• Nie Znaleziono Wyników

Abstract. We give a generalization of some result of J. Janowski and J. Stankie- wicz [2].

N/A
N/A
Protected

Academic year: 2021

Share "Abstract. We give a generalization of some result of J. Janowski and J. Stankie- wicz [2]."

Copied!
3
0
0

Pełen tekst

(1)

ANNALES

POLONICI MATHEMATICI 55 (1991)

On some majorization of derivatives in the class S (γ) by Andrzej Wrzesie´ n ( L´ od´ z)

Abstract. We give a generalization of some result of J. Janowski and J. Stankie- wicz [2].

Introduction. Let S (γ) (|γ| < π/2) denote the class of γ-spiral-starlike functions, i.e., functions F (z) holomorphic in the disc K 1 = {z; |z| < 1} and satisfying the conditions

F (0) = 0 , F 0 (0) = 1 , Re



e −iγ zF 0 (z) F (z)



> 0 , z ∈ K 1 . Among the many results concerning this class we have the sharp estima- tion [1]

(1) m 1 (r, γ) ≤

zF 0 (z) F (z)

≤ m 2 (r, γ) , where

m 1 (r, γ) =

p 1 + 2r 2 cos 2γ + r 4 − 2r cos γ

1 − r 2 ,

(2)

m 2 (r, γ) =

p 1 + 2r 2 cos 2γ + r 4 + 2r cos γ

1 − r 2 ,

(3)

r = |z| < 1 , F ∈ S (γ) .

Let H denote the class of holomorphic functions in K 1 . Define Ω = {w ∈ H; |w(x)| ≤ 1 for z ∈ K 1 }.

Let f 1 , f 2 be two holomorphic functions in K 1 . We say that f 1 is ma- jorized by f 2 in K R = {z; |z| < R} and write f 1  f 2 if there exists a holomorphic function φ such that |φ(z)| ≤ 1 and f 1 (z) = φ(z)f 2 (z), z ∈ K R . J. Janowski and J. Stankiewicz [2] considered the following problem. Let A, B be two fixed classes of holomorphic functions in K 1 . Find the smallest

1991 Mathematics Subject Classification: Primary 30C45.

(2)

358 A. W r z e s i e ´ n

function T (r) = T (r, A, B), r ∈ [0, 1), such that for every pair of functions f ∈ A, F ∈ B we have the implication

f  F in K 1 ⇒ |f 0 (z)| ≤ T (r, A, B)|F 0 (z)| for |z| = r < 1 . Main result. Let f ∈ H and F ∈ S (γ).

Theorem. If f  F in K 1 and |z| = r < 1, then

|f 0 (z)| ≤ T (r, H, S (γ))|F 0 (z)| , where (4)

T (r, H, S (γ)) =

 

 

1 for r ∈ [0, r ],

r 4 + 8r 2 cos 2 γ + 2r 2 − 4rP (r, γ) cos γ + 1 4r(P (r, γ) − 2r cos γ)

for r ∈ (r , 1), (5)

r = q

3 + 4 cos γ − 2 p

2 + 6 cos γ + 4 cos 2 γ , (6)

P (r, γ) = p

1 + 2r 2 cos 2γ + r 4 . (7)

The result is sharp.

P r o o f. If f  F in K 1 then there exists φ ∈ Ω such that (8) f (z) = φ(z)F (z) for z ∈ K 1 .

Differentiating (8) and dividing by F 0 (z) we obtain

(9) f 0 (z)

F 0 (z) = φ 0 (z) F (z)

F 0 (z) + φ(z) . Applying the well-known estimation for φ ∈ Ω, (10) |φ 0 (z)| ≤ 1 − |φ(z)| 2

1 − |z| 2 for z ∈ K 1 , we have from (9), (1) and (10)

(11)

f 0 (z) F 0 (z)

≤ 1 − |φ(z)| 2

1 − r 2 · r(1 − r 2 )

p 1 + 2r 2 cos 2γ + r 4 − 2r cos γ + |φ(z)| . Define u = |φ(z)| and denote the right hand side of the above inequality by G(u). Thus

G(u) = − r

P (r, γ) − 2r cos γ u 2 + u + r

P (r, γ) − 2r cos γ where P (r, γ) = p

1 + 2r 2 cos 2γ + r 4 .

The function G(u) attains its maximum at u = 1 when r ∈ [0, r ] and at u = P (r, γ) − 2r cos γ

2r when r ∈ (r , 1) , where

r = q

3 + 4 cos γ − 2 p

2 + 6 cos γ + 4 cos 2 γ .

(3)

Majorization of derivatives 359

Therefore

(12) max

u∈[0,1] G(u) =

 

 

1 for r ∈ [0, r ],

r 4 + 8r 2 cos 2 γ + 2r 2 − 4rP (r, γ) cos γ + 1 4r(P (r, γ) − 2r cos γ)

for r ∈ (r , 1).

Thus by (12) and (11) we have (4).

The result is sharp. For r ∈ (0, r ] and for every pair of functions {f (z) = e F (z), F (z)}, F ∈ S (γ), θ an arbitrary real number, we have T (r, H, S (γ)) = 1.

If r ∈ (r , 1) equality is achieved at z 0 = re

0

for the functions b f (z) = φ(z) b b F (z) and b F (z), where

φ(z) = b z + α

1 + αz , α = −2r 2 − 2r cos γ + P (r, γ) r(2 + 2r cos γ − P (r, γ)) ,

F (z) = b z

(1 + ze −iθ

0

) 2e

cos γ , F ∈ S b (γ) . By simple calculation we can check that

| b f 0 (z 0 )/ b F 0 (z 0 )| = T (r, H, S (γ)) and this completes the proof.

R e m a r k. For γ = 0 we obtain a result of [2] (Theorem 2, p. 54).

References

[1] C. B u c k a and K. C i o z d a, Some estimations and problems of the majorization in the classes of functions S (α,β) k , Ann. Univ. Mariae Curie-Sk lodowska 29 (4) (1975), 29–41.

[2] J. J a n o w s k i and J. S t a n k i e w i c z, A relative growth of modulus of derivatives for majorized functions, ibid. 32 (4) (1978), 51–61.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF L ´ OD´ Z AL. POLITECHNIKI 11

90-924 L ´ OD´ Z, POLAND

Re¸ cu par la R´ edaction le 14.9.1990

Cytaty

Powiązane dokumenty

ANNALES SOCIETATIS MATHEMATICAE POLONAE Séries I: COMMENTATIONES MATHEMATICAE XXI (1979) ROCZNIKI POLSK.IEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

The most important in this section is Lemma (2.5) which plays a crucial role in the proofs of our main results2. In Section 4 we study relations between diagonals and Hadamard

The proof of Lemma 2 shows that, if K is a local field with algebraically closed residue field of characteristic 0, then any finite extension E/K is determined by its degree d;

Throughout this section L will denote an upper continuous, strongly atomic, locally modular lattice.. In the proofs of Theorems 3.7 and 7.3 of [2] it was not used that L is

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVI (1986) ROCZN1KI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO1. Séria I: PRACE MATEMATYCZNE

A comparison of the generalization ability of the kernel Ho- Kashyap method with the state-of-the-art classifiers, such as the regularized Adaboost, the support vector machine and

Key words and phrases: (`)-group, ideal, ideal order and (D)-convergence, limit the- orem, matrix theorem, Schur theorem, unconditional convergence.. In this paper we extend to

shitz [9] proved that in a Hilbert space a uniformly fc-Lipschitzian mapping with k &lt; y/2 has a fixed point and found an example of a fixed point free uniformly