• Nie Znaleziono Wyników

Characterization of two-phase flows using fractal analysis of local temperature fluctuations

N/A
N/A
Protected

Academic year: 2021

Share "Characterization of two-phase flows using fractal analysis of local temperature fluctuations"

Copied!
16
0
0

Pełen tekst

(1)

Pergamon

Int. J. Multiphase Flow Vol. 22, No. 5, pp. 953-968, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved

PII: S0301-9322(96)00042-0 0301-9322/96 $15.00 + 0.00

C H A R A C T E R I Z A T I O N OF TWO-PHASE FLOWS U S I N G

F R A C T A L ANALYSIS OF LOCAL T E M P E R A T U R E

F L U C T U A T I O N S

R. KOZMA I, H. KOK 2, M. SAKUMA l, D. D. DJAINAL 1, M. KITAMURA I ~Department of Nuclear Engineering, Tohoku University Aramaki-Aza, Aoba, Sendai 980-77, Japan

2Interfaculty Reactor Institute, Delft University of Technology Mekelweg 15, 2629 JB Delft, The Netherlands

(Received September 1995; in revised form May 1996)

Abstract--This work deals with the characterization of two-phase flows based on fractal techniques in order to develop objective flow regime indicators. Fractal analysis has been used previously for studying turbulent flows and it is a natural way of describing highly irregular fluctuations in two-phase flows. The fractal dimension of measured time series have been evaluated by Higuchi's method. It is shown that the error of the linear fit of the fractal dimension is a sensitive indicator of the changes in the flow regime, while the fractal dimension value itself is less suitable for flow regime identification. The developed method has been applied to the evaluation of two-phase flow experiments at the SIDAS boiling loop at Delft University of Technology, the Netherlands. Copyright © 1996 Elsevier Science Ltd.

Key Words: two-phase flow, flow regimes, subcooled boiling, bulk boiling, fractal dimension, temperature fluctuation

1. I N T R O D U C T I O N

T w o - p h a s e flow regimes have been studied by a n u m b e r o f authors to obtain objective criteria for the identification o f various flow patterns. The applied methods include analysis o f power spectral densities (PSDs), m o m e n t s o f probability density function (pdf) o f detector signals and various pattern recognition techniques; see, e.g. Vince & Lahey (1982), Dukler & Taitel (1986), and Baba

et al. (1991). Practical implementation o f these methods requires knowledge on certain parameters o f the two-phase flow, e.g. coolant and v a p o r phase velocities, which cannot be easily measured in some experimental arrangements. Therefore, further elaboration of techniques o f two-phase flow regime identification in boiling coolant is o f large practical importance.

Statistical fluctuations o f two-phase flow parameters contain valuable information on the thermal-hydraulic state o f the coolant. The chaotic character o f these fluctuations can be analysed by evaluating various dynamic variables such as fractal dimension, L y a p u n o v exponent, Poincar6 maps, etc. Following the introduction o f self-similarity measures by Mandelbrot (1982), successful

attempts have been made to apply fractal analysis to m o n i t o r two-phase flows; see Saether et al.

(1990) and F r a n c a et al. (1991). In the present work, two-phase flow regimes are monitored by

analysing fractal features of thermal hydraulic processes in a vertical boiling channel. Preliminary

results o f this study are reported by Djainal et al. (1995). In the analysis, a novel fractal dimension

evaluation m e t h o d is used which was introduced by Higuchi (1988).

In the first part o f the p a p e r the theoretical background of fractal dimension estimation in time series is summarized. This is followed by a brief description o f the experimental set-up and m e a s u r e m e n t conditions. In the second part of the paper fractal characteristics o f signals of thermocouples located at various axial locations in a coolant channel are analysed. We use conventional statistical methods, like Fourier-spectrum evaluation and m o m e n t u m analysis, together with fractal techniques. It has been found that the measured signals had bi-fractal properties, i.e. the fractal dimension has a dispersion regarding small and large wave numbers, respectively. It is also shown that the error o f the linear fit o f the fractal dimension value related to the bi-fractal feature o f the measured signals is a sensitive indicator o f the various flow regimes.

(2)

954 R. KOZMA et al.

2. M E T H O D

A detailed description of the existing methods o f fractal dimension evaluation and also discussion

o f the validity o f the different approaches is given by Schepers et al. (1992). A typical method is

based on box-counting, i.e. dividing the data into elementary boxes and counting the number of boxes which contain data points as the function of the box size; Mandelbrot (1982). In the present work, the algorithm elaborated by Higuchi (1988) is used. According to Higuchi's method, the length of graph of the time series is calculated for different time lags k. The average partial length

of the curve, ( L ( k ) ) is calculated for a given time series X ( j ) , j = 1, 2 . . . N a n d fixed k as follows:

1 ~ N 1 [{u ~,,kl ik) X ( m (i

1)k)l

( t ( k ) ) = ~ m=lZ~ k ,=, ~ IX(m + k[(N -- m)/k] - + -

[1]

Here [(N - m)/k] stands for the integer part of ( N - m)/k. It is easy to see that [1] indeed gives

a normalized length by summing up the absolute values of the step-by-step changes along the curve

o f the time series. The mean length o f the curve ( L ( k ) ) is calculated over a range of k values. If

the original signal is fractal, or if it reveals fractal characteristics over a fixed range of k, the following relationship holds:

( L ( k ) ) oc k -°, [2]

where D is called the fractal dimension o f the signal. Fractal dimension D can be estimated through the slope of the log(k) vs l o g ( L ( k ) ) plot. In order to estimate the magnitude and the error o f the fractal dimension based on the slope of the log-log plot, the least squares method is used. By plotting the curve length values against the time scales on a log-log axis, the data of the fractal time series fall on a straight line with slope - D .

The error of the estimated fractal dimension consists of two main components: the statistical uncertainty o f the measurement data and the error caused by the deviation o f the log(k) vs l o g ( ( L ( k ) ) ) curve from the strict linear behavior. This deviation is characterized by the X 2 value

of the linear fit and it is called the 'fractalness' of the investigated time series; see Sakuma et al.

