• Nie Znaleziono Wyników

Existence theorem for multivalued hyperbolic equation

N/A
N/A
Protected

Academic year: 2021

Share "Existence theorem for multivalued hyperbolic equation"

Copied!
5
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series 1: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Séria I: PRACE MATEMATYCZNE XXVII (1987)

Ireneusz Kubiaczyk (Poznan)

Existence theorem for multivalued hyperbolic equation

Assume that £ is a Banach space, z0e £ , В = [xeE: \\x — z0\\ ^ r) and F : P x B -> CB(E), where P = {(x, y): x 0 ^ x ^ x 0 + a, y0 ^ y ^ y 0 + b} and CB(E) denotes the metric space of non-empty closed bounded subsets of E with the Hausdorff metric H. We shall also write D(a, B) = Inf {\\a

— b\\: b e B }.

In this paper we prove an existence theorem for multivalued partial differential equations:

(1) d2 u/dxdyeF (x, y, u(x, y))

with the initial conditions w(x, y0) = <x(x), u(x0, у) = т(у).

By a solution of equation (1) on some rectangle P' we mean an absolutely continuous mapping u(x, y) such that и satisfies (1) almost everywhere on P'.

By a. classical solution of equation (1) on some rectangle P' we mean a continuous mapping u(x, y) such that д2и/дхду is continuous and и satisfies (1) for each (x, y)eP '.

In [7] Sosulski proved an existence theorem for the solution of multivalued functional-differential equations of hyperbolic type. In this paper we prove an existence theorem for the clasical solution using an analogue of the classical Euler-Cauchy polygon method (see [3], [2]). For a single valued mapping this problem was proved by A. Alexiewicz and W. Orlicz [1], P. Negrini [5] and the others.

It will be tacitly assumed that the functions cr(x) and т(у) are defined in

<x0, x0 + a> and (Уо, Уо + Ь}, respectively, that they have continuous derivatives of the first order, and that о (x0) = т (y0) = z0.

Let C, D and M be such that ||cr(x) — a(x)|| ^ C |x — x|,

llTM -T(ÿ)ll ^ D \ y ~ y \ , IlF{x, y, z)|| ^ M for (x, y ) e P and z e B . Let a denote the Kuratowski measure of non-compactness. For properties of a see [6], [4].

We say that the multifunction F(x, y, z) is “absolutely continuous” if for any £ > 0 there exists <5 > 0 such that for any points (xf, yf, z ,)eP x B the

(2)

inequality

implies

Z (l^i+i-^l+bH-i-^l+ki+i-Zii) <<5

i — 1

Z

H (F{xi +1, yi + 1, zi + l), F{xh yit zt) )< e . i = 1

Theorem. Let the multifunctions F be “absolutely continuous” and bounded by M and

(2) a (F(P' x V)) ^ fca(F) for every subset V of В .

Then for any /o o e F (x 0, Уо> z o) there exists on the rectangle P' a clasical solution z(x, y) of the multivalued hiperbolic equation (1) such that z ( x 0, y0)

ô2z +

= Zq and -T -r-(x0, y0) = foo f ° r апУ дх су

fo o e F ( x 0, y0, z 0), where P' = {(x, y): x0 ^ x ^ x 0 + h, y 0 ^ У < Уо+ h'}

and h, h' are such that h ^ a, W ^ b, hh'k < 1, hC + h'D + hh'M ^ r.

P ro o f. Denote by Pknl the set {(x, y): xk ^ x ^ x k + l , у* < у ^ У/+1}, where xk = x 0 + ka/n, yt = y0 + lb/п for k, 1 = 0, 1, ..., n — 1.

Let w„ denote the mapping defined in the following way:

For (x, y )eP °°

f \ I м 0 0 ^ ч I t l n W o o /- \ , r / \ / \

u„(x, y) = w00 + ---( x - x 0) + --- — (у -У о Н /о о ^ -Х о Н у -У о ),

*i ~ * o У\~Уо

where u00 = z 0, w„1>0 = un(xu y j = a{xx), и°пл = w„(x0, y j = i(yi), /00 £ F (x o> Уо? zo)-

For (x, у ) е Р ;'

w„(x, y) = W*’° + U°’'— W00 + 'uk„ + 1’° - u k’° O.H- 1 Xk+I - X k

n

- ( x - x k) + - l и0,1 У1+1- У- i y - y ù1

к I I

+ 1 I f i - l , j - l ( x i - X i - 1) ( y j - y j - 1) + Z f k j - A x - X k j i y j - y j - i )

i = l j = l j = 1

fc i = 1

where uk„’° = un(xk, y0) = o(xk), u°’1 = u„(x0, у,) = т(у,) and f k>l are such points that f k>ie F ( x k, yh un(xk, уг)) and

l\fk,i~fk-i,i-i\\ = ^ { f k - u i - u F (xk, y„ u„(xk, y,))),

fk.i- i e F ( x k, y , - l5 w„(xk, У!_ i))

(3)

Existence theorem for multivalued hyperbolic equation 117

and

НЛ.г- i Ул—i,ï ill = D { f k -1,1 l > F (xk> У1 - 1 un(xk> .Vi-i)))>

f k - i , i e F (xk - u УьМ„{хк-1, У,)) and

Wfk- 1,/ fk- 1,1- ill = D{fk - 1,1-1 > F( Xk- !■> Уь Un(Xk- !■> .Vl-l))) for l, к = 1, 2, ...

This construction is possible because F ( x , y , z ) are compact sets F{x, y, z) cz F (P1 xH), where H we construct analogously as in [8],

H = z 0+ (J Ясопv a ' ( ( x 0, x 0 + h})+ (J ц с о тt'{(y 0, y 0 + h '»

o a ^ li O^n^h'

+ У Я^сопу F (P 'x H ) . As o' and x' are continuous, <t'(<(x0, x 0 + /i>) and т'(<у0, y0 + fr'» are compact. By the properties of measure of non-compactnes we have а(Я) ^ hh'kot (H). This implies that the set H is compact.

First, we prove by induction that u„ (x,y )eB for (x, y)eP'. For (x, y)eP °°

IIM„(x,

y ) - z

0II < lk4£i)ll(*-*o) + IH*/i)IIO;-}'o)

+ ll/ooll (x — *o)(У ~ Уо) < hC + h'D + Mhh' < r.

Now, if w„(x, y )e B for (x, y)eP%J for i ^ к — 1, j ^ / — 1, then we can show that un(x, y ) e P kn~ 1,1 и u I* ’1.

For example, for (x, y )e P *,l

■Цм„(jc, y ) - z 0|| ^ ||( x - x 0)conv(T'(<Xo, x0 + /j»||

+ IICv-To)convT, «>'o, j'o + JOMI

+ ||(x —x0)(y —y0)convF(.P' xJ5)|| ^ hC + h'D + hh'M < r.

As

u„(x, y ) e z 0+ IJ /lco n v cr'« x 0, x 0 + h})+ IJ ^ co n v i'(< y 0, Уо + h') .

+ U Ific o n v F (P' xH ) cz H . So un( x , y ) e H for each (x, y)eP'.

Also it is easy to see that

(3) ||м„(х, y)-w „(x, y)|| ^ C \x — x\ + D\y — y\ + M h\x — x\ + Mh'\y — y\.

Now we define the sequence (z„(x, y)) of functions as follows:

zn(x , У) = f k,i for (x, y ) e P k„’1, x < xk+1, у < yI+1.

(4)

Let H 0 — c o w F ( P ' хЯ ). As Я is compact the set H 0 is compact and zn{ x , y ) e H 0.

If (x, y ) e P k„’1, (x, y)eF,;j , then if i < k, j <1 we have J\z„(x, y ) - z n(x, y)\\

= НЛ.1-/Л <

\\fk,i-fk-i.i-i\\+

< H (F (xk. u y t- u u„(xk_i, y ^ ) ) , F (xk, y b un{xk, y,))) + ...

. . . + H ( F { x h yJt un(xh yj), F (xi + 1, yj+1, un(xi + l , yJ+i))).

As |xk — Xj| < \x — x\ + 2a/n and \yt — y}\ < \y — y| + 2b/n, by (3) and absolute continuity of F we obtain that the set {z„(x, y): n = 1, 2, ...} is equioscillating, that is, for each e > 0 there exists N and <5 > 0 such that for all points (x, y) and (x, y ) e P satisfying |x — x| < <5, \y — y\ < 0 and for all n e N one has \\z„(x, y) — z n(x, ÿ)|| < г.

From a theorem of Ascoli there is a continuous function z defined on P' and a subsequence of the sequence (z„) which converges uniformly to z.

Let

* У

u(x, у) = er(x) + T (y ) - z 0+ J J z(s, t)dsdt

*oxo

Then the corresponding subsequence u„k(x, y) tends uniformly to u(x, y) and

^ ||z(x, y ) - f k,i\\ + H (F (x k, yb U„k(xk, y,)), F (x, у, м(х, у))) — 0 if nk -> со.

This shows that u(x, y) is a solution of our problem (1).

References

[1] A. A le x ie w ic z , W. O r lic z , Some remarks on the existence and uniqueness of solutions of the hyperbolic equation, Studia Math. (1956), 201-215.

[2] J. B. D ia z , On an analogue o f the Euler-Cauchy polygon method for the numerical solution o f uxy = f ( x , y, u, ux, uy), Archive Rat. Mech. Anal. (1957), 357-390.

[3] A. F. F il ip p o v , Classical solutions o f differential equations with multivalued right-hand side, Vestnik Moskov. Univ. Ser. I Mat. Meh. 22 (1967), no. 3, 16-26. English transi., SIAM J.

Control 5 (1967), 609-621.

[4] R. H. M a r tin , Nonlinear operators and differential equations in Banach spaces, New York 1976.

[5] P. N e g r in i, Sul problema di Darboux negli spazi di Banach, Bull. U. M. I. (5) 17-A (1980), 156-160.

(5)

Existence theorem for multivalued hyperbolic equation 119

[6] B. N. S a d o w s k i, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.

[7] W. S o s u ls k i, Existence theorem for generalized functional-differential equations of hyperbolic type, Comment. Math. 25 (1985), 149-152.

[8] S. S z u fla , Some remarks on ordinary differential equations in Banach spaces, Bull. Acad.

Polon. Sci., Sér. Math. Astronom. Phys. 16 (1968), 795-800.

INSTYTUT MATEMATYKI UNIWERSYTETU IM. A. MICKIEWICZA POZNAN

Cytaty

Powiązane dokumenty

Di Blasio, Differentiability of spatially homogeneous solution of the Boltzmann equation in the non Maxwellian case, Comm.. Ehlers, Survey of general relativity theory,

This problem is much more mathematically delicate than the periodic one, because the operator given by the right hand side of (1) is not completely continuous in the Banach space of

The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential

Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the

Keywords: existence theorem, functional differential equation, hyperbolic equation, Darboux problem, solution in the sense of Carath´eodory.. 2000 Mathematics Subject

Moreover, some boundary problems for almost linear hyperbolic equations with deviated argument where this argument depends on the unknown function and these

Abstract: The present paper deals with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractional differen- tial equations with

Theorem 1.1 was proved for a variety of nonlinear differential equations under homogeneous Dirichlet boundary conditions in [2, 4, 7, 8] and for a system of differential equations