• Nie Znaleziono Wyników

Deep sub-threshold $\phi$ production in Au+Au collisions

N/A
N/A
Protected

Academic year: 2022

Share "Deep sub-threshold $\phi$ production in Au+Au collisions"

Copied!
5
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Deep sub-threshold φ production in Au + Au collisions

HADES Collaboration

J. Adamczewski-Musch

d

, O. Arnold

j,i

, C. Behnke

h

, A. Belounnas

o

, A. Belyaev

g

, J.C. Berger-Chen

j,i

, J. Biernat

c

, A. Blanco

b

, C. Blume

h

, M. Böhmer

j

, P. Bordalo

b

,

S. Chernenko

g,7

, L. Chlad

p

, C. Deveaux

k

, J. Dreyer

f

, A. Dybczak

c

, E. Epple

j,i

, L. Fabbietti

j,i

, O. Fateev

g

, P. Filip

a

, P. Fonte

b,1

, C. Franco

b

, J. Friese

j

, I. Fröhlich

h

, T. Galatyuk

e,d

,

J.A. Garzón

q

, R. Gernhäuser

j

, M. Golubeva

l

, R. Greifenhagen

f,3

, F. Guber

l

,

M. Gumberidze

e,2

, S. Harabasz

e,c

, T. Heinz

d

, T. Hennino

o

, S. Hlavac

a

, C. Höhne

k

, R. Holzmann

d

, A. Ierusalimov

g

, A. Ivashkin

l

, B. Kämpfer

f,3

, T. Karavicheva

l

, B. Kardan

h

, I. Koenig

d

, W. Koenig

d

, B.W. Kolb

d

, G. Korcyl

c

, G. Kornakov

e

, R. Kotte

f

, W. Kühn

k

, A. Kugler

p

, T. Kunz

j

, A. Kurepin

l

, A. Kurilkin

g

, P. Kurilkin

g

, V. Ladygin

g

, R. Lalik

j,i

, K. Lapidus

j,i

, A. Lebedev

m

, L. Lopes

b

, M. Lorenz

h

, T. Mahmoud

k

, L. Maier

j

,

A. Mangiarotti

b

, J. Markert

d

, S. Maurus

j

, V. Metag

k

, J. Michel

h

, D.M. Mihaylov

j,i

, S. Morozov

l,4

, C. Müntz

h

, R. Münzer

j,i

, L. Naumann

f

, K.N. Nowakowski

c

, M. Palka

c

, Y. Parpottas

n,5

, V. Pechenov

d

, O. Pechenova

h

, O. Petukhov

l,4

, J. Pietraszko

d

,

W. Przygoda

c

, S. Ramos

b

, B. Ramstein

o

, A. Reshetin

l

, P. Rodriguez-Ramos

p

, P. Rosier

o

, A. Rost

e

, A. Sadovsky

l

, P. Salabura

c

, T. Scheib

h

, H. Schuldes

h

, E. Schwab

d

, F. Scozzi

e,o

, F. Seck

e

, P. Sellheim

h

, J. Siebenson

j

, L. Silva

b

, Yu.G. Sobolev

p

, S. Spataro

6

, H. Ströbele

h

, J. Stroth

d,h

, P. Strzempek

c

, C. Sturm

d

, O. Svoboda

p

, M. Szala

h

, P. Tlusty

p

, M. Traxler

d

, H. Tsertos

n

, E. Usenko

l

, V. Wagner

p

, C. Wendisch

d

, M.G. Wiebusch

h

, J. Wirth

j,i

, Y. Zanevsky

g,7

, P. Zumbruch

d

aInstituteofPhysics,SlovakAcademyofSciences,84228Bratislava,Slovakia

bLIP-LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,3004-516Coimbra,Portugal cSmoluchowskiInstituteofPhysics,JagiellonianUniversityofCracow,30-059Kraków,Poland dGSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany eTechnischeUniversitätDarmstadt,64289Darmstadt,Germany

fInstitutfürStrahlenphysik,Helmholtz-ZentrumDresden-Rossendorf,01314Dresden,Germany gJointInstituteofNuclearResearch,141980Dubna,Russia