(1996). In the present work, we use a simple error measure based on the standard deviation o f the linear fit o f the fractal curve. This measure is proved to be very useful in flow regime identification problems as it is shown in the forthcoming discussions.

3. E X P E R I M E N T A L 3.1. Description o f the boiling loop S I D A S

The fractal analysis method introduced above has been applied to the evaluation of measurement data obtained at the SIDAS thermal-hydraulic set-up at the Interfaculty Reactor Institute, Delft University of Technology, Delft, the Netherlands. SIDAS is a freon loop which is designed to

simulate boiling effects in a nuclear reactor; for details, see, G r a a f et al. (1994). The electrically

heated section of SIDAS consists o f 36 fuel rods arranged in a 6 x 6 lattice. The heated length o f a fuel rod is 88.2 cm. The axial distribution of the heat flux density in each fuel rod approximates a cosine shape with a maximum at medium height of the rods. By changing the heating power and the primary and feedwater flow rates, experiments with stationary and transient boiling conditions were performed at SIDAS. A schematic view of SIDAS is given in figure l, including the heated assembly, riser, and recirculation loop sections.

In figure l, the locations o f thermocouples (T), pressure transducers (P) and flowmeters (F) are indicated, the signals of which were sampled and recorded during the experiments. In addition, a movable gamma densitometer was used for void fraction measurements. Viewing ports were built into the channel wall at four axial locations, allowing a visual inspection o f the boiling process. In the present paper, signals o f thermocouples located at elevation 2, 31, 51, and 71 cm above the lower plenum o f the bundle, are analysed in detail. The applied chromel-alumel thermocouples have a diameter of 0.5 mm. The thermocouples are located in the coolant and have a relatively fast response time and a working frequency range up to, at least, 15-20 Hz.

(3)

CHARACTERIZATION OF TWO-PHASE FLOWS 955

the detector are collimated, so a narrow beam passes through the coolant channel. By measuring the attenuation o f the gamma beam, the density o f the coolant between the source and the detector is determined. This allows us to evaluate the chordal average void fraction along the beam. The applied procedure has been extended to void fraction determination in the case o f a spatially heterogeneous void profile by conducting a series o f measurements near the wall and in the central locations o f the coolant channel.

3.2. Parameters of the experiments

In the experiments analysed in this paper, the coolant mass flow rate was constant while the heating power was reduced from 40 to 35 kW. The pressure was kept constant at the value o f (11.1 ___ 0.05) bar. The observed pressure fluctuations around the mean value are due to hydraulic processes in the loop. The corresponding saturation temperature o f the freon is between 46.2 and 45.8°C.

On the one hand, there was single-phase coolant at the position o f the lowest thermocouple in each experiment. In the upper part o f the assembly, on the other hand, various types o f boiling occurred. Results by gamma void measurements at axial locations 31, 51, and 71 cm are depicted in figure 2. Measurements have been compared with the results of thermal-hydraulic calculations

Feedwater- sparger Riser Downcomer Condensor Heat ~. ange . . "-'J ~

®

®

i

'; ,[,

!

Void- I traction Assembly in ports g- Downcomer tubes (4x)

@

®

(4)

956 R. K O Z M A

et al.

d 0,8 0,7 0,6

/11///"//"/ 11"~"

0,5 0,4 0,3 0,2 0,1 0 0 20 40 60 80 Height (cm)

Figure 2. Measured and calculated void fraction as a function of the height in experiments with 35 and 40 kW.

40 kW

40 kW, measurement

--- 35 kW

35 kW, measurement

for 40 and 35 kW heating powers. In the calculations, a homogeneous equilibrium flow model is used with no slip between liquid and gaseous phases. The measured void fraction values match the homogeneous flow model at 51 and 71 cm at both heating power levels. This suggests that the flow is in thermal equilibrium at these heights. At 31 cm, however, the void fraction is somewhat lower than the value predicted by the homogeneous model. Furthermore, temperature measurements given in table 1 indicate that the bulk o f the liquid is subcooled at 31 cm in the experiment with 35 kW.

The deviation f r o m the homogeneous equilibrium model at 31 cm can be explained by the slip in the lower part of the fuel assembly. The void fraction as a function o f the height shows a rapid increase at the lower section o f the rod bundle. This yields a large acceleration of the flow. At lower axial levels, relatively little mixing takes place between the regions near the rods and the bulk o f the (subcooled) liquid in central positions, respectively. The bulk o f the liquid cannot follow this large acceleration which means that the v a p o r accelerates instead. This results in high slip factor and lower void fraction. At higher elevation, the void fraction does not increase as rapidly and there is more mixing because of the higher turbulence in the bulk boiling. The liquid catches up with the v a p o r and the slip factor approaches 1.

The above results indicate that the bulk boiling b o u n d a r y passes the height of 31 cm when the power is reduced f r o m 40 to 35 kW. In the upper part o f the assembly bulk boiling occurs with large void fractions. At lower positions, single-phase flow and subcooled boiling takes place. In the case o f subcooled boiling, bubbles stick to the rods and to the walls. Visual observations support this conclusion. In figure 3(a), (b), pictures taken through the viewing port at 31 cm are

Table 1. Subcooling of the bulk liquid at different heights

Position Subcooling (C) (cm) 40 kW 35 kW 71 0.0 0.0 51 0.0 0.0 31 0.0 0.5 2 2.0 2.0

(5)

C H A R A C T E R I Z A T I O N O F T W O - P H A S E F L O W S 957

(a)

(b)

Figure 3. Boiling patterns at 35 and 40 kW heating powers; photographs taken through viewing port at height 31 cm.

shown. At the lower power (35 kW), bubbles are concentrated near the fuel rods, indicating that the bulk o f the liquid is still subcooled at this height. At 40 kW, the liquid is saturated and bubbles are present through the whole cross-section o f the channel. It is difficult to see in figure 3(b), but bubbles coalesce in the central regions of the bundle which results in c h u r n - t u r b u l e n t two-phase flow at the given thermal hydraulic conditions.

