• Nie Znaleziono Wyników

DG406-883

N/A
N/A
Protected

Academic year: 2022

Share "DG406-883"

Copied!
13
0
0

Pełen tekst

(1)

Features

• This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.

• ON-Resistance 100Ω (Max)

• Low Power Consumption (P

D

<1.2mW)

• Fast Transition Time (300ns Max)

• Low Charge Injection

• TTL, CMOS Compatible

• Single or Split Supply Operation

Applications

• Battery Operated Systems

• Data Acquisition

• Medical Instrumentation

• Hi-Rel Systems

• Communication Systems

• Automatic Test Equipment

Description

The DG406/883 and DG407/883 monolithic CMOS analog multiplexers are drop-in replacements for the popular DG506A/883 and DG507A/883 series devices. They each include an array of sixteen analog switches, a TTL and CMOS compatible digital decode circuit for channel selec- tion, a voltage reference for logic thresholds, and an ENABLE input for device selection when several multiplex- ers are present.

These multiplexers feature lower signal ON resistance (<100Ω) and faster transition time (t

TRANS

<250ns) compared to the DG506A/883 and DG507A/883. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG406 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technolo- gies. The 44V maximum voltage range permits controlling 30V

P-P

signals when operating with ±15V power supplies.

The sixteen switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±5V analog input range.

Pinouts

Ordering Information

PART NUMBER

TEMP. RANGE

(oC) PACKAGE

PKG.

NO.

DG406AK/883 -55 to 125 28 Ld CERDIP F28.6 DG407AK/883 -55 to 125 28 Ld CERDIP F28.6

DG406/883 (CERDIP) TOP VIEW

DG407/883 (CERDIP) TOP VIEW

V+

NC NC S16 S15 S14 S13 S12 S11 S10 S9 GND NC A3

D

S8 S7 S6 S5

S3

S1 EN A0 A1 A2 V-

S4

S2 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1

2 3 4 5 6 7 8 9 10 11 12 13 14

V+

DB NC S8B S7B S6B S5B S4B S3B S2B S1B GND NC NC

DA

S8A S7A S6A S5A

S3A

S1A EN A0 A1 A2 V-

S4A

S2A 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1

2 3 4 5 6 7 8 9 10 11 12 13 14

April 1997

DG406/883, DG407/883

Single 16-Channel/Differential

8-Channel CMOS Analog Multiplexers

(2)

Functional Block Diagrams

DG406 DG407

DG406 TRUTH TABLE

A3 A2 A1 A0 EN ON SWITCH

X X X X 0 None

0 0 0 0 1 1

0 0 0 1 1 2

0 0 1 0 1 3

0 0 1 1 1 4

0 1 0 0 1 5

0 1 0 1 1 6

0 1 1 0 1 7

0 1 1 1 1 8

1 0 0 0 1 9

1 0 0 1 1 10

1 0 1 0 1 11

1 0 1 1 1 12

1 1 0 0 1 13

1 1 0 1 1 14

1 1 1 0 1 15

1 1 1 1 1 16

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

D

TO DECODER LOGIC CONTROLLING BOTH TIERS OF MUXING

ADDRESS DECODER

1 OF 16 ENABLE

A0 A1 A2 A3 EN

DG407 TRUTH TABLE

A2 A1 A0 EN ON SWITCH PAIR

X X X 0 None

0 0 0 1 1

0 0 1 1 2

0 1 0 1 3

0 1 1 1 4

1 0 0 1 5

1 0 1 1 6

1 1 0 1 7

1 1 1 1 8

Logic “0” = VAL < 0.8V Logic “1” = VAH > 2.4V X = Don’t Care

S2A S3A S4A S5A S6A S7A S8A

S1B S2B S3B S4B S5B S6B S7B S8B

DA

TO DECODER LOGIC CONTROLLING BOTH TIERS OF MUXING

ADDRESS DECODER

1 OF 8 ENABLE

A0 A1 A2 EN

S1A

DB

(3)

Absolute Maximum Ratings Thermal Information

Voltages Referenced to V-

V+ . . . +44.0V GND . . . 25V Digital Inputs, VS, VD (Note 1) . . . (V-) -2V to (V+) +2V or 20mA, Whichever Occurs First Current (Any Terminal) . . . 30mA Peak Current, S or D . . . 100mA

(Pulsed 1ms, 10% Duty Cycle Max)

Operating Conditions

Temperature Range . . . -55oC to 125oC

Thermal Resistance (Typical, Note 2)

θ

JA (oC/W)

θ

JC (oC/W) CERDIP Package . . . 55 12 Maximum Junction Temperature. . . 150oC Maximum Storage Temperature Range . . . -65oC to 150oC

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

2. θJA is measured with the component mounted on an evaluation PC board in free air.

TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS Devices tested at +VSUPPLY = +15V, -VSUPPLY = -15V, VAL = 0.8V, VAH = 2.4V, Unless Otherwise Specified

PARAMETER SYMBOL CONDITIONS

GROUP A SUB- GROUP

DEVICE TYPE

(NOTE 3) MIN

(NOTE 3)

MAX UNITS Drain-Source ON Resistance rDS(ON) VD = 10V, IS = -10mA

VD = -10V, IS = 10mA (Note 4)

1, 3 All - 90 Ω

2 All - 120 Ω

Matching Between Channels ∆rDS(ON) rDS(ON) Max - rDS(ON) Min (Note 3)

1 All - 15 Ω

Source OFF Leakage Current IS(OFF) VEN = 0V, VS = ±10V, VD = +10V

1 All -0.5 0.5 nA

2, 3 All -50 50 nA

Drain OFF Leakage Current ID(OFF) VEN = 0V, VS = ±10V, VD = +10V

DG406 1 DG406 -1 1 nA

2, 3 -200 200 nA

DG407 1 DG407 -1 1 nA

2, 3 -100 100 nA

Drain ON Leakage Current ID(ON) VS = VD = ±10V

Sequence Each Switch ON (Note 4)

DG406 1 DG406 -1 1 nA

2, 3 -200 200 nA

DG407 1 DG407 -1 1 nA

2, 3 -100 100 nA

Logic High Input Current IAH VA = 2.4V, 15V 1, 2, 3 All -1 1 µA

Logic Low Input Current IAL VEN = 0V, 2.4V, VA = 0V 1, 2, 3 All -1 1 µA

Positive Supply Current ICC VEN = 2.4V, VA = 0V 1 All - 100 µA

2, 3 All - 500 µA

Negative Supply Current IEE 1 All -1 - µA

2, 3 All -10 - µA

(4)

Positive Standby Current ICC Standby

VEN = VA = 0V or 5V 1 All - 30 µA

2, 3 All - 75 µA

Negative Standby Current IEE Standby

1 All -1 - µA

2, 3 All -10 - µA

NOTES:

3. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

4. Room = 25oC, Cold and Hot = as determined by the operating temperature suffix.

TABLE 1A. ELECTRICAL PERFORMANCE SPECIFICATIONS (SINGLE SUPPLY) Devices tested at +VSUPPLY = +12V, -VSUPPLY = 0V, VAL = 0.8V, VAH = 2.4V, Unless Otherwise Specified

PARAMETER SYMBOL CONDITIONS

GROUP A SUB- GROUP

DEVICE

TYPE MIN MAX UNITS

Drain-Source ON Resistance rDS(ON) VD = 3V, 10V IS = -1mA

1 All - 120 Ω

Positive Current ICC VEN = 0V or 5V,

VA = 0V or 5V

1 All - 30 µA

2, 3 All - 75 µA

Negative Current IEE 1 All -1 - µA

2, 3 All -5 - µA

Switching Time of Multiplexer tTRANS VS1 = 8V, VSS - 0V, VIN = 2.4V

1 All - 450 ns

Enable Turn-ON Time tON(EN) VINH = 2.4V, VINL = 0V,

VS1 = 5V 1 All - 600 ns

Enable Turn-OFF Time tOFF(EN) 1 All - 300 ns

TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS

Devices tested at +VSUPPLY = +15V, -VSUPPLY = -15V, VAL = 0.8V, VAH = 2.4V, Unless Otherwise Specified (Continued)

PARAMETER SYMBOL CONDITIONS

GROUP A SUB- GROUP

DEVICE TYPE

(NOTE 3) MIN

(NOTE 3)

MAX UNITS

TABLE 2. AC ELECTRICAL PERFORMANCE SPECIFICATIONS Devices tested at +VSUPPLY = +15V, -VSUPPLY = -15V, VAL = 0.8V, VAH = 2.4V, Unless Otherwise Specified

PARAMETER SYMBOL CONDITIONS

GROUP A SUB- GROUP

DEVICE

TYPE MIN MAX UNITS

Transition Time tTRANS CL = 35pF, RL = 300Ω, See Figure 1

9 All - 300 ns

10, 11 All - 400 ns

Enable Turn-ON Time tON(EN) CL = 35pF, RL = 300Ω, See Figure 2

9 All - 200 ns

10, 11 All - 400 ns

Enable Turn-OFF Time tOFF(EN) 9 All - 150 ns

10, 11 All - 300 ns

Break Before Leakage Current tOPEN CL = 35pF, RL = 300Ω, See Figure 3

9 All 25 - ns

10, 11 All 10 - ns

(5)

TABLE 3. DC ELECTRICAL PERFORMANCE SPECIFICATIONS Devices tested at +VSUPPLY = +15V, -VSUPPLY = -15V, VAL = 0.8V, VAH = 2.4V, Unless Otherwise Specified

PARAMETER SYMBOL CONDITIONS NOTE TEMP (oC) MIN TYP MAX UNITS

Off Isolation Time VISO VEN = 0V, RL = 1K, f = 100kHz, GEN = 1VP-P Sine Wave, See Figure 5

5 25 50 - - dB

Charge Transfer Error VCTE CL = 10nF, VS = 0V, RS = 0Ω, See Figure 4

5 25 - - 10 mV

Crosstalk VCT RL = 1K, f = 100kHz,

GEN = 1VP-P Sine Wave, See Figure 5

5 25 50 - - dB

Source OFF Capacitance CS(OFF) VEN = 0V, VS = 0V, f = 1MHz 65 25 - - 10 pF

Drain OFF Capacitance CD(OFF) VEN = 0V, VD = 0V, f = 1MHz

DG406 5 25 - - 200 pF

DG407 5 25 - - 100 pF

Drain ON Capacitance CD(ON) VEN = 0V, VD = 0V, f = 1MHz

DG406 5 25 - - 400 pF

DG407 5 25 - - 200 pF

NOTE:

5. Parameters listed via process parameters and are not directly tested at final production. These parameters are lab characterized upon design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple produc- tion rich reflect lot to lot and within lot variation.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS SUBGROUPS (SEE TABLES 1 AND 2)

Interim Electrical Parameters (Pre Burn0In) 1

Final Electrical Test Parameters 1 (Note 6), 2, 3, 9, 10, 11

Group A Test Requirements 1, 2, 3, 9, 10, 11

Group C and D Endpoints 1

NOTE:

6. PDA applied to Subgroup 1 only.

(6)

Test Circuits and Waveforms

FIGURE 1A. FIGURE 1B.

FIGURE 1C.

FIGURE 1. TRANSITION TIME

FIGURE 2A. FIGURE 2B.

FIGURE 2C.

EN A3

DG406

GND A2 A1

S1 S2 - S15 S16 V- D V+

±

±10V

VO 300Ω 35pF

50Ω

+15V

+2.4V

-

15V A0

10V

EN

A0 DG407

GND A1 A2

S1B

S8B DB V-

V+ ±10V

VO 300Ω 35pF

50Ω

+15V

+2.4V

-

15V

= S1A - S8A, S2B - S7B, DA

± 10V

LOGIC INPUT

SWITCH OUTPUT VO

3V

VS1B

50%

tr < 20ns tf < 20ns

tTRANS 0V 50%

0V VS8B

tTRANS

S8 ON 80%

80%

S1 ON

EN A3

DG406

GND A2 A1

S1 S2 - S16

V- D

V+ -5V

VO 300Ω 35pF

50Ω

+15V

-

15V

A0 EN

A0 DG407

GND A1

A2 S1B

DB V-

V+ -5V

VO 300Ω 35pF

50Ω

+15V

-

15V

= S1A - S8A, S2B - S8B, DA

LOGIC INPUT

SWITCH OUTPUT VO

3V

VO

50%

tr < 20ns tf < 20ns

tON(EN) 0V

50%

tOFF(EN)

90%

0V

(7)

FIGURE 2. ENABLE SWITCHING TIME

FIGURE 3A. FIGURE 3B.

FIGURE 3. BREAK-BEFORE-MAKE INTERVAL

FIGURE 4. CHARGE INJECTION

FIGURE 5. OFF ISOLATION FIGURE 6. CROSSTALK

Test Circuits and Waveforms

(Continued)

EN A3

DG406

GND A2 A1

ALL S

D, V-

V+ +5V

VO 300Ω 35pF

50Ω

+15V

+2.4V

-

15V A0

DG407 AND DA

DB

LOGIC INPUT

SWITCH OUTPUT VO

3V

VD

tr < 20ns tf < 20ns

tOPEN 0V

0V

80%

50%

SX

A0 DG406

GND A1 A2

D

V- V+

VO CL +15V

-

15V A3

DG407 EN VGEN = 0-3V

10nF

5V

∆VO OFF OFF

ON 3V

0V LOGIC

INPUT

SWITCH OUTPUT

SX1

A0 DG406

GND A1 A2

D

V- V+

VO RL RG = 50

+15V

-

15V A3

DG407 SX16 VGEN = 1VP-P

1kΩ

OFF ISOLATION = 20LOG VOUT VIN EN

VS

A0 DG406

GND A1 A2

D

V- V+

VO RL RG = 50Ω

+15V

-

15V A3

DG407 1VP-P

1kΩ EN

S1

1kVS

CROSSTALK = 20LOG VOUT VIN SX2

SX16

(8)

Burn-In Circuit

CERDIP BURN-IN SCHEMATIC DG406/407AK/883

NOTE:

R1, R2 = 10kΩ ±5%, 1/2W or 1/4W (Per Socket)

C1, C2 = 0.01µF (Min, Per Socket) or 0.1µF (Min, Per Row) D1, D2 = IN402 (or Equivalent, Per Board)

Schematic Diagram (Typical Channel)

+15V

D1 C1

R1

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1

2 3 4 5 6 7 8 9 10 11 12 13 14

OUT/OUTA -V IN 8/8A IN 7/7A IN 6/6A IN 5/5A IN 4/4A IN 3/3A IN 2/2A IN 1/1A EN A0 A1 A2 A3/NC

VREF GND IN 9/1B IN 10/2B IN 11/3B IN 12/4B IN 13/5B IN 14/6B IN 15/7B IN 16/8B NC NC/OUT B +V

R2

-15V

D2 C2

+5V

V+

GND

A0

AX

EN

V-

VREF

LEVEL

SHIFT DECODE/

DRIVE

V+

V+ V-

D

S1

SN

(9)

Typical Design Information

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as applica- tion and design information only. No guarantee is implied.

Typical Performance Curves

FIGURE 7. rDS(ON) vs VD AND SUPPLY FIGURE 8. rDS(ON) vs VD AND TEMPERATURE

FIGURE 9. rDS(ON) vs VD AND SUPPLY FIGURE 10. ID, IS LEAKAGE CURRENTS vs ANALOG VOLT- AGE

±5V

±10V±8V

±15V±12V

±20V 160 140 120 100 80 60 40 20

0-20 -16 -12 -8 -4 0 4 8 12 16 20

VD, DRAIN VOLTAGE (V)

rDS(ON), ON RESISTANCE (Ω) 125oC

-40oC

-55oC 25oC 85oC

0oC

V+ = 15V V- = -15V 80

70 60 50 40 30 20 10

0-15 -10 -5 0 5 10 15

VD, DRAIN VOLTAGE (V) rDS(ON), ON-RESISTANCE (Ω)

V- = 0V

V+ = 7.5V

10V 12V

15V 20V

22V 240

200

160

120

80

40

00 4 8 12 16 20

VD, DRAIN VOLTAGE (V) rDS(ON), ON-RESISTANCE (Ω)

-10 -5 0 5 10 15

VS, VD, SOURCE DRAIN VOLTAGE (V) V+ = 15V, V- = -15V

VS = -VD FOR ID(OFF) VD = VS(OPEN) FOR ID(ON)

IS(OFF)

DG406 ID(ON), ID(OFF)

-15 120

80

40

0

-40

-80

-120 ID, IS, CURRENT (pA)

DG407 ID(ON), ID(OFF)

(10)

FIGURE 11. ID, IS LEAKAGE vs TEMPERATURE FIGURE 12. SWITCHING TIMES vs BIPOLAR SUPPLIES

FIGURE 13. SWITCHING TIMES vs SINGLE SUPPLY FIGURE 14. OFF-ISOLATION vs FREQUENCY

FIGURE 15. SUPPLY CURRENTS vs SWITCHING FREQUENCY FIGURE 16. tON/tOFF vs TEMPERATURE

Typical Performance Curves

(Continued)

V+ = 15V, V- = -15V VS OR VD = ±10V

IS(OFF) ID(ON), ID(OFF)

100nA

10nA

1nA

100pA

10pA

1pA

0.1pA ID, IS, CURRENT (A)

-55 -35 -15 5 25 45 65 85 105 125

TEMPERATURE (oC)

350

300

250

200

150

100

50

05 10 15 20

VSUPPLY, SUPPLY VOLTAGE (±V)

TIME (ns)

tTRANS

tON(EN)

tOFF(EN)

700

600

500

400

300

200

100

05 10 15 20

V+, SUPPLY VOLTAGE (V)

TIME (ns) tTRANS

tON(EN)

tOFF(EN)

V- = 0V

1K 10K 100K 1M 10M

f, FREQUENCY (Hz) 100

-140

-120

-100

-80

-60

-40

-20

ISOL (dB)

0

100 1K 10K 100K 1M 10M

f, FREQUENCY (Hz) EN = 5V, AX = 0V OR 5V

IGND

10 10

8 6

0

-4

-8 -10

I, CURRENT (mA)

I+

I- 4

2

-2

-6

300 280 260 240 220 200

140 120

60-55 -35 -15 5 25 45 65 85 105 125

TEMPERATURE (oC)

TIME (ns)

180 160

100 80

tTRANS

tON(EN)

tOFF(EN) V+ = 15V, V- = -15V

(11)

FIGURE 17. SWITCHING THRESHOLD vs SUPPLY VOLTAGE

Typical Performance Curves

(Continued)

5 10 15 20

VSUPPLY, SUPPLY VOLTAGE (±V) 00

1 2 3

VA(V)

(12)

Die Characteristics

DIE DIMENSIONS:

2490µm x 4560µm x 485µm ±25µm METALLIZATION:

Type: SiAl

Thickness: 12k Å ±1k Å

PASSIVATION:

Type: Nitride

Thickness: 8k Å ±1k Å

WORST CASE CURRENT DENSITY:

9.1 x 10

4

A/cm

2

Metallization Mask Layout

DG406/883

Die Characteristics

DIE DIMENSIONS:

2490µm x 4560µm x 485µm ±25µm

V-

S16

D

NC V+

S8

A0 EN

S7

S6

S5

S4

S3

S2

S1

A1 A2 A3

GND S15

S14

S13

S12

S11

S10

S9

(13)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.

Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Sales Office Headquarters

NORTH AMERICA Intersil Corporation 7585 Irvine Center Drive Suite 100

Intersil Corporation 2401 Palm Bay Rd.

Palm Bay, FL 32905

EUROPE

Intersil Europe Sarl Ave. William Graisse, 3 1006 Lausanne

ASIA

Intersil Corporation

Unit 1804 18/F Guangdong Water Building 83 Austin Road

NOTES:

1. Index area: A notch or a pin one identification mark shall be lo- cated adjacent to pin one and shall be located within the shaded area shown. The manufacturer’s identification shall not be used as a pin one identification mark.

2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.

3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.

4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.

5. This dimension allows for off-center lid, meniscus, and glass overrun.

6. Dimension Q shall be measured from the seating plane to the base plane.

7. Measure dimension S1 at all four corners.

8. N is the maximum number of terminal positions.

9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.

10. Controlling dimension: INCH.

bbb S C A - B

c Q

L SEATING A

BASE

D

PLANE

PLANE

-A- -D-

-C- -B-

α D

E

S1 b2

b A

e

M c1

b1

(c)

(b) SECTION A-A

BASE LEAD FINISH

METAL

eA/2 A

M

S S

ccc M C A - B S DS aaaM C A - B S DS eA

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

F28.6

MIL-STD-1835 GDIP1-T28 (D-10, CONFIGURATION A) 28 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTES

MIN MAX MIN MAX

A - 0.232 - 5.92 -

b 0.014 0.026 0.36 0.66 2

b1 0.014 0.023 0.36 0.58 3

b2 0.045 0.065 1.14 1.65 -

b3 0.023 0.045 0.58 1.14 4

c 0.008 0.018 0.20 0.46 2

c1 0.008 0.015 0.20 0.38 3

D - 1.490 - 37.85 5

E 0.500 0.610 12.70 15.49 5

e 0.100 BSC 2.54 BSC -

eA 0.600 BSC 15.24 BSC -

eA/2 0.300 BSC 7.62 BSC -

L 0.125 0.200 3.18 5.08 -

Q 0.015 0.060 0.38 1.52 6

S1 0.005 - 0.13 - 7

α

90o 105o 90o 105o -

aaa - 0.015 - 0.38 -

bbb - 0.030 - 0.76 -

ccc - 0.010 - 0.25 -

M - 0.0015 - 0.038 2, 3

N 28 28 8

Rev. 0 4/94

Cytaty

Powiązane dokumenty

УВОДНЕ НАПОМЕНЕ У овом раду позабавићемо се језичком сликом религиозности 1 која се може ре- конструисати анализом асоцијативних поља (АП) лексема из

The correctness of the data entered in the Register of Public Sec- tor Partners is the responsibility of both (i) the public sector partner and (ii) the registrar (the

Przyjmując, że światło ulega e-krotnemu ( e  2,72) osłabieniu po przejściu pewnej drogi l, równej średniej drodze swobodnej fotonu w ośrodku, znajdź wzór

W przypadku wariantu B1, w którym skróco- no czas wydobycia o 5 lat, wartości: wyliczo- nej funkcji ryzyka i najbardziej prawdopodob- nej ceny gazu zwiększyły się nieznacznie: do

Although named references to well-known female protagonists of the history of Biblical Israel are missing from this history of the “fathers”, at close reading of the

24 Imię tego władcy oraz wzmianka o Utnapisztim, herosie potopu babilońskiego, pojawia się w tekście tabliczki, który towarzyszy mapie... U podstaw ich rozumowania leży idea

Również dzisiaj, gdy jesteśmy świadkami rozwijania się nowego typu du­ chowości, duchowości „przemiany świata&#34; (nrmy/óruMÓo Mecu/;'), nie wywo­ dzącej się

Dat betekent omgerekend alle woningen twee labelstappen verbeteren of 3,9 miljoen woningen van G naar B verbeteren of 1,1 miljoen woningen renoveren tot Nul op de