hInstitutfürKernphysik,Goethe-Universität,60438Frankfurt,Germany iExcellenceCluster‘OriginandStructureoftheUniverse’,85748Garching,Germany jPhysikDepartmentE62,TechnischeUniversitätMünchen,85748Garching,Germany kII.PhysikalischesInstitut,JustusLiebigUniversitätGiessen,35392Giessen,Germany lInstituteforNuclearResearch,RussianAcademyofScience,117312Moscow,Russia mInstituteofTheoreticalandExperimentalPhysics,117218Moscow,Russia nDepartmentofPhysics,UniversityofCyprus,1678Nicosia,Cyprus

oInstitutdePhysiqueNucléaire,CNRS-IN2P3,Univ.Paris-Sud,UniversitéParis-Saclay,F-91406OrsayCedex,France pNuclearPhysicsInstitute,TheCzechAcademyofSciences,25068Rez,CzechRepublic

qLabCAF.F.Física,Univ.deSantiagodeCompostela,15706SantiagodeCompostela,Spain

E-mailaddress:hades-info@gsi.de(R. Holzmann).

1 AlsoatISECCoimbra,Coimbra,Portugal.

2 AlsoatExtreMeMatterInstituteEMMI,64291 Darmstadt,Germany.

3 AlsoatTechnischeUniversitätDresden,01062 Dresden,Germany.

4 AlsoatMoscowEngineeringPhysicsInstitute(StateUniversity),115409 Moscow,Russia.

5 AlsoatFrederickUniversity,1036 Nicosia,Cyprus.

6 AlsoatDipartimentodiFisicaandINFN,UniversitàdiTorino,10125 Torino,Italy.

7 Deceased.

https://doi.org/10.1016/j.physletb.2018.01.048

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received15January2018 Accepted16January2018 Availableonline3February2018 Editor:D.F.Geesaman

We presentdata onchargedkaons(K±)and φmesonsinAu(1.23A GeV)+Aucollisions.It isthefirst simultaneousmeasurementofKandφmesonsincentralheavy-ioncollisionsbelowakineticbeamen- ergyof10A GeV.Theφ/Kmultiplicityratioisfoundtobesurprisinglyhighwithavalueof0.52±0.16 andshowsnodependenceonthecentralityofthecollision.Consequently,thedifferentslopesoftheK+ and K transverse-massspectracanbeexplainedsolelybyfeed-down,whichsubstantiallysoftensthe spectraofKmesons.Hence,incontrasttothecommonlyadaptedargumentationinliterature,thedif- ferentslopesdonotnecessarilyimplydivergingfreeze-outtemperaturesofK+and K mesonscaused bydifferentcouplingstobaryons.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Until now, hadron properties and interactions at high baryon densities – as reached in relativistic heavy-ion collisions (HICs) –cannot be addresseddirectly by ab-initio QCD calculationsand thus have to be modeled using effective Lagrangians. Both the equation of state andthe kinetic description of the HIC dynam- ics provide severe challenges with far reaching implications for astrophysicalobjects,e.g.forneutronstarstructureandmergerdy- namics[1–4].

Strangeness-carryingexcitations–withafocusonkaonsinthe energyregimebelow10A GeV–areconsideredsuitableprobesof thepropertiesof compressednuclearmatter andtherelatedcol- lision dynamics [5]. In strong interaction processes one observes strangenessproductionassimultaneousappearanceofass pair,¯ ei- therasastrangenessneutralboundstateliketheφmesonorwith subsequentredistributiontobaryonsandmesons(associated pro- duction).ArgumentsbasedontheOZIruledisfavortheproduction ofthebound φ=s¯s state[6,7]. Keyquantitiesof strangemesons aredeterminedbytheirspectralfunctionrelatedtotheirso-called nuclear potentials. Various approaches [8–13] predict a net at- tractive K-nucleon (N)potential. However, dueto the presence of baryon resonances [14,15], the resulting K spectral function mayhavean intricateshape and, dueto thelackof ab-initioap- proaches,itneedstobe controlledbyexperimentaldata.Thefirst high-quality data on sub-threshold K production in HICs have become available in the late 1990s [16–19].The data revealed a similarriseofK+and Kyieldswithincreasingcentralityofthe collision, and systematically softer K spectra compared to the ones of the K+. Comparisons between data and transport mod- els suggestedthat the K decouples from the systemlater than the K+ due to the large cross section of strangeness exchange reactions, e.g.