In the following section, the changing character of the boiling process is studied based on the statistical analysis of the thermocouple signals.

(6)

958 R. K O Z M A et al.

4. ANALYSIS OF THERMOCOUPLE SIGNALS

4. I. Results by spectrum and momentum analyses

Analysis of fluctuating phenomena in two-phase flows was performed by using probability density functions (pdfs) and their moments, as well as their power spectral densities (PSD). The typical behavior of the fluctuating component of the thermocouple signals is shown in figures 4(a)-(d) and 5(a)-(d) for experiments with 40 and 35 kW, respectively. The sampling time was 30 ms. Strong periodic oscillations can be seen in figures 4(a), (b) and 5(a), (b), while the intensity of the oscillations ceases toward the bottom of the channel; see figures 4(c), (d) and 5(c), (d). Changes in the character of the signals can be described quantitatively by evaluating the moments of the pdf. The variance is the second moment of the pdf. The third moment (skewness) and forth moment (kurtosis) measure the deviation of a pdf from the Gaussian pattern. Skewness measures the symmetry of the pdf, while the kurtosis indicates its peakedness. For a Gaussian distribution the skewness is zero and the kurtosis is 3. Results obtained by momentum analysis are shown in table 2. The variance increases with the intensification of the boiling at higher elevation. The third

4 3 2 1 -1 - 2 - 3 - - 4 0 2 0 4 0 6 0 8 0 1 ~ 1 2 0 T i m e (s) 3 . . . i . . . : . . . i . . . : . . . : . . . 2 . . . ! . . . i . . . ~ . . . i ... i ... 0 ! i 2 0 4 0 6 0 8 0 1 O0 1 2 0 T i m e (e)

(b)

Figure 4(a, b).

(7)

CHARACTERIZATION OF TWO-PHASE FLOWS 959

iii iiiii iiii/iiiiiiiii iiiiiiiiiiiill iiiiiiiiiill iiiiiiiiiil iiiiii iii iliill i iiiiiiiiii

100 120 T i m e (s)

(c)

2 , , I |

!

t.5 ... i ... ~ ... i ... :: i i 1 . . . : . . . ~ . . . :: .. . . :: .. . . i . . . ::. 0 . 5 . . . ! . . . ! . . . ! .. . . i 20 20 40 60 80 100 120 T i m e (s)

(d)

Figure 4(c, d).

Figure 4. Fluctuating part of the thermocouple signals at heating power 40 kW; (a) 71 cm, (b) 51 cm, (c) 31 cm, (d) 2 cart.

moment more and more deviates from zero at the higher regions of the channel. The fourth moment of the pdf is close to 3 at the lower part of the channel and it decreases at the central and top positions.

Power spectral densities of the temperature signals have been calculated by an FFT algorithm. In figure 6(a)-(d), PSD functions of the measured time series are shown. Dashed and solid lines show the experiments with 35 and 40 kW heating power, respectively. The spectrum has a broad-band character at the bottom of the channel. There are clear peaks in the spectra measured at higher axial positions, indicating the presence of periodic oscillations in the two-phase flow. PSDs in the upper part of the channel have high peaks in the low-frequency region, at about 0.3 Hz. The peaks are less pronounced in the case of the reduced heating power level of 35 kW. The shape of the PSDs, however, are rather uncertain due to the relatively small number of data points. 20 data blocks have been averaged in the evaluation of the PSDs, which gives a total data duration of about 5 min for each spectrum.

(8)

960 R. KOZMA et al.

The results can be interpreted as follows. In the upper part o f the channel, bulk boiling with churn-turbulent flow regime takes place which is a bimodal flow pattern. Oscillations in the bimodal flow are detected by the low kurtosis value, large variance, and by the peaks in the PSDs. These results are in full accordance with Vince & Lahey (1982). At low and medium elevation, the oscillating character of the two-phase flow ceases and the flow becomes unimodal. At the bottom o f the channel, the variance of the fluctuations is about 10 times smaller than at the top, the skewness is close to zero and the kurtosis approaches 3. These observation indicate the transition to unimodal flows at lower positions.

4.2. Result by fractal analysis

The measured time signals are analysed by fractal methods based on [1]. The mean partial lengths o f the time series are depicted in figure 7(a)-(d), where solid lines indicate the experiment with 35 kW and dashed lines stand for 40 kW. Changes in the boiling state of the coolant manifest

themselves in varying fractal properties of the signals. The

<L(k)>

curves in figure 7(a)-(d) show

~|

/ 3 ... i . . . i ... i ... i ... i 1 . . . i . . . i . . . i

~

0 . . . . 0 2 0 4 0 6 0 8 0 1 O 0 1 2 0 T i m e ( s )

(a)

-I : i 2 0 4 0 6 0 8 0 1 O 0 1 2 0 T i m e ( s )

(b)

Figure 5(a, b).

(9)

C H A R A C T E R I Z A T I O N O F T W O - P H A S E F L O W S 961 4

it

i

i

- 1 - 2 . . . . ~ " . - 3 . . . ~ . . . " . . . - 4 i 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

(c)

2 i 1 . 5 . . . i . . . 1 ... i ... ~ ... i ... i ... i ... i. 0.5 . . . ! . . . ! . . . i . . . i ! . O -1.5 . . . i . . . i . . . i . . . i . . . i .. . . ~. -2 i i i i i i 0 ~ ~ ~ ~ 1 ~ 1 ~ ~ m o (s) ( d ) Figure 5(c, d).

Figure 5. Fluctuating part of the thermocouple signals at heating power 35 kW; (a) 71 cm, (b) 51 cm, (c) 31 cm, (d) 2 cm.

a decreasing tendency as k increases. Detailed analysis reveals certain nonlinearities in the slope of these curves.

