).

B en-T al, A.; K ocvara, M.; Zowe, J. (1993): ’’T w o N on-Sm ooth M eth ods for Sim ultan eou s G eom etry and T opology D esign o f Trusses.” loc. cit. B endspe, M.P.; M ota Soares, C .A ., 1993, pp. 31-42.

B endspe, M .P ., B en-T al, A ., Zowe, J. (1993): ’’O ptim ization M ethods for Truss G eom etry and T opology D esig n ,” Structural O ptim ization, (to appear).

B endspe, M .P ., G uedes, J.M ., Haber, R .B ., Pedersen, P., Taylor, J.E . (1993): ”A n A n aly­

tica l M od el to P red ict O ptim al M aterial Properties in the C on text of O ptim al Structural D esig n ,” J. A pp lied M ech., to appear.

B endspe, M .P.; M ota Soares, C .A . (1993): ’’Topology O p tim ization o f S tructures” , K luwer A cad em ic P ub lish ers, Dordrecht, T h e N etherlands.

B endspe, M .P.; R od rigues, H .C . (1991): ’’Integrated T opology and Boundary Sh ape O p ti­

m ization o f 2-D solid s” . C om put. M eth. Appl. M ech. E ngn g., 87, pp. 15- 34.

B endspe, M .P.; Sokołow ski, J. (1988): "D esign sen sitiv ity analysis o f ela stic-p la stic ana­

lysis p rob lem s.” M echanics of Structures and M achines, V ol.16(1988), pp. 81- 102.

B endspe, M .P.; Sokołow ski, J. (to appear): ’’Shape S en sitivity A n alysis o f O ptim al C om ­ pliance F u n ctio n a ls.”

(9)

Shape sen sitiv ity analysis of optim al.. 45

Brem icker, M; C h irehdast, M; K ikuchi, N.; Papalam bros, P. (1992): ’’Integrated T opology and Sh ape O p tim iza tio n in Structural D esign.” M echanics of Structures and M achines, 19, pp. 551-587.

Haug, E .J.; C hoi, K .K ., K om kov, V . (1986): ’’D esign Sen sitivity A n alysis o f Structural S y stem s.” A cad em ic Press, N ew York, U SA , 1986.

Jog, C.; H aber, R .B . Bendspe, M .P. (1993): ’’Topology Design w ith O ptim ized, Self- A d ap tive M aterials.” Int. J. Num . M eth. Engng., (to appear).

K am at, M .P. (E d .) (1993): ’’Structural O ptim ization -Statu s and P rom ise.” A IA A P rog­

ress in A eron au tics and A stron autics Series, Vol. 150, Am erican In stitu te o f A eron autics and A stron au tics, W ashington D .C , USA.

M yslin sk i, A ., Sokolow ski, J. (1985): ’’N ondifferentiable O ptim ization P rob lem s for Elli­

p tic S y s tem s .” SIA M J. C ontrol O pt., 23, pp. 632-648.

Olhoff, N.; B endspe, M.P.; R asm ussen, J. (1992): ”On C A D -In tegrated Structural To­

p ology and D esign O p tim iza tio n .” Com p. M eth. Appl. M echs. E ngn g., 89, 1991, pp.

259-279.

P edersen, P. (E d .) (1993): ’’O ptim al Design w ith A dvanced M aterials,” Elsevier, A m ste­

rdam , T h e N etherlan ds.

Sokolow ski, J ., Zolesio, J.P. (1992): ’’Introduction to Shape O ptim ization. Sh ape S en siti­

vity A n a ly sis.” Springer Series in C om putational M athem atics, Vol. 16, Springer Verlag, New York, U S A .

Recenzent: Prof. dr bab. inż. Tadeusz Burczyński W p łyn ęło do R edakcji w grudniu 1993 r.

Streszczenie

W pracy p od an o now e wyniki z zakresu analizy wrażliwości uzyskane dla optym alnych funkcjonałów p od atn ości ze w zględu na k ształt obszaru geom etrycznego. W yniki te po­

zw alają na w yk orzystan ie dla rozw iązyw ania zadań optym alizacji konstrukcji połączonych m etod obliczeniow ych optym alizacji topologii i optym alizacji kształtu. W szczególności um ożliw ia to rozw iązyw ania m etod am i optym alizacji topologii tych zadań op tym aln ego projektow ania, w których obciążenie zależy od geom etrii obszaru - np. ciśnien ie - co nie było do tej pory robione ze w zględu na brak uzasadnienia teoretycznego. W pracy podano w yniki dla przykładow ego zadania optym alizacji kształtu dla zagadnienia typu kontaktu ciała sp rężystego ze sztyw n ą przeszkodą.

Cytaty

Powiązane dokumenty

W prawdzie zagadnienie to odnosi się w pierwszym rzędzie do dziejów kościoła, jednak w związku z obszernym tłem zmian, mających w większości charakter

Dzięki nowoczesnej technologii firmy Sony kamera HDC- 3300R rejestruje obraz High Definition 1920 x 1080 w tempie aż trzykrotnie większym od normalnego.. Do połączenia jednostki CCU

D ekom pozycja zagadnienia planow ania produkcji na dwa zadania cząstkow e, rozw iązyw ane na kolejnych poziom ach m etody, um ożliw iła rozw iązyw anie próbie-...

Wszystkie analizy numeryczne przeprowadzono dla podziału grubości blachy na 3 elementy skoń- czone przy współczynniku kształtu i dla stałej liczby elemen- tów

do przecenienia pozostaje w tym zakresie telemonitoring urządzeń wszczepialnych i zdalny nadzór nad pacjentem prowadzo- ny z jego wykorzystaniem. Współcześnie implantowane

comiesię ęcznego raportowania do Instytucji Koordynuj cznego raportowania do Instytucji Koordynują ącej RPO na temat stanu cej RPO na temat stanu wdraż wdra żania

Chyba jednak najważniejszym jej atutem jest to, że z uwagi na braki danych o popytowej stronie rynku pracy w statystyce publicznej (tj. o wielkości oraz o strukturze zatrudnienia

Praca jest na ocenę i w razie braku dostarczenia samodzielnie opracowanych odpowiedzi do zadań w wyznaczonym terminie otrzymasz wpis do idziennika N oraz uwagę informacyjną do