π

N K, which were predicted in[20] asthe dominantsourceforsub-threshold Kproduction.Thiswastaken asanexplanationforboth,thesofterspectraoftheK(duetothe laterfreeze-out)aswellasthesimilardependenceonthesystem size(couplingof KyieldtotheoneoftheK+ viathehyperons) [21]. Alater freeze-out ofthe K compared to the K+ hasthus becomeaparadigmofsub-thresholdstrangenessproduction.

Attempting to extract the K-N potential from experiment, mostcomparisonsbetweenKdataandtransportmodelsfavorin fact an attractive potential. However, quantitative statements are difficult, e.g. due to differences between the various models [5, 22–24]w.r.t.theextractedobservabledistributions.

Theφ mesonsasapossiblesourceof K mesonsatSISener- giesisdiscussedforthefirsttime in[25,26].Recentdatainlight collision systems reveal, indeed, that a sizable fraction of about 20%oftheobserved K yieldresultsfromφdecays[27–31].The observed differencein theslopes ofthe K+ and K spectracan be explained by taking the K contribution from φ decays into accountinlightcollisionsystems,asthoseKhaveasubstantially

softerspectrum[32],asconfirmedin[29–31].Severalexplanations for the large φ/K ratio in light systems have been proposed, based on both macroscopic [33,34] and microscopic models [35, 36] butwithouttheemergence ofa commonpicture,andthere- lationtoheavysystemsremainedvagueuntilnow.

In this letter, we present data on charged kaons (K±) and φ mesonsinAu+Aucollisionsatakineticbeamenergyof1.23A GeV.

It is the only simultaneous measurement of K and φ in cen- tralheavy-ioncollisionsbelowakineticbeamenergyof10A GeV.

Mesons with strange quark content are produced deeply below their corresponding free nucleon-nucleonthresholds witha clear hierarchy inenergydeficitsof−150 MeV(K+), −450 MeV(K) and−490 MeV(φ).Hence, thefireball producedinAu+Aucolli- sions at1.23AGeVistheidealenvironmenttostudysub-threshold strangenessproduction.

TheHigh-Acceptance Di-ElectronSpectrometer(HADES) [37]is acharged-particledetectorlocatedattheGSIHelmholtzCenterfor Heavy IonResearch inDarmstadt,Germany. It comprises a6-coil toroidal magnetcentered around thebeamaxis andsixidentical detection sectionslocated between the coils covering almost the full azimuthal angle. Low-mass Mini-Drift Chambers (MDCs) are the main tracking detectors,while a scintillator hodoscope (TOF) and a Resistive Plate Chamber (RPC) are used for time-of-flight measurements incombination with a diamond start detectorlo- catedinfrontofa15-foldsegmentedtarget.Themultiplicitytrig- ger is based on the hit multiplicity in the TOF covering a polar anglerangebetween45and85.

In total 2.109 Au+Au events have been collected corre- spondingto the40% mostcentral eventsestimatedbyelaborated studies using a Glauber model [38]. Charged particle trajecto- ries werereconstructedusingtheMDCinformation.Theresulting tracks weresubjectto severalselectionsbased onquality param- eters delivered by a Runge–Kutta track fittingalgorithm. Particle identificationisbased onthemeasurements oftime-of-flightand track length. Additional separation power forkaons isgained by the energy-loss information from MDC and TOF detectors. K+ mesons are identified in the center-of-mass rapidity interval of

ycm= −0.65· · ·+0.25 inseveraltransversemass(mt= pt2+m20) binsof25 MeV/c2 width.Theunderlyingbackgroundisestimated inaniterativefittingprocedure.Thefitparametersareobservedto showlittleincreasewithincreasingmomentum,exhibitingquanti- tativeagreementwiththeMonte-Carlosimulation.Thisprocedure allowstoobtainthestatisticalerrorofthesignalandtotake into account thequalityofthebackgrounddescription ofthefitfunc- tion. Additional variations of the number of parameters, the fit and theintegration ranges turned out to be well covered by the error given by the fit. An example of a K+ signal and the cor- responding background is displayed in the upper inset of Fig. 1 fortheregioncoveringmid-rapidityandreducedtransversemass