Two major effects will be analysed. The first one is the bi-fractal behavior, i.e. the presence of a breaking point in the l o g ( ( L ( k ) ) ) curve at intermediate k values. In the case of higher heating power, the l o g ( ( L ( k ) ) ) curve deviates more from the linear behavior; see figure 7(a)-(d). The

Table 2. Moments of the probability density functions

40 kW 35 kW Vertical position 2 3 4 2 3 4 72¢m 2.15 0.27 2.32 1.36 0.46 2.61 51cm 1.67 0.21 2.27 0.83 0.43 2.67 31 ¢m 0.52 0.19 2.52 0.34 0.04 2.87 2 ¢ m 0.16 0.19 3.10 0.17 --0.04 2.84

(10)

9 6 2 R. KOZMA et al. 103 102 1 0 ~ ~ 1 0 ° 1 0 "1 1 0 "2 1010-2 1 0 -~ " . . .

... i . - " ! - ! ' ! . " . . . . . t i:/ ... ""'!'--i"!'!'i'!~.i ... ~" '~.'""'i'~'i~

. . . % : : : : ~ : i : ; : i , : ! ~ : i : i : : : . . . i . . : . ~ : : : " . . . ~ . . . : . . . . ! . . . ! . . i . ~ . ! . ~ . i . . . ~ . . . i . . ' . . ' . i . ' . ' -

1 0 0 1 0 ~ 1 0 2

F r e q u e n c y (Hz)

(a)

1 3

o II ~iiii i!i~!i: ii~i~i~!~!!i"iii

!!!!!!!i!!!!i!!i!i!i!ii!i!i!!!!!!i!! !ii!!!i!!!!!!!

!

iii:'!!!i!!~i~

~

i:~!~!!i!i

ii~ii!~!i !~i~i~i~!:'i~i''i~i~ii

i

!!!!i!!!i!! !i!i! i!i!!!!!!!i!!!i!!i!!i!i!i!!i

i:'!i~'~'~i~i'!:!

1 2 ~ i ! ! ! i ! ! ! ! i i ! i ! ! ! ! ! ! i ! ! ! ! ! ! ! : i ! i ! : :

O : ! ! ! ! !::: ! ! !.'. ! !.'. ! ~: ~! ~!:!~ ! ! !: ! ! ~ ~ ! ~! ~!:" !!:!:! : : ! : ! ! H !! !:: : ::: !~ ! ~ !:!! ~::! : : ! i : ! ~ ! ! : i: : ~: :~ !:! ~!i i

!!!!!!!i!!!!i!!i!i!i!~:""

'i!::;!ii~i!i! !!!!!!i!!!?i!!!i!!i!i!i!i~!i!!!!!!!i!!!i!!i!!i!i!i!ii

lO ~

: ~ ~ ~ ~ ~ ~i~ ~ ~ i~ ~ :i ~ :i~ ~ ~ ~ . . W , .t ~.t.~ ~ ~ ~ ~ i~ ~ ~ ~i~ ~ ~i~i ~i !i~i ~i~ i ~ ~ ~ ~-~ ~ ! i~ ~ ~i ~. ~i~ ~i~ ~

::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

., i ! ! ! i i i i i ! i i i i ! i i ~ i i ! ! i ! : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . 'i; : .~ S 2 ; 2 ; : 2! : ; ; 2; ; ."; ;~ 27; ;.:2~ F

10" !: ... i - • i • ! • -' i'i "~'i'i ! !i !!!i ii}i! i ... !i ' " "!' ' ": i + i'? i'!'! iiii i i }! ... ! i : if! ~ J "i ... i • ' • ~- • - -~ "i' "~'~ I i I ) i]ii!

1 0

1 0 "~ 1 0 +~ 1 0 0 1 0 ~ 1 0 2

F r e q u e n c y (Hz)

(b)

Figure 6(a, b).

second effect is related to the error of the linear fit of the fractal curves. Visual inspection of the curves in figure 7(a)-(d) indicates that the fractal curves have more intensive fluctuations at higher heating powers and higher detector positions.

In order to describe these observations quantitatively, the fractal dimension value and its error have been estimated based on the method described in section 2. The calculations have been conducted over the k range from 5 to 512, and over sub-ranges 5-53 and 53-512. The fractal curves have linear behavior starting from k = 1. In the fitting algorithm, however, the smallest k values have been omitted from the fitting in order to exclude high-frequency distortions to the signals. Examples of bi-fractal fit are shown in figure 8(a), (b) for detectors at positions 71 and 2 cm, respectively.

The numerical evaluations of the fractal dimension are summarized in table 3. At the higher k-range, the fractal dimension has a rather constant value close to 2, independent of the

(11)

C H A R A C T E R I Z A T I O N O F T W O - P H A S E F L O W S 9 6 3

thermocouple position. Note that the fractal dimension value is 2 for a Gaussian random signal. At small k values, the fractal dimension varies between 1.3 and 1.8. D over small k values has a minimum value at the bottom of the channel. The difference between the fractal dimension at small and large k values, respectively, is significantly reduced at 31 cm at both power levels. In order to estimate the significance of the observed changes in the fractal dimension, the error of the linear fit of the log(k) vs log((L(k))) curve has been determined. The fitting error o f the determined fractal dimension is denoted by ao and its values are given in table 4 based on the sample standard deviation of the linear fit of the fractal curves.

a o over the k range [5, 512] is a good indication of the importance of the break observed in figure 7(a)-(d). ao is larger in the experiments with higher heating power. Its value is essentially constant

1 0 2 . . . : . . . . ~ . . ; . . : . ~ . ; ~ . : . , . . . ~ . . . : . . . : . . ; . ~ . ~ ~ . : . ~ . . . ; . . . . : . . . : . . ; . ~ . : . ~ ~ . . . ~ . . . ~ . . ~ . . ~ . : . . : . ~ ; . . . . . , . . : . . . . ~ . . . . , . ~ , . , ; ~ . . . , , . . . ~ . , . , . . . ; , , . . . , . . . . . . ! ~ . . . . . , . . , ~ . . . . . . . , : : : : : ~ . ; . - - : : : : : : : : : : . . : : : : : : : . : - . :

:::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::

~

10 ° 10 "~ .. ... . ~ ~ ~ ~ . . . . ~ ~ ~ : ~ ; ; ; ; ~ ~ : : : ~ 1010-:~ 10-~ 10 ° 10 ~ 10 ~ F r e q u e n c y (Hz)

(c)

10 -~ 1 0 "= 10 "s 1010.~ 10 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . i ' " '-" " ' ~ ' - . . " . ' " " : ~ - ' " ' i ' " " i ' ! ' ? ! ' ! ' ! . . . i ' " ' ! ' " i " ! ' i ' ! ' i - ' i . . . i ' " ! " " " ' ? ' ~ " ! ' : : ! ! : !: ::::: : : ! i ! ! ? ! .~:: "!.:."! ! !!! ! : ! : ! ! !K . ~ : ! ! : ! ~ !!i!i! : ! : : : ! ! ! ! ! i-! ! ::: :! !! : ! ! ! ! : ~ ! : : ! ! ! ! ! : : : !: :!! !:" !: : : : :: :: ' •: -: :i::: :! ' ! • '!--::! !'i'? . . . : ! : " ' i ' : ~ . ~:- i-?!'!'!' : -: : : - ! ' • !' • :::::!'! :!! !:i-:: ' " ' ! : : :,::: "? '? ::: ~:ii:

100 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : • : . : i . ~ i : i : i ! ~ : : : ! t i : ! : : : : : : : : ' ~ : i : i l t ~ : : : ~ i i : ! : : : : : : ~ i i : : : : : : : ~ , :

::::::::i::: :i::!:i: !:i i:~i:::::: !::: :~::i:!: !~ i:::~:::::::i::: :i:: :::: :! :i :i:! !!:::::::!:::!::i: :i :i !:! i:

. . . ! ' " ' ~ " ! " 7 " ' ~ ' : ' i ' " . . . " " " ~ " - ' " V " : -'i . . . Y ' " i ' " ~ " ~ ' T i ' V ~ t . . . i " ' " ' Y " ' ? 7~'." : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ,~ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ! !! ! !!i! ! ! ~.:! ~ ! ! . : ! . : ~ ~!!!!! !.:~!~ i !~.:!.:!! 10 "~ 10 ~ : : : = : : : : 1 = : : : : : : : , 100 101 Frequency (Hz) (d) Figure ~c, d).

Figure 6. Power spectra of thermocouple signals; dashed line---35 kW, solid line ~0 kW; (a) 71 cm, (b) 51 ¢m, (c) 31 cm, (d) 2 cm.

(12)

• sotm$oa ~o g os~tld-o~l p ut @ uoo,~loq d!qsuo!l~ioa oql aolloq pu~lsaopun ol ,O~ssooou oJ~ so!pnls aoq~and "poq~om uo!l~otj!luop! taOlJ os~qd-otal olq~!loa e jo s!s~q ¢ maoj lo uu ~o

£oti1

pu t puoa~ a~OlO ou OA~q 'a0A0~oq 'S0$U~qO os0q.L "~ 0Iq~l o0S '.SUO.ll~3o[ .IO13010p l~!X~ pu~ SUO!l!puoo Suffeoq sno.la~A :toj ,(llUgO~!ui~!s S0~agA 1! pu~ [Eg 'g] 08U~a-:,/ 0ql a0AO ~ Ugql .~0llgtUS S! (7 "SUO!l!sod aO1001op II ~ .~oJ [Zig 'Eg] oi~uga-~/oql aoao E punoag s~ta (? jo 0nI~A oq.L "(/ uo!suotu!p I~lo~. U JO suo!saods!p luo.toJ~!p oql q l! ~ SleUi~!s po.msgotu oql u! poqs!ni~u!ls!p oq ugo SOleOS otu!l I~o!d£1 o,¢,.L S(IOH.L3IAI "IVZ;DV'8~I A8 SZ'IflSHH HH I AO N OI SS flD SI (I 'g

uo!loos

lxou oql m UOAd~ s! sllnsoa osoql j o

uo!lgloaclaolu!

oq.L '(~II'0) tunm~x~tu pu~ (~ 00 ) tunm!u!tu oq~ U00A~IOq onl-eA ol~!potuaolu! u~ s~q (~L0"0) lOAOI aoaao oql U0qA~ 'Ak~l 017 ql!A~ luotu!aodxo u! snonu!luo3 oaotu s! Iouueq3 oql ~uoI~ aoaao oql j o os~oa3u! oqL " A% ~ I g~ ql!A~ luotu!aodxo oql u! [Elg '£g] jo oSuea-~/oql a0AO p0Aa0SqO 0ae sdtun.f ael!m!S • su o.t l! so d Jol3olop aoq~!q le onleA aolbeI sotu!l-~-£ e ol sdtun.f 1! lnq 'tuo I~ pug ~ 1 1 ~ lletus s~ a~ '[E~ '~] o$u~.I-5/ ~ql a0AO 'tu3 IE uo.ll.tsod .~o13olop oql l'e os'eo.~3op " e aoj ldooxo lOUUl~q3 otI1 ~UOll~ '(q '~)L o~nlt!~l

(q/

OL =:::;~ i i = . = : ':=-ii=: = : i i ': ':':TIT i T T i

~ilili~iii:s

:iCiiiiiiil;iCii(iCiCil

ii~iii iiiiiiiiiiiiiiCiiiiiiiiCi~ilC~iiiii~i[i~iiiilCCiiiiiCil

• ~. i i'- ~.-i." i ... .. i.-.." :"-,'i 'i' i i.i ..i , i.. .i ... .. i . ... ... .. i.i 'i' -'-"i" !." - ... .. i . ... ... .. :.: .:. ~. : ,: .: ... .. : . ... ... .. :.: ~ i~ .: .:. .:. ..: ... .. : . ... ... .. i.! .:. : ~.. :.. :.. ... ... .. : . ... ... .. ":' ~ T'" " ... ... ~ .. ... . " . ... ... . . " :', ..---w ," ."' ~ ... .. * . ... ... .. '"" : ':" ~"U '": ... .. ~ .. ... ... . )~ ~I=IBINnN BAVAA ~OL ~OL DL _OL .OL oOL tOL ~Ot cOL M ~ 3 ~ N 3 A V M cOl- cOL tOL ~': ':. '~ .÷ --£ ..-: ... .. i-. ~ ... .. i-i --. £.--.i .,£ ... - ... .. i . ... ... .. £-i . i--. "~ ..i ..- .--- ... .. - . ... ... iii i i i i ~ i~! i ~ i i i £ !i! i i ~ : ~':.., i

ii~iiii~i ~i

i~i ~ iii

ii~ii::: :::::i

iii i~il

iiii ~ili;i~iiiii::::::

:::i ~i~

i~i~ i~ i

ii i iiiii~

~ili::::::: ::

DL _OL .OL oOL tOL eOL cO L • ;o ~a VlalZO:,I 'a t~96

(13)

C H A R A C T E R I Z A T I O N O F T W O - P H A S E F L O W S 965

It can be seen in table 4 that fro is increasing for higher detector positions over both the low and high k-ranges. Gamma-void measurements and model calculations show that subcooled boiling exists at the lower section of the assembly. Coalescence of small bubbles into big ones in a highly irregular way leads to churn-turbulent flow at higher positions with bulk boiling, i.e. starting from axial positions 30 cm to 35 cm in our experiments. The jump of fro over the k-range [5, 53] clearly indicates the transition from bubbly flow to churn-turbulent flow.

~o over range [53, 512] is even more sensitive to flow regime changes. It has an intermediate magnitude of 0.073 at position 31 cm in experiment with 40 kW heating, which indicates that the two-phase flow has departed from the bubbly regime, fro at the same location in case of 35 kW heating has not changed significantly from the inlet value of 0.046, which shows the presence of subcooled boiling with unimodal bubbly flow regime at that elevation. The large fro at higher positions is due to intensive fluctuations of the log(k) vs l o g ( ( L ( k ) ) ) curves which, in turn, are caused by periodic oscillations in the bimodal churn-turbulent flow. The fitting error of the fractal

104

:!!!!!!!!!!!!!!!~

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

!! !~!! ~! !~ !i!': !~! i!!!!! !!!!! ! !!!!'.'! !!i!! ~!!~

!!i':!~i!!ii!i!!!!i

!! !!~!!! !! !'!!~!i!!!.~!

. . . : . . . : . . . : . . : . . ; . : . : . : . : . . . : . . . : . . . : . . : . . : . : . : . : . : . . . : . . . : . . . ; . . : . . ; . ; . : . z .

1 0 ~ ~ ~ ~ i ~ ! ~ . z ! ~ i ~ i ~ i ~ i ~ z ~ ! ~ z ~ ! z i ~ z i ~ i ~ i ! z ~ i ! i ! ~ ! i ~ ! ! ! ~ ! ! ~ i . . ~ ! ~ i ~ ! ~ i ~ i ! ~ i ~ i ~

~-,o'

!!!{!~:!!!!~!;!!~!~!!!!!!!!!!!!!~!!!!~i[!!!~!!i!~

. . . : . . . : . . . : . . : . . : . : . : . ! . : . . . : . . . : . . . ~ ~ : . . : . : . : . i . : . . . : . . . : . . . : . . : . . : . : . : . -

10_1

!i10

0 !ii!!~!ii!!!![::~!!~!~;!}-~!;};!:!;~}!!!~!~i!~!~!!!ii~!!~.ii

i i i i if! i i iil i i ill! i

!;[:!;!!!~!![!![!!!!~;!~!i!~i~!;!;}~'iiiii

1 0 - 2 : : : : : : : : ~ : : : : : : : : , : : : : : : : : 1 0 0 101 10 ;~ 1 0 3 W A V E N U M B E R K

(c)

1 0 2

10 ~

,_~10

°

10 -+

10 "~

10"~00

1 0 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

!!!!!!!!~!!!!!!!~!!!!!!!!!~!!!!!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!~!~!!!!!!!!!!!!!!!!!!!!!!!!!~!!!!!~

. . . ! . . . ! " i " ! " ! ' ~ ' i ' ! ' ! . . . i . . . . ~ ~ ' ~ " i ~ ' ~ ' ~ ' i . . . ~' '" ~ '~ ~ ! ' ~ ' . . . r . . . r - . . r . . : . . r . r . r . : . : . . . : . . . r . . . r . . : . . r . r . r . : . : . . : . ' ~ " r . : ' r ' r ,

10 ~

W A V E N U M B E R K

10 ~

10 s

(d)

Figure 7(c, d).

Figure 7. Log(k) vs log((L(k))) plots of the fluctuating signal component, dash----40 kW, solid--35 kW; (a) 71 era, (b) 51 era, (c) 31 cm, (d) 2em.

(14)

E0'~ 8E'[ IL'I lif e LE'I g9'l mo E ],fie 081 16"I 50'g E9'I 58"I tuo IE 60"~ 85"1 98"[ Life 8E[ 8L'I mo I~ 60"~ 6g'1 L8I Life 6E'I 6L'l tuo [L l~O!~JOA SII~UflIS poJns~otu ~ql JO uo!suom!p lmOeJ.q 'E olq~£ '8 86 I) !q on ~! H '.o~uea-~/ UOA[g e J~AO a O! Ae qo q aeI!mIS-jlOS oq l tu oa j so uo s om !l pOAaOSqO a ql JO UOII~.IAOp OLI1 (~) '.S.IS.~[I~U~ Otl~t HI po sn sot.aos otu !l jo q l~ uo I polItU.t I oq l ,(q p os ne 3 slo oJ jo leOilsI:lels (1 ) :s lu ou od mo 30 A~ I se q UOISU0tU.tp i e~ oe aj oq l jo 031/I~IJI~A oqJL 'SA~°IIOJ s~ UOAI~ S.I uo !s uo mI p le lo ea j oq l jo OOUmJeA 0 ql UO po se q aO le O! pu I Otm~OJ mOlJ po so do ad oq l jo u oI le lo ad ao lu ! Ieo!s,~qd oq.L • om t~ oa ~AO~ os ~q d-oA ~ oq~ u! so ~u ~q o oq l jo J o~ o! pu ! OA!I!SUOS ~ S~ p os od oJ d s! sonI~A ~/ 9 ~J e[ JOAO UO!SUOtU!p • tu3 E (q) 'tuo

IL

SOAJn3 ((01)7))go luotu!Jodxo m 0~' ql!n~ guIlgoq A~I (e) '.JOnxod

I SA (~/)gO 1 oql JO lid I~OeJJ-!ll "8 oJn~!J

(q)

~O L ~O k oO L . . . . . . . . . .

t

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

!i

!

i::i iii? ii!i;::i::{iill

iiiii i~!

!~il .~i i?i i~

i!

!

ili~ii ~iiiiill

iiii!i? ~iii)iii

i?i ~i ~,k-'

i!i i fill

i i i i

i ~:: !"

: : Uiiillilil

~01.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ... :::::::::::::::::::::::::!!!i 1 : >'- . .. ~ .. ... : ;"'"": ":

!

';': :': . ... : .. ... !

!

" "? "!'!

ii

"i? !'i ... ? .. ...

!!

": ~" '"

(~)

(~I) bi 3e l~ NN ::IAyM ~:0 L ~0 L o 0 I ,-. . . . . . . . ,, , , , , , , , OL ~- / : : : : : : : ,: : : : : : : ~: : : :

iiiiii iii::i::::;i::iii:i::::;::::i::iiii:

i i:ii::ii:i!i::il/ii:;i::

;~

g~i...! ... % ... i.i.~..i..i.-! • 4....i ... :: ... :,. i. i.i..i...::.-. ::- . .! ... :: ...

i i

~

~:::}i:?~ ]ii{:~iiii:~iiii:~iii:~iiiiiiiiii}i:~!iii::::iiiiiiii

i::i:::::ii~':i~:

... ! ...

if iii":

i i

i

..i...

i. i

~74-~:. :~

:,

: :

o °~"

i ...

-i ...

::... ::..

i. :: -

::. i. ::.

... :: ...

i-.+.~.~ .~...,::

i ...

..-~...~ ...

...i...i ... i ... iiiil;il;..;..iiiiiiiiiiil.ii~i~)i~:~F,~i:~iiiiiiiiiiii~iiiiiiii~iiiiiiii?ii

!? !!

!!i !!

!ii!!!i!

!i!!!!

...

~: ;~ :: :~ :: :: :: ~: : .. .. .. .. :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: : .. .. . :: :: :: :: :: :: :: :: :: :: :: :: :: :: : .. .. . :: :: ~ ~:Ot ...} ... i.::.{..!..i..i...::....i ... :: ... i. i.i.i..!...i...i....~.-~, i ...

... ? ...

... :::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

lo s~ v~ tz o~ ~ 996

(15)

CHARACTERIZATION OF TWO-PHASE FLOWS

Table 4. Standard deviation of fractal fit

967 40 k W 35 k W Vertical position 5 ~ < k ~ < 5 1 2 5 ~ < k ~ < 5 3 5 3 ~ < k ~ < 5 1 2 5 ~ < k ~ < 5 1 2 5 ~ < k ~ < 5 3 5 3 ~ < k ~ < 5 1 2 71 cm 0.111 0.084 0.114 0.074 0.123 0.102 51 cm 0.113 0.079 0.115 0.076 0.104 0.102 31 cm 0.073 0.016 0.073 0.040 0.019 0.049 2 cm 0.112 0.024 0.035 0.091 0.027 0.046

1990). A comprehensive study of the above two effects is given by Sakuma (1996). In the present study the parameters of the evaluation of the fractal dimension are fixed, therefore, the observed effects are caused by changes in the self-similarity of the measured signals.

A linear fractal curve over a given k-range indicates complete self-similarity. Previous studies

showed that self-similarity is a characteristic property of turbulence; see, e.g. Marvasti et al. (1995).

The increasing variance of the fractal dimension means deviation from self-similarity. The physical reason of the changing self-similarity in the two-phase flow measurements is the emergence of certain dominant frequencies. Changes in the frequency content of the signal can be monitored by spectrum analysis as well. However, fractal-based methods have a clear advantage compared to spectrum analysis, due to the non-stationary and intermittent nature of turbulent fluctuations in two-phase flows. In the next section, the comparison of spectral and fractal methods is given. There is a close relationship between the fractal dimension and the shape of the power spectral densities in the case of fractal time series. It can be shown that the following relationship holds between the slope ~t of the PSD in the log-log axis and the fractal dimension D of a fractal signal (Higuchi, 1990):

ct = 5 -- 2D. [3]

For a bi-fractal signal, the PSD has two frequency regions with constant slopes and the above relationship is valid for ~ and D values inferred for each of the frequency- and k-ranges.

Figure 6(a), (b) show that the definition of the frequency range used for the evaluation of the PSD slope is not easy due to large oscillations in the spectra. The fractal curves in figure 7(a), (b), however, are relatively smooth and the fitting of its segments is an easier task. This result shows the advantage of the fractal method compared to spectrum analysis in our experiments.

It is also clear from the definition of the fractal dimension based on [1] that D is invariant to a constant multiplication factor applied to the signal. If the changes in the signal absolute magnitude are of importance to the description of the physical process, complementary methods are required in addition to fractal analysis. This is clearly the case in two-phase flow regime monitoring, when the variance of the pdf is an important indicator of flow regime changes; see Vince & Lahey (1982). This result shows that fractal methods should be used in combination with other methods in order to achieve an effective two-phase flow characterization and identification method.

6. CONCLUSIONS

In the paper, results of two-phase flow identification experiments performed at the SIDAS boiling loop are introduced. At the lower section of the rod bundle, single-phase flow and subcooled boiling took place, while there is bulk boiling with churn-turbulent flow regime at higher axial elevation. The major results of boiling two-phase flow identification can be summarized as follows: (1) Based on the analysis of moments of probability density function of various thermocouples in the coolant as well as using spectrum analysis, bubbly and churn-turbulent two-phase flow regimes have been identified in the boiling channel. Visual observations and gamma-void measurements supported the identification. These results are in accordance with previous results by Vince & Lahey (1982) and Dukler & Taitel (1986).

(2) By applying Higuchi's fractal dimension evaluation algorithm, a bi-fractal behavior is found in the measured signals. The fractal dimension D is approximately 2 over the range of large wave numbers k. This D value is quite independent of the actual boiling regime and of the

(16)

968 R. KOZMA et al.

axial position of the detectors. The fractal dimension over the small wave number range, on the other hand, is a function of the two-phase flow regime but no clear correlation could be established between the fractal dimension value and the two-phase flow regime. (3) In the present study, the standard deviation of the linear fit of the log(k) vs log((L(k))) curve

over the range of large k numbers is proposed as a sensitive indicator of the transition between flow regimes. This standard deviation is 2-4 times larger in churn flow than in unimodal bubbly flow. The increased standard deviation is attributed to the diminishing self-similarity in the signal caused by the emerging periodic component in bi-modal flows. The main advantage of the fractal method compared to spectrum analysis is that it can clearly identify intermittent oscillations in non-stationary two-phase flows. These results support the feasibility of flow pattern identification method based on fractal analysis. Further studies are going on to demonstrate the advantages of fractal methods in the interpretation of non-stationary/transient data. Model calculations and two-phase flow simulations can contribute to the understanding of the nature of complicated processes in the highly irregular, boiling two-phase flows.

Acknowledgements--This work has been completed in the framework of the research cooperation between

Department of Nuclear Engineering, Tohoku University, Sendai, and Department of Reactor Physics, IRI, Delft University of Technology, Delft. The experiments have been performed at the SIDAS facility during the visit of two of the authors (R.K. and M.S.) at IRI. The authors wish to thank the staff of IRI for their assistance during the experiments and to Dr Valerie Kozma-Blazsik for editing the manuscript.

REFERENCES

Baba, N., Yamashita, Y. & Shiraishi, Y. 1991 Classification of flow patterns in two-phase flow

by neural networks, Proc. IEEE Int. Conf. Neural. Netw. 2, 2617-2620.

Djainal, D. D., Sakuma, M., Kozma, R. & Kitamura, M. 1995 Characterization of two-phase flow

patterns using fractal techniques. Proc. 2nd Int. Conf. Multiph. Flow, Kyoto '95, Vol. 3, FT1.

pp. 31-36.

Dukler, A. E. & Taitel, Y. 1986 Flow pattern transitions in gas-liquid systems: measurement and

modeling. Multiphase Sci. and Technol. 2, 1-94.

Franca, F., Acikgoz, M., Lahey, R. T. Jr & Clausse, A. 1991 The use of fractal techniques for

flow regime identification. Int. J. Multiphase Flow 17, 545-552.

Graaf, van de R., van der Hagen, T. H. J. J. & Mudde, R. F. 1994 Scaling laws and design aspects

of a natural-circulation-cooled simulated boiling water reactor fuel assembly. Nucl. Technol. 105,

190-200.

Higuchi, T. 1988 Approach to an irregular time series on the basis of the fractal theory. Physica D

31, 277-283.

Higuchi, T. 1990 Relationship between fractal dimension and power law index for a time series:

a numerical investigation. Physica D 46, 254-264.

Kozma, R., van Dam, H. & Hoogenboom, J. E. 1992 Identification of flow patterns by neutron

noise analysis during actual coolant boiling in thin rectangular channels. Nucl. Technol. 100,

97-110.

Mandelbrot B. B. 1982 The Fractal Geometry of Nature. Freeman, New York.

Marvasti, M. A. & Strahle, W. C. 1995 Fractal geometry analysis of turbulent data. Signal

Processing 41, 191-201.

Saether, G., Bendiksen, K., Miiller, J. & Frrland, E. 1990 The fractal statistics of liquid slug

lengths. Int. J. Multiphase Flow 16, 1116-1126.

Sakuma, M., Kozma, R. & Kitamura, M. 1996 Detection and characterization of anomalies by

applying methods of fractal analysis. Nucl. Technol. 113, 86-99.

Schepers, H. E., van Beek, H. G. M. & Bassingthwaighte, J. B. 1992 Four methods to estimate

the fractal dimension from self-affine signals. IEEE Engng in Medicine and Biology 11, 57-64.

Vince, M. A. & Lahey, R. T. Jr 1982 On the development of an objective flow regime indicator.

Cytaty

Powiązane dokumenty

5 Skoro inde zajm ujemy się tu probierniami filiacjii z punktu widzaniia folklorystycznego i filologicznego, możemy w dal­ szym ciągu nazywać przekładem każdy

100 Chapter 5 of the MCLS Level-Set correction procedure: Distance function values are still prescribed from the volume fraction equation (5.8) in interface cells, but the dis-

Keywords: delamination, fiber reinforced layers, laminate structure, plate elements, contact elements, numerical modeling. Modelowanie numeryczne kompozytowej

Główną cyto- kiną promującą rozwój nowych naczyń krwionośnych jest naczyniowo- -śródbłonkowy czynnik wzrostu VEGF (vascular endothelial growth factor), natomiast

By revealing certain convergences and divergences between Luke 1–2 and other infancy narratives the author determines the literary function of the first two chap- ters of the

Główne uroczystości jubileuszowe odbyły się 31 maja, na zakończenie misji parafi alnych. Był to jednocześnie odpust związany z uroczystością Matki Kościo- ła. W tym

The research reported in this thesis covers various aspects of making silicon heterojunction (SHJ) solar cells, including the e ffect of indium tin oxide (ITO) deposition on

Autorka omówiła genezę żeńskiego ru- chu harcerskiego na tym terenie, ukształtowa- nie się struktury organizacyjnej, metody pracy, kształcenie instruktorek i drużynowych, formy