• Nie Znaleziono Wyników

Pauli Crystals

N/A
N/A
Protected

Academic year: 2021

Share "Pauli Crystals"

Copied!
33
0
0

Pełen tekst

(1)

Pauli Crystals

hidden geometric structures

of the quantum statistics

Tomasz Sowiński

Institute of Physics of the Polish Academy of Sciences

Europhys. Lett. 115, 20012 (2016)

FEW-BODY PROBLEMS THEORY GROUP

FEW-BODY PROBLEMS THEORY GROUP

FewBody.ifpan.edu.pl

Sci. Rep. 7, 15004 (2017)

Co-authors:

M. Gajda, J. Mostowski, D. Rakshit, M. Załuska-Kotur

(2)

(r

1

, . . . , r

N

) = Det

2

6 6

6 4

1

(r

1

)

2

(r

1

) . . .

N

(r

1

)

1

(r

2

)

2

(r

2

) . . .

N

(r

2

)

.. . .. . .. . .. .

1

(r

N

)

2

(r

N

) . . .

N

(r

N

)

3

7 7

7 5

ground-state of spinless fermions

V (r)

{ i(r)}

 ~

2

2m r

2

+ V (r)

i

(r) = E

i i

(r)

• We consider spinless fermions

confined in some external potential

• In principle the corresponding Schrödinger equation can be solved

• The set of eigenstates is known

• Wave function of the noninteracting many-body ground-state

(3)

(r

1

, . . . , r

N

) = Perm

2

6 6

6 4

1

(r

1

)

2

(r

1

) . . .

N

(r

1

)

1

(r

2

)

2

(r

2

) . . .

N

(r

2

)

.. . .. . .. . .. .

1

(r

N

)

2

(r

N

) . . .

N

(r

N

)

3

7 7

7 5

(r

1

, . . . , r

N

) =

1

(r

1

)

2

(r

2

) · . . . ·

N

(r

N

)

• Fundamentally distinguishable particles

• Bosons

1

(r) =

2

(r) = . . . =

N

(r)

Ground-state obtained for

small digression

(4)

-3 -2 -1 0 1 2 3 0.2

0.4 0.6

0.5 1.5 2.5 3.5

two distinguishable particles

˜

x

1

= 0 x ˜

2

= ±1

the most probable configuration

density profiles

⇢(x

1

, x

2

) = | (x

1

, x

2

) |

2

⇢(˜ x

1

, ˜ x

2

) = max [⇢(x

1

, x

2

)]

first observation

(x

1

, x

2

) = '

0

(x

1

)'

1

(x

2

)

(5)

first observation

-3 -2 -1 0 1 2 3

0.2 0.4 0.6

0.5 1.5 2.5 3.5

two identical bosons

density profiles

(x

1

, x

2

) = 1

p 2 ['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

the most probable configuration

(6)

-3 -2 -1 0 1 2 3 0.2

0.4 0.6

first observation

0.5 1.5 2.5 3.5

two identical bosons

density profiles

(x

1

, x

2

) = 1

p 2 ['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

˜

x

1

= ± 1

p 2 x ˜

2

= ˜ x

1

the most probable configuration

boson

enhancement

(x1 ,x

2 )

= p 1 2 ['0

(x1

)'1

(x2 ) '1

(x1

)'0

(x2 )]

(7)

-3 -2 -1 0 1 2 3 0.2

0.4 0.6

first observation

0.5 1.5 2.5 3.5

two identical fermions

density profiles

(x1, x2) = 1

p2 ['0(x1)'1(x2) '1(x1)'0(x2)]

many-body

ground-state

(x

1

,x

2

) =

1 p 2

['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

(8)

-3 -2 -1 0 1 2 3 0.2

0.4 0.6

first observation

0.5 1.5 2.5 3.5

two identical fermions

the most probable configuration

density profiles

(x1, x2) = 1

p2 ['0(x1)'1(x2) '1(x1)'0(x2)]

˜

x

1

= ± 1

p 2 x ˜

2

= x ˜

1

many-body

ground-state

(x

1

,x

2

) =

1 p 2

['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

(9)

Two-particle density profile

⇢(x

1

, x

2

) = | (x

1

, x

2

) |

2

⇢(˜ x

1

, ˜ x

2

) = max [⇢(x

1

, x

2

)]

distinguishable

particles identical

bosons identical

fermions

(10)

Two-particle density profile

⇢(x

1

, x

2

) = | (x

1

, x

2

) |

2

⇢(˜ x

1

, ˜ x

2

) = max [⇢(x

1

, x

2

)]

distinguishable

particles identical

bosons identical

fermions

(11)

general scheme

(r

1

, . . . , r

N

) = Det

2

6 6

6 4

1

(r

1

)

2

(r

1

) . . .

N

(r

1

)

1

(r

2

)

2

(r

2

) . . .

N

(r

2

)

.. . .. . .. . .. .

1

(r

N

)

2

(r

N

) . . .

N

(r

N

)

3

7 7

7 5

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

probability density of finding given configuration

we can find its maximum (the most probable configuration)

we can simulate an experiment with given number of particles!

With Metropolis algorithm we can generate

an ensemble of configurations

according to given density distribution

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953)

(12)

Towards the most probable config.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= {r

i

}

t

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

4. Conditionally accept a new configuration

5. Go to 2.

Ensemble of configurations

(13)

Towards the most probable config.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= {r

i

}

t

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

4. Conditionally accept a new configuration

5. Go to 2.

(14)

Ensemble of configurations

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

5. Go to 2.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= RAND ( {r

i

}

t

, {R

i

})

4. Conditionally accept a new configuration P({rP({Ri})

i}t)

1 P({Ri}) P({ri}t)

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953)

(15)

two-dimensional

harmonic trap

(16)

Two-dimensional harmonic trap

nm

(x, y) = N

nm

H

n

(x)H

m

(y)e

(x2+y2)/2

,

V (r) = m⌦

2

2 r

2

= m⌦

2

2 (x

2

+ y

2

)

single-particle basis

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

unique ground-state

N = 1, 3, 6, 10, 15, . . .

N=3

(17)

N=3

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

Two-dimensional harmonic trap

(18)

0 1 2

-1 -2

0 1 2 -1

-2

N=3

Energy shell Energy

(osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

N=6

the most probable configuration

(19)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

N=3

Energy shell Energy

(osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

N=6

Averaged positions 106 elements

⇢(r) = Z

. . . Z

dr2 . . . drN| (r, r2, . . . , rN)|2

(20)

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

N=3

⇢(r) = Z

. . . Z

dr2 . . . drN| (r, r2, . . . , rN)|2

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

N=6

Averaged positions 106 elements

(21)

N=3

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

N=6

(22)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

N=6

Energy shell Energy

(osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(23)

N=10

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

(24)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

N=15

(25)

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

N=3 N=6

N=10 N=15

(26)

N=5

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(27)

N=5

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(28)

N=5

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(29)

N=5

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(30)

What can we do

if don't know the pattern?

J. Javanainen, S. M. Yoo Phys. Rev. Lett. 76, 161 (1996)

... just calculate hierarchy of many-body

conditional probability densities

Example for N=3

(31)

L = 10

5

L = 10

4

L = 10

3

Role of a finite number of pictures

N=3 N=6

(32)

Thank You!

(33)

Pauli Crystals

hidden geometric structures

of the quantum statistics

Tomasz Sowiński

Institute of Physics of the Polish Academy of Sciences

Europhys. Lett. 115, 20012 (2016)

FEW-BODY PROBLEMS THEORY GROUP

FEW-BODY PROBLEMS THEORY GROUP

FewBody.ifpan.edu.pl

Sci. Rep. 7, 15004 (2017)

Co-authors:

M. Gajda, J. Mostowski, D. Rakshit, M. Załuska-Kotur

Cytaty

Powiązane dokumenty

Antiepileptic treatment be- fore the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis com- plex. Eur J Paediatr

In this case, due to the degeneracy of orbitals with the same total number of excitations n + m, one distinguishes two different scenario: (i) the number of particles can be such

Although the single-shell Pauli crystal structure for three atoms remains visible at finite temperatures considered here, the distinction between two shells is blurred for = N 6

Nie­ wykluczone, że na podobnej zasadzie jak księżyc - świecący odbitym światłem słonecznym oznaczającym Chrystusa - stał się symbolem Maryi, trzymane przez

Natomiast w analizie na dwa i na trzy lata wstecz wykorzystanie tylko 5 wskaźników finansowych zapewniło najwyższą skuteczność modelu (74,07% na dwa lata wstecz

The Altaeros team has developed a 6 degree-of-freedom dynam- ic model that has been used to evaluate flight characteris- tics under a range of wind inputs and identify desirable

Gustaw zdecydował odstąpić dodatkowe pomieszczenie, wycofując z dwóch kondygnacji magazynowych (magazynów starych) księgo- zbiór liczący kilkanaście tysięcy woluminów. W

Bulla przyniosła największe zmiany w obrębie diecezji włocławskiej 57 , jako, że normując granice w całym Królestwie uwzględniała postulaty państw zaborczych o