(3)

Fig. 1. Left:Acceptance and efficiencycorrectedtransverse-mass spectraaround mid-rapidity.Thenumberofcountsperevent,pertransversemassandperrapid- ityregion,dividedbym2t togetherwithafittothedatapointsaccordingtoEq.(1) forthe 0–40%mostcentraleventsisdisplayed.Upper right: K+ signaland the correspondingbackgroundfitfortheregioncoveringmid-rapidityandmtm0be- tween25and50 MeV/c2.TheredcurvecorrespondstotheGaussianpartandthe blueonetothepolynomialpartofthecombinedfunctionusedforsignalextrac- tion.Middleright:Sameasupperonebutfor K andmtm0 between50and 75 MeV/c2.Lowerright:K+Kinvariantmassdistributionforthemid-rapidityre- gionandmtm0between0and100 MeV/c2aftersubtractionofthebackground.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisre- ferredtothewebversionofthisarticle.)

mtm0 between25 and50 MeV/c2. K are identified similarly as K+ but in a range of ycm= −0.7 to +0.1. An example of a K signal includingthebackgroundfitisdisplayedinthemiddle insetof Fig. 1 forthe region covering mid-rapidity andmtm0 between50and75 MeV/c2.φmesonsareidentifiedviatheir de- caysintochargedkaons.Thisanalysisisdone inarapidity region rangingfrom ycm= −0.5 to+0.1.The combinatorialbackground is described with the mixed-event technique. For systematic er- ror evaluationonthe count rate, thenormalizationregion ofthe mixed-event and the integration range are varied. The error of theextractedcountrateisthendefinedinthesamewayasdone for K±.AnexampleofaφsignalintheK+Kinvariantmassaf- tersubtractionofthe backgroundisdisplayed onthelower inset ofFig. 1forthemid-rapidity regionandmtm0 between0 and 100 MeV/c2.

Therawcountratesare correctedineachphasespacecell for acceptanceandefficiencybasedonMonte-CarloandGeant 3sim- ulations,subjecttothesame reconstructionandanalysissteps as theexperimentaldata.Theaverageefficiencyandacceptancecor- respond to ≈ 0.2 for kaons and about 0.04 for φ mesons, for detailssee[39].Asinputforthesimulation,thermallydistributed K+,φ(T=100 MeV)andK (T=80 MeV)wereembeddedinto Au+AucollisioneventsgeneratedwiththetransportcodeUrQMD [40]serving asbackground.Thesystematicbiasanduncertainties ofthecorrectionarecheckedbasedonthemoreabundantproton andpiontracksaswellasonthedifferencebetweenthedifferent sectorsofHADESandare eithercorrected ortakenassystematic error.Thetotalsystematicuncertaintyonthechargedkaonyields

Fig. 2. Upperleft:RapiditydistributionsofK andφandtheGaussianfunctions (dashedcurves)usedforextrapolationinycm.Pointsreflectedatmid-rapidityare displayedas opensymbols.Upperright:Extractedinverseslope parametersob- tainedfromthe Boltzmannfitstothe mt spectra.Thedistributionsareadapted usingTB=coshTe f f(ycm),displayedasdashedcurve.Bothfiguresshowresultsforthe 0–40%mostcentralevents.Incaseofthe K,alsotheyieldsandthe extracted inverseslopes ofthe two-componentmodelaredisplayed: direct thermal(blue dotted),feed-downfromφdecays(reddashed),sumofboth(greensolid).Lower panel:Ktransverse-massspectraaroundmid-rapiditycomparedtothedifferent cocktailcontributionsinthesamecolorcode.(Forinterpretationofthereferences tocolorinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

within theacceptancecorresponds to 4%. Theacceptance andef- ficiency corrected transverse mass spectra of K± and φ for the mid-rapidity bin are presented in Fig. 1 in terms of counts per event,pertransversemassandperunitinrapidity,dividedbymt2. This representation ischosen to ease acomparison withthermal distributionsaccordingto

