• Nie Znaleziono Wyników

Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media

N/A
N/A
Protected

Academic year: 2021

Share "Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media"

Copied!
7
0
0

Pełen tekst

(1)

Delft University of Technology

Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic

media

Fernández-Fueyo, Elena; Ni, Yan; Gomez Baraibar, Alvaro; Alcalde, Miguel; van Langen, Lukas M.;

Hollmann, Frank

DOI

10.1016/j.molcatb.2016.09.013

Publication date

2016

Document Version

Final published version

Published in

Journal of Molecular Catalysis B: Enzymatic

Citation (APA)

Fernández-Fueyo, E., Ni, Y., Gomez Baraibar, A., Alcalde, M., van Langen, L. M., & Hollmann, F. (2016).

Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media. Journal of

Molecular Catalysis B: Enzymatic, 134, 347-352. https://doi.org/10.1016/j.molcatb.2016.09.013

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Journal

of

Molecular

Catalysis

B:

Enzymatic

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t b

Towards

preparative

peroxygenase-catalyzed

oxyfunctionalization

reactions

in

organic

media

Elena

Fernández-Fueyo

a,1

,

Yan

Ni

a,1

,

Alvaro

Gomez

Baraibar

a

,

Miguel

Alcalde

b

,

Lukas

M.

van

Langen

c

,

Frank

Hollmann

a,∗

aDepartmentofBiotechnology,DelftUniversityofTechnology,VanderMaasweg9,2629HZDelft,TheNetherlands bDepartmentofBiocatalysis,InstituteofCatalysis,CSIC,28049Madrid,Spain

cViaZymB.V.,Molengraaffsingel10,2629JDDelft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27July2016 Receivedinrevisedform 13September2016 Accepted13September2016 Availableonline15September2016 Keywords:

Biocatalysis Oxyfunctionalization Hydroxylation

Non-aqueousreactionmedia Peroxygenase

a

b

s

t

r

a

c

t

TheperoxygenasefromAgrocybeaegerita(AaeUPO)hasbeenevaluatedforstereoselective

oxyfunction-alizationchemistryundernon-aqueousreactionconditions.

Thestereoselectivehydroxylationofethylbenzeneto(R)-1-phenylethanolwasperformedinneat

substrateasreactionmediumtogetherwiththeimmobilizedbiocatalystandtertBuOOHasoxidant.

Stabilityandactivityissuesstillhavetobeaddressed.Nevertheless,gram-scaleproductionof

enan-tiopure(R)-1-phenylethanolwasachievedwithrespectable90,000turnoversofthebiocatalyst.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Peroxygenases catalyzea broad range ofsynthetically inter-estingoxyfunctionalizationreactions.[1,2]Amongstthem, stere-ospecifichydroxylationofalkylbenzenesisworthmentioningas chemical catalysts withcomparable selectivityand activity are stillmissing[3].Furthermore,peroxygenasesexceloverthe well-knownP450monooxygenasesbytheirsimplicityneedingsimple hydrogen peroxide or organic hydroperoxides as cosubstrates instead of the nicotinamide cofactor and complicated electron transportchains[4,5].

ThecholoroperoxidasefromCaldariomycesfumago(CfUPO) rep-resents the first example of an ‘unspecific’ peroxygenase (E.C. 1.11.2.1)exhibitingsignificantP450-likeactivity(e.g.C H-bond activation) [6,7]; and major researchefforts had been devoted totheexplorationofitsproperties,productspectrumand possi-bleapplications.Unfortunately,however,CfUPO’scatalyticactivity towardsnon-activatedorpoorlyactivatedC Hbondsis compa-rablylowimpairingitspreparativeusefulness.In2004thegroup

∗ Correspondingauthor.

E-mailaddress:f.hollmann@tudelft.nl(F.Hollmann).

1 Bothauthorscontributedequally.

aroundHofrichterreportedanotherperoxygenasefromthefungus Agrocybeaegerita (AaeUPO)exhibitingsignificantly higher activ-ity[8].Today,morethan300substrateshavebeenreportedfor AaeUPOthat oftenareconverted highlychemo-and enantiose-lectively[1,2].Furthermore,recombinantexpressionsystemsfor AaeUPOareavailable[9]enablingproteinengineering[10,11].Also acrystalstructureofAaeUPOisknownfacilitating(semi-)rational proteinengineering[12].

Overall,AaeUPOisanextremelypromisingcandidate biocata-lystforpreparative-scale,selectiveoxyfunctionalizationchemistry. OnemajorlimitationofAaeUPO(andofperoxygenase-catalysis ingeneral)howeverstillisitslimitationtoaqueousreaction con-ditions,whichposesamajorchallengetotheconversionofpoorly watersoluble,hydrophobicstartingmaterialssuchasalkyl ben-zenes.Both,fromaneconomicaland anenvironmentalpointof view,highersubstrateloadingsthantraditionallyusedarehighly desirable[13–15].Theuseofcosolventstoincreasethewater sol-ubilityofthehydrophobicstartingmaterialsortwo-liquid-phase approachesusingahydrophobiccosolventassubstratereservoir andproductsinkhavebeenproposed[16–19].Avoidingadditional solventsatallandperformingthetransformationsinneat condi-tions(i.e.withoutanycosolventwhatsoever)wouldbethemost elegantmethodology.

http://dx.doi.org/10.1016/j.molcatb.2016.09.013

(3)

348 E.Fernández-Fueyoetal./JournalofMolecularCatalysisB:Enzymatic134(2016)347–352 Therefore,inthepresentstudy,wesetouttoevaluatethe

fea-sibilityofperoxygenase-catalyzedoxyfunctionalizationreactions undernon-aqueousconditions.Asthemodel enzymewechose AaeUPO,recombinantlyexpressedinPichiapastoris(rAaeUPO)[9], themodelreactionwasthestereoselectivehydroxylationof ethyl-benzeneto(R)-1-phenylethanol.

2. Materials

2.1. Chemicalsandenzymes

AllchemicalswerepurchasedfromSigma-Aldrich(Zwijndrecht, TheNetherlands)inthehighestpurityavailableandusedwithout furtherpurificationexceptethylbenzenethatwasfreshlydistilled priorusetoremovethetracesofphenylethanolandacetophenone. TheenzymecarrierReliZymeTMHA403/M,amacroporousPMMA

resinwithamino-functionalizations,wasobtainedfromResindion S.r.l.,Italy.

2.2. Enzymeproduction

Therecombinantperoxygenasefromthebasidiomycetous fun-gusAgrocybe aegerita(rAaeUPO)wasproducedviaheterologous fermentationin Pichia pastorisfollowing a previously described procedure[9].

2.3. ConcentrationofrAaeUPO

TheconcentrationofrAaeUPOwasdeterminedusingthemolar extinction coefficient of 115mM−1cm−1 at 420nm.Absorption spectraintheUV/visrangewasrecordedinaBiomate5(Thermo) spectrophotometer(Fig.1).TheReinheitszahl(Rzvalue)istheratio ofabsorbancedue tohemin(A420, Soretregion)toabsorbance duetoprotein(A280) andtherewitha measurefor theprotein purity.TheRz-valueofthecurrentrAaeUPOpreparationwas1.6 correspondingwelltovaluesreportedintheliterature[9–11].

2.4. ImmobilizationofrAaeUPOonRelizymeTMHA403/Mresin

Toimmobilizetheperoxygenasethefollowingprocedurewas used:RelizymeTMHA 403/Mresin(1g)wastreatedwith50mL

of0.125%glutaraldehydesolutioninwaterfor2.5hinashaking deviceat16◦C.Theglutaraldehydesolutionwasthenremovedby centrifugation,andtheresinwaswashedthreetimeswith0.1M phosphatebufferatpH7.Thebufferwasthenremoved,and3mL ofpurerAaeUPO(1.35mg)and1mLof0.1Mphosphatebufferat pH7wereaddedtotheactivatedsupport.Themixturewas incu-batedinashakerfor24hat16◦C.Theresidualenzymaticactivityin thesolutionwasmonitoredbyusingtheABTSoxidationassay(vide infrafordetails).Theresinwasthenwashedwith50mMphosphate bufferatpH7,driedandstoredat4◦C.

2.5. rAaeUPOconcentrationinthebeads

TheamountoftherAaeUPOboundtotheresinwasdetermined bysubtractingtheamountofenzymepresentinthesupernatant afterimmobilizationfromthetotalamountofenzymepresent orig-inally(prioradditionof theresin).Themeasurement wasdone spectrophotometrically(Fig.1)usingthemolarextinction coeffi-cientof 115mM−1cm−1 at420nm.Quite reproducibly,1.35mg rAaeUPOpergramofresinwasbound(i.e.quantitative immobi-lization).

2.6. ActivitydeterminationofrAaeUPO

InordertoquantifythespecificactivityofrAaeUPO,weused ABTSasasubstrateinaqueousmedia.Absorbancechangesduring ABTSoxidationin0.1McitratebufferpH5wererecordedat25◦C ina Biomate5(Thermo)spectrophotometer. Thereactionswere initiatedbytheadditionof5mMH2O2.OxidationofABTSwas

fol-lowedbytheformationofthecationradical(␧40536.8mM−1cm−1).

DifferentconcentrationsofrAaeUPOwereusedtocreatea calibra-tionlinebasedontheactivitytowardsABTS(0.5mMABTSin0,1M citratebufferand5mMH2O2).

Theactivityoftheimmobilizedenzymewasestimatedina reac-tionmixtureof5mLcontaining7mgbeads,0.5mMABTSand5mM H2O2incitratebuffer(pH5.0)magneticallystirredatroom

tem-perature.Aliquotswerewithdrawnevery30sandmeasuredat 405nm.Reactionswereperformedinduplicates.

2.7. Hydroxylationofethylbenzene

Reactionswereperformedat 30◦C and ambientatmosphere in1mLethylbenzenecontainingdifferentamountofimmobilized rAaeUPO.Every30mintertBuOOHwasaddedintothereaction

mix-tureandsampleswerecollected.Samplesweremixedwithethyl acetate(containing5mM1-octanolasinternalstandard)and ana-lysedbyGC.Reactionswereperformedinduplicates.

2.8. StabilityofimmobilizedrAaeUPOinethylbenzene

Theimmobilized rAaeUPOwasincubatedin ethylbenzeneat 30◦C for24hand theresidualactivitywasmeasuredfollowing ethylbenzenehydroxylationaftertheadditionof10mMtertBuOOH

and1hofincubation.

2.9. StabilityofimmobilizedrAaeUPOagainstperoxide

TheimmobilizedrAaeUPO(7mg)wasincubatedinphosphate buffer(pH5.0)containing10mMtertBuOOHandtheresidual

activ-itytowardsABTSwasmeasuredasdescribedabove. 2.10. ImmobilizationofPpAOxonRelizymeTMHA403/Mresin

TheRelizymeTMHA403/Mresin(1g)wastreatedwith50mL

of0.125%glutaraldehydesolutioninwaterfor2.5hinashaking deviceat18◦C.Theglutaraldehydesolutionwasthenremovedby centrifugation,andtheresinwaswashedthreetimeswith0.1M phosphatebufferatpH7.Thebufferwasthenremoved,and9mL ofPpAOx(15mg)and1mLof0.1MphosphatebufferatpH7were addedtotheactivatedsupport.Themixturewasincubatedina shakerfor24hat18◦C:theresidualenzymaticactivityinthe solu-tionwasassayedbyABTSoxidationassay(0.1MphosphatepH7, 0.033%methanol,2mMABTSand2.5UHRP)describedbySigma Aldrich.Theresinwasthenwashedwith50mMphosphatebuffer atpH7,driedandstoredat4◦C.

2.11. ConcentrationofPpAOxonthebeads

Theamountoftheenzymeaddedfortheimmobilizationand theenzymeretainedinthesupernatantwasquantifywiththeBSA assay.Basedonthisassay,15mgofproteinwasboundpermgof beads(i.e.quantitativeimmobilization).

2.12. ActivityofPpAOx

In order to quantify the specific activity of the immobi-lized PpAOxwe used the assay recommended by the supplier (SigmaAldrich):thereactionconditionswere: 0.1mphosphate

(4)

Fig.1.UV/visspectrumofpurifiedrAaeUPO.

pH7,0.033%methanol,2mMABTSand 2.5UHRP.Oxidationof ABTSwasfollowed bytheformationof thecationradical(␧405

36.8mM−1cm−1).

2.13. Reactionsintwo-liquidphasesystem(2LPS)

The two-liquid-phase system consisted of ethylbenzene and phosphate buffer (pH 7.0) (phase ratio=1:1) containing aqueousconcentrationsof[rAaeUPO]=100nM,[PpAOX]=60nM, [FDM]=0.2gL−1and200mMmethanol.Aliquotswerewithdrawn fromclearlyseparatedorganicphaseatinterval,mixedwithequal volumeofethylacetate(containing5mMdodecane)andanalysed byGC.Reactionswereperformedinduplicates.

3. Methods 3.1. GCanalytics

Atintervals,sampleswerewithdrawnfromthereaction mix-turesand extractedthree timeswiththesamevolume ofethyl acetate(containing5mMoctanolor5mMdodecaneasinternal standard).Thecombined organicphase wasdriedwith magne-siumsulfateandcentrifuged.ThesupernatantwasanalysedbyGC (seeFig.2foranexemplarychromatogramwithauthentic stan-dards).Concentrationsreportedhavebeendeterminedbasedon calibrationcurvesusingauthenticstandards.

4. Resultsanddiscussion

Thestartingpointofourinvestigationwasatwo-liquidphase systemusingethylbenzeneassubstratereservoirandproductsink. ForinsituH2O2generationwechosethepreviouslydescribed

alco-holoxidase-catalyzedoxidationofmethanol(Scheme1).

As shown in Fig. 3, reactions employing diffusibleenzymes resulted in comparably fast product formation (2.9mMh−1, TF(rAaeUPO)=8.1s−1,TF(PpAOx)=13.4s−1).Wehypothesizethat theoverallproductivityofthereactionsystemmayhavebeen lim-itedbyoxygentransferintotheaqueousreactionmedium.In a previousstudyusingacomparablesetupavolumetric productiv-ityaround2.5mMh−1hadbeenobserved,whichwasattributedto

Scheme1. Enantioselectivehydroxylationofethylbenzeneusingthetwoliquid

phase(2LP)approachandmethanoloxidationforinsituH2O2generation.

Ethyl-benzeneservedasorganicphase(substratereservoirandproductsink).

diffusionlimitationovertheinterphase[20].Alsotherobustnessof thispreliminarysetupwascomparablypoorwithacompleteloss ofethylbenzenehydroxylationactivityafter24h.Atpresentstage wehavenofurtherinsightintothemolecularreasonforthispoor robustness.Possibly,themechanicallydemandingconditions(such asshearstressorthepresenceofahydrophobicinterphase)account forthislowlong-termstabilityandfurtherin-depthinvestigations arenecessarytoclarifythisissue.Nevertheless,rAaeUPOandPpAOx performed206,000and343,000catalyticturnovers,respectively.

To address the poor stability of the biocatalysts under the reaction conditions we evaluated using immobilized enzyme preparations.AsshowninFig.3,thereactionutilizing immobi-lizedrAaeUPOandPpAOxwassignificantlymorerobustbutalso significantlylessactive.Usingthesamenominalenzyme

(5)

concen-350 E.Fernández-Fueyoetal./JournalofMolecularCatalysisB:Enzymatic134(2016)347–352

Fig.2.ExemplaryGCchromatogramofauthenticstandards.Temperatureprofile:90◦Cfor5min,20C/minto110for15min,25C/minto220for1min.Peakassignment:

ethylbenzene(5.0min),acetophenone(11.3min),dodecane(13.2min),(R)-1-phenylethanol(21.8min),(S)-1-phenylethanol(22.3min).

Fig.3.rAaeUPO-catalyzedhydroxylationofethylbenzeneinatwo-liquid-phase system(2LPS)usingfreerAaeUPOandfreePpAOx(䊐)orimmobilizedrAaeUPOand PpAOx().Conditions:2LPS(Vethylbenzene=Vaq=1mL),100mMphosphatebuffer

(pH7.0),[methanol]=200mM,[rAaeUPO]=100nM,[PpAOx]=60nM,T=30◦C.In

bothcases,(R)-1-phenylethanolwasthemajorproduct(>95%,ee>98%)withless than5%oftheoveroxidationproduct(acetophenone,leftoutforreasonsofclarity).

trationsascomparedtothefreeenzymes,theproductformation ratedroppedto0.11mMh−1concomitantlyleadingtoareduction oftheenzymes’performancebymorethan20-fold.Thisisinline withthefindingthattheimmobilized enzymesaresignificantly lessactivethantheirfreependants.

Havingtheimmobilizedenzymesathand,wedrewour atten-tiontotheiruseunder neatconditions(i.e.using ethylbenzene assole reaction medium; in otherwords the aqueouslayer of

Scheme1isreducedtoaminimumoriginatingfromthe

immo-Scheme2.Enantioselectivehydroxylationofneatethylbenzeneusingimmobilized

rAaeUPOandtertBuOOHasoxidant.

bilizationprocedure).Inafirstsetofexperimentsweevaluated thebi-enzymaticcascadeusingPpAOxforinsituH2O2generation.

However,onlytraceamounts ofproductweredetectableunder thesereactionconditions.Possibly,theinsituformedH2O2(and/or

formaldehyde)accumulatedquicklyinthesmallaqueouslayerto criticalconcentrationsandleadtofastenzymeinactivation. There-fore,wedecidedtousetertBuOOHasperoxidedonortopromote

thereaction(Scheme2).

tertBuOOHprovedtobeamilderoxidantascomparedtoH 2O2

astheoxidativeinactivationoftherAaeUPOhemewassignificantly slower(Fig.4).

Thestabilityoftheimmobilizedenzymeinpureethylbenzene wasfoundtobeacceptablewithapproximately46%activityloss over24h(Fig.5).

ThedosageoftertBuOOHhadaverysignificanteffectontherate

androbustness ofthehydroxylationreaction(Fig.6).The over-allreaction rate almostlinearly correlated withthe amountof hydroperoxideaddedwhile therobustnessof thereaction fol-lowedanoppositetrend:addingtertBuOOHat40mMh−1leadto

acompleteceaseofproductformationafter30minatlatest. How-ever,lowerdosingratesof10or20mMh−1resultedinfairlylinear productaccumulationoverthereactiontimeobserved.Mostlikely thisbehavior canbeexplainedbytheincreasingenzyme activ-itywithincreasingavailabilityofthecosubstrate(tertBuOOH)and

theincreasingoxidativeinactivationoftheprostheticheme-group withincreasingperoxideconcentrations.

(6)

Fig.4.StabilityofimmobilizedrAaeUPOagainstperoxide.Theimmobilized rAae-UPOwasincubatedinphosphatebuffer(pH5.0)containing10mMtertBuOOH(䊏)

and10mMH2O2(),atintervalssampleswerewithdrawnandsubjectedtoan

activityassay.Errorbarsarenotshownsincethestandarddeviationwasalways below5%.

Fig.5. StabilityofimmobilizedrAaeUPOsuspendedinneatethylbenzene.The resid-ualactivitywasdetermineduponadditionof10mMoftertBuOOHandincubationof

1hat30◦C.Conditions:ethylbenzeneand[rAaeUPO]=400nMat30C.Errorbars

arenotshownsincethestandarddeviationwasalwaysbelow5%.

In all reactions a certain amount of overoxidation of (R)-1-phenylethanol toacetophenone wasobserved culminating in 13–21mMofthisundesiredsideproduct.Hereitisinterestingto notethatthisoveroxidationwassignificantinthefirstphaseofthe reactionwhileafterapprox.30–60minthisreactionsloweddown significantlyleading toa relativelystablelevel ofaetophenone. Today,wearelackingaplausibleexplanationforthisobservation.

Fig.6.ComparisonoftheeffectofdifferenttertBuOOHdosingratesonthe

pro-ductivityandrobustnessoftherAaeUPO-catalyzedhydroxylationofethylbenzene. Generalconditions:ethylbenzenewasusedassoleliquidphasesupplemented withimmobilizedrAaeUPO(correspondingtoanoverallconcentrationof35␮M), T=30◦C, tertBuOOHwasaddedportionwise at30minintervalscorresponding

to䊏:40mMh−1,:20mMh−1,:10mMh−1;straightlinescorrespondto

(R)-1-phenylethanol,dottedlinescorrespondtoacetophenone.

Possibly,theaccumulatingtertBuOHinhibitedtheoveroxidation;

furtherinvestigationsarecurrentlyunderway.

Itshouldbementionedthatintheseexperimentscomparably largenominalrAaeUPOconcentrations(35␮M)hadbeenemployed tocompensateforthepooractivityoftheimmobilizedenzyme. Hence,thecatalyticperformanceofrAaeUPOwasratherpoor(2700 catalyticturnoversin3h).Furtherexperimentswithsignificantly reducedenzymeconcentrations(400nMand600nm,respectively) wereconducted(Fig.7)revealingtheimportanceoftheenzyme amountontherobustnessoftheoverallreaction:Whileusinglarge amounts(35␮M)ofenzymeandanominaltertBuOOHdosingrateof

20mMh−1linearproductaccumulationwasobservedthroughout theexperiments.However,usinglow(400nMor600nM) concen-trationsofrAaeUPOproductaccumulationceasedafter1.5hand 2.5h,respectively.Nevertheless,upto40mMofenantiopure (R)-1-phenylethanolwasformedundertheseconditionscorresponding toatotalturnovernumberof67,500fortheenzyme.

Overall we concludethat theratio of tertBuOOH addition to

enzymeconcentrationisthedecisivefactordeterminingthe effi-ciencyoftheoverallreactionintermsofvolumetricproductivity andtotalturnoveroftheenzyme.Furtheroptimizationstudiesare currentlyongoinginourlaboratory.Particularly,controllingthe wateractivityisbeinginvestigatedtooptimizetheenzymeactivity andoptimizationoftheenzymeloadingonthecarrierarecurrently ongoing.

Despitethecomparablyearlystageofdevelopment,we pro-ceeded to semi-preparative scale to demonstrate the practical feasibility of the proposed reaction setup. On 250mL scale a totalamountof1.25gof(R)-phenylethanol(isolatedyield)were obtained within 3h of reaction time yielding a respectable TTN(rAaeUPO)ofmorethan90,000.Hence,weareconvincedthat anoptimizedreactionschemeexhibitssignificantpotentialfor syn-theticorganicchemistry.

(7)

352 E.Fernández-Fueyoetal./JournalofMolecularCatalysisB:Enzymatic134(2016)347–352

Fig.7. ComparisonoftheeffectofdifferentconcentrationsofimmobilizedrAaeUPO (400nM,600nM䊐),20mMh−1oftertBuOOHwasaddedat30minintervalsto

pro-moterAaeUPOcatalyzedhydroxylationofethylbenzene.(R)-1-phenylethanol:solid lines,acetophenone:dashedlines.Conditions:ethylbenzeneand[rAaeUPO]=400 or600nMat30◦C.Reactionvolume250mL.Errorbarsarenotshownsincethe

standarddeviationwasalwaysbelow5%.

5. Conclusions

Today,comparablyfewstudiesdealwiththeapplicationof oxi-doreductasesunder non-aqueousconditions. The pooraqueous solubilityofmostreagentsofinteresthowevernecessitates inten-sifiedresearchonbiocatalysisin‘neoteric’solventsi.e.alternative solventsenablinghighersubstratepayloads.Forsynthetic appli-cationsthisisofutmostimportanceaschemistswillacceptand applyonlythosemethodsthatgivethemaccesstopracticalproduct amounts.

In the present study we have taken the firststeps towards usingperoxygenasesundernonaqueousreactionconditions.Using

immobilized rAaeUPO suspended in the neat starting material (ethylbenzene)wecouldprovidethefirstevidenceforthisreaction setup.Thelimitationsidentifiedsofarcomprise(1)thelow resid-ualactivityoftheheterogenizedbiocatalystand(2)thecomparably poorstabilityoftheenzymeundernon-aqueousconditions.Future studies will have to address these shortcomings. Nevertheless, despitetheveryearlystageofdevelopmentofthissystem, prepar-ative, gram-scale synthesis of enantiopure (R)-1-phenylethanol couldbedemonstrated,whichmakesusconfidentthatan opti-mizedreactionsystemmayexhibitsomepreparativerelevance. Acknowledgement

FinancialsupportbytheEuropeanResearchCouncil(ERC Con-solidatorGrantNo.648026)isgratefullyacknowledged.

References

[1]S.Bormann,A.GomezBaraibar,Y.Ni,D.Holtmann,F.Hollmann,Catal.Sci. Technol.5(2015)2038–2052.

[2]M.Hofrichter,R.Ullrich,Curr.Opin.Chem.Biol.19(2014)116–125. [3]E.Roduner,W.Kaim,B.Sarkar,V.B.Urlacher,J.Pleiss,R.Gläser,W.-D.Einicke,

G.A.Sprenger,U.Beifuß,E.Klemm,C.Liebner,H.Hieronymus,S.-F.Hsu,B. Plietker,S.Laschat,ChemCatChem5(2013)82–112.

[4]F.Hollmann,I.W.C.E.Arends,K.Buehler,A.Schallmey,B.Buhler,GreenChem. 13(2011)226–265.

[5]D.Holtmann,F.Hollmann,ChemBioChem17(2016)1391–1398. [6]D.R.Morris,L.P.Hager,J.Biol.Chem.241(1966)1763.

[7]F.vanRantwijk,R.A.Sheldon,Curr.Opin.Biotechnol.11(2000)554–564. [8]R.Ullrich,J.Nüske,K.Scheibner,J.Spantzel,M.Hofrichter,Appl.Environ.

Microbiol.70(2004)4575–4581.

[9]P.Molina-Espeja,S.Ma,D.M.Mate,R.Ludwig,M.Alcalde,EnzymeMicrob. Technol.73–74(2015)29–33.

[10]P.Molina-Espeja,E.Garcia-Ruiz,D.Gonzalez-Perez,R.Ullrich,M.Hofrichter, M.Alcalde,Appl.Environ.Microbiol.80(2014)3496–3507.

[11]P.Molina-Espeja,M.Canellas,F.J.Plou,M.Hofrichter,F.Lucas,V.Guallar,M. Alcalde,ChemBioChem17(2016)341–349.

[12]K.Piontek,E.Strittmatter,R.Ullrich,G.Gröbe,M.J.Pecyna,M.Kluge,K. Scheibner,M.Hofrichter,D.A.Plattner,J.Biol.Chem.288(2013)34767–34776. [13]Y.Ni,D.Holtmann,F.Hollmann,ChemCatChem6(2014)930–943.

[14]P.Tufvesson,J.Lima-Ramos,M.Nordblad,J.M.Woodley,Org.Proc.Res.Dev. 15(2010)266–274.

[15]M.Lundemo,J.Woodley,Appl.Microbiol.Biotechnol.99(2015)2465–2483. [16]R.Leon,P.Fernandes,H.M.Pinheiro,J.M.S.Cabral,EnzymeMicrob.Technol.

23(1998)483–500.

[17]G.Carrea,TrendsBiotechnol.2(1984)102–106.

[18]E.P.Hudson,R.K.Eppler,D.S.Clark,Curr.Opin.Biotechnol.16(2005)637–643. [19]A.L.Serdakowski,J.S.Dordick,TrendsBiotechnol.26(2008)48–54.

Cytaty

Powiązane dokumenty

Zdjęcia murali znajdują się prawie we wszystkich opracowaniach doty- czących street artu w Lizbonie.. Niezwykle oryginalnym portugalskim streetartowcem jest Bordalo II (Se-

In this way the length of a sound wave and the sound velocity in the gas, or in the mixture of gases, can be determined, provided the quartz vibration is known.. As results from

Paco wasn´t happy.. They were in

[r]

Autorka wykorzystała liczne dokumenty niepublikowane dotyczące dziejów chełmińskiej kapituły, samego klasztoru cysterskiego oraz seminarium duchownego i jego biblioteki,

Bij het bepalen van de breedte van de kruin van de tuimelkade dient in de overweging te worden betrokken dat bij plaatsing aan de binnenzijde van de dijk geen inspectie van

In this study, the fracture toughness of the WELs is compared with those of undeformed pearlite, quenched martensite (same chemical composition as pearlitic

However, central government still managing land administration processes and Spatial Information Infrastructure (SII) that may be the solution to streamline spatial planning data