1 mt2

d2N

dmtdycm

=

C

(

ycm

)

exp



(

mt

m0

)

TB

(

ycm

)



,

(1)

whereC(ycm)isarapiditydependentnormalization,andtheslope parameter TB depends on the rapidity too. Using Eq. (1) for an extrapolationin mtm0 andintegratingthe datapoints, the ra- piditydensitydistributionsforthedifferentparticlesareobtained, seeFig. 2.Theuncertaintyoftheextrapolationisestimatedto1.5%

fromthedifferencebetweentheextrapolationbasedonEq.(1)and aSiemens–Rasmussenmodelfunctionincludingaradialexpansion velocityasparameterfixedby usingthekinematicdistributionof theprotonsinthesamecollisionsystem[39].Addingupthediffer- enterrorsquadratically,wefindan overallsystematicuncertainty ontheyieldwithinthecoveredrapidityrangeof≈5%forcharged kaons andof≈10% forthe K± andφ mesons. Multiplicitiesare obtained integratingover ycm and using a Gaussian for extrapo- lationtofull phasespace. Theuncertaintyofthisextrapolationis estimatedbasedontherelativedifferenceofextrapolatedyieldob- tainedfortheGaussandthescaleddistributionfromUrQMD.The obtainedtotalmultiplicitiesarelistedinTable 1.The rapiditydis- tributions andthe Gauss functions used for the extrapolation in

(4)

Table 1

MultiplicitiesandeffectiveinverseslopesTe f fatmid-rapidityaswellasmultiplicity ratiosforgivencentralityclasses.Thefirstgivenerrorcorrespondstothestatistical, thesecondtothesystematicerrorwithintherapidityrangecoveredbyHADESand thelastonetotheextrapolationuncertaintytofullphasespace.Ifthesecondor thirderroris notgiven,itisfoundtobewellbelowthestatisticalerrorandis henceneglected.Theerroronthemultiplicityratioscorrespondstothequadratic sumofthesingleerrorsources.

K+ Yield [102/evt] Te f f [MeV]

0–40% 3.01±0.03±0.15±0.30 104±1±1

0–10% 5.98±0.11±0.30±0.60 110±1±1

10–20% 3.39±0.05±0.17±0.34 103±1±1

20–30% 1.88±0.02±0.09±0.19 97±1±1

30–40% 1.20±0.02±0.06±0.12 91±1±1

K Yield [104/evt] Te f f [MeV]

0–40% 1.94±0.09±0.10±0.10 84±6

0–20% 3.36±0.31±0.17±0.17 84±7

20–40% 1.28±0.11±0.06±0.06 69±7

φ Yield [104/evt] Te f f [MeV]

0–40% 0.99±0.24±0.10±0.05 108±7

0–20% 1.55±0.28±0.15±0.11 99±8

20–40% 0.53±0.08±0.05±0.04 91±7

K/K+×103 φ/K

0–40% 6.45±0.9 0.52±0.16

0–20% 7.17±1.1 0.46±0.12

20–40% 8.31±1.3 0.44±0.10

ycm aredisplayedontheupperleftpanel ofFig. 2for K andφ. Theerrorbarsdisplaythestatisticalerror,whilethesystematicer- ror isindicated by boxes.The extractedinverseslope parameters obtainedfromtheBoltzmannfitsto themt spectraare displayed ontheupperrightpanel ofFig. 2.Thedependenceisfittedusing

TB= coshTe f f(ycm) in orderto obtain theeffective inverseslope Te f f.

While Te f f is extracted to (104±1stat±1sys) MeV for K+ and to (108±7stat) MeV for φ mesons, the obtained value for K of(84±6stat) MeVis significantlylower.This isinlinewiththe previously obtainedsystematics[19].The systematicerroronthe inverse slope of the K+ is obtained by comparison of the spec- traextractedinthedifferentsectorsseparately.Incaseofthe K andφ,asimilarcheckgivesvariationswellbelowthestatisticaler- rorsandhenceareneglected.Inaddition,theanalysisprocedureis repeatedinfourandtwocentralityclassesforthe K+ andK,φ, respectively,whichcorrespondto10% (20%)stepsincentrality.The resultsare summarized inTable 1. For Te f f of K,we take into account the larger extrapolation inmtm0,due to the reduced statistics,byanadditionalsystematicerror.

Thehierarchyinenergydeficitsisreflectedintheyieldsofthe threemesons: K+ mesons arefound to betwo orders ofmagni- tudemoreabundantlyproducedthanthedeepsub-thresholdpro- ducedK andφmesons.Duetothesimilarriseofchargedkaon yieldswithincreasingcentrality,onecandirectlycomparetheex- tractedratioK/K+= (6.45±0.77)×103 tovaluesobtainedby theKaoScollaboration athigherbeamenergiesandvariouscolli- sionsystems[19,28]withoutcorrectingforthedifferentcentrality selections. Theratio showsalinear increase with√

sN N, andour datapoint isconsistent withthe extrapolationfromhigherener- giesusing a linear regression [28]. The yield andslope of the φ mesonhaveneverbeforebeenmeasuredincentralheavy-ioncol- lisions below a kinetic beam energy of 10A GeV. The excitation function ofthe φ/K ratio isdepicted inFig. 3 asa function of

sN N,including datafromhigherenergies [41,42].Assumingthe validityofthepreviousparadigmofsub-thresholdstrangenesspro- duction presented in the introduction, one expects the φ/K to

Fig. 3. Multiplicityratioφ/K asfunctionof

sN Nforcentralheavy-ioncollisions [41,42];theHADESdataisdepictedasfilledsymbol.

decrease withdecreasing energy, as it becomes increasingly un- likely to accumulate enough energy for φ production, while K can still be produced via strangeness exchange reactions, which should have sufficient time to occur in large systems. However, while the ratio is constant ≈ 0.15 for

sN N4 GeV, our data indicate astrongincreasetowards lowenergies:Wefinda φ/K ratioof0.52±0.16.

Thisrisesquestionsonthewidespreadassumptionofasmallφ productioncrosssection[7]duetotheOZIruleandshowsthatin- deedcorrelatedkaonproductionviaφ mesonsisasizablesource of K ((26±8)% of all K mesons) in large collision systems atlow energies. Hence,thefeed-down fromφ mesondecayscan notbeneglected inthe K channel.Toinvestigatethefeed-down effect we built a simple K cocktail using the event generator Pluto [43]. We generate two static thermal sources, one for di- rect KandoneforφmesonswithtemperaturesofT=104 MeV andT=108 MeV,respectively,accordingtothemeasuredinverse slopesof K+andφ.Duetothehierarchyinproductionyieldsthe feed-downonthe K+ spectraisnegligible.Incaseofthe K,we scale thetwo contributions accordingto themeasured φ/K ra- tio.Thedifferentcocktailcontributionstothe Ktransverse-mass spectra around mid-rapidity are displayed in the lower panel of Fig. 2: direct thermal(blue), resulting from φ decays (red), sum of both (green). It turns out that the K resulting from φ de- cays have amuch softerspectrum andhencesubstantially “cool”

the finally observed spectrum. The sum of both contributions is then fitted using Eq. (1) (black) in a similar mtm0 range be- tween 0 and 200 MeV/c2 as used for experimental data (green triangles), both displayed in Fig. 2. The rapidity dependences of theextractedinverseslopesfordifferentKsourcesaredisplayed on the right panel inFig. 2 with the same colorcode as above.

Theinverseslopeof(84±5)MeVagreeswiththemeasurementof (84±6)MeV.Theerrorisobtainedbyvariationoftheφ/Kratio within the given errors. The error on the inverse slope parame- teroftheexperimentalspectrum ispropagatedby makinguseof the covariancematrix when determiningthe yields andhence is notvariedexplicitly.Wefindtheshapeoftherapiditydistribution tobereproducedaswell,displayed togetherwiththe Kdataon the left panel of Fig. 2, where a comparison of the data to the fullcocktail(greencurve),thedirect(bluecurve)andcontribution from φ decays (red curve) is shown. The different slopes of the K+ and K transverse-mass spectra can be explained solely by feed-down,whichsubstantiallysoftens thespectraof K mesons anddohencenot implydifferentfreeze-outtemperaturesofboth mesonsresultingfromtheirunequalcouplingstobaryons.

The general understanding of sub-threshold strangeness pro- ductionisfurtherchallengedbytheinvestigationofthecentrality dependenceoftheφ/K andK/K+ ratios.Withintheprevious paradigm, one also expects the relative yields to show different scalings withthe system size as the K yield is coupled to the one of K+ via strangenessexchangereactions, while nosuch re- actions arepresentincaseoftheφmeson(notethattheaverage amount of produced strange quark pairs is at theorder of 102

(5)

perevent).Hence,asignificantlyhigheramountofenergymustbe accumulatedbeforeφ meson productioncan occurandtherefore astronger scalingwithincreasing centralityis expected, thanfor thechargedkaons.However, both theφ/K andthe K/K+ ra- tiosextracted within the two centralityclasses donot show any increasetowardscentralevents,seeTable 1.Thisimpliesthat en- ergyismuchmoreeasilyredistributedinthecreatedfireballthan previously assumed, suggesting a universal scaling of produced strangenesswithincreasingsystemsize.

Several ongoing calculations promise to improve our under- standingofsub-thresholdstrangenessproductionandwillbecon- fronted with the data for more quantitative comparisons in the future: An improved version of the transport code UrQMD [36]

candescribe the observed φ/K forenergies at low energies by increasingthe φ-Ncouplingvia higherbaryon resonances,which decaytofinalstatesincludingaφmesonandactasenergyreser- voir at the same time. As such decay branches are not directly observed,their branching ratios are tuned to matchdataon ele- mentaryφproductioncrosssections[44].Insupportofthis,recent datafromelementarycollisions [45] andinvestigations aboutthe φ meson self-energy in nuclear matter [46] show stronger φ-N couplings than expected by the OZI rule. Also statistical models canreproducetherise oftheφ/K ratiowhenincludingtheso- calledstrangenesscorrelationradius Rc,whichgovernsthecanon- icalsuppression.Astheφ mesonhasnonet-strangeness,itisnot affected by strangeness conservationin the reduced volume and thereforenotsuppressed,whiletheKmesonis.Thisresultsinan increaseoftheφ/K ratiowithdecreasing √

sN N,wherethesize of Rc determines the strength of the decrease. Also, the similar dependenceof chargedkaon andφ production withthe central- ityofthecollision isnaturally reproducedasthetotalamountof producedstrangenessincreaseswithdecreasingimpactparameter ofthecollision, prior toits redistribution tothe differenthadron species at freeze-out [47]. In summary, we have presented first combineddata on chargedkaons (K±) andφ mesons in Au+Au collisions at √

sN N=2.4 GeV. The φ/K ratio showsa increase withdecreasing center-of-massenergy √

sN N and is found to be 0.52±0.16 inourexperiment.Hence,withafraction(26±8)% of K mesons resulting fromφ mesondecays, thelatter one turns out to be a sizable source of antikaon production. The different slopesofthetransverseK+andKspectracanbefullyexplained by feed-down.The φ/K ratio is constant as a function of cen- trality,suggestingauniversalscalingofproducedstrangenesswith increasing system size. Both observations have not been taken properlyintoaccountbyphenomenologicalmodelsinthepastand thusfurtherdevelopmentsareneededtoarriveatfirmconclusions onthe K-Npotential, whichisan importantingredient, e.g. for thedescriptionofastrophysicalobjects,asmentionedintheintro- duction.Conclusionsbasedonthat potential mustbetestedwith regard to their consistency with our findings. An improved un- derstanding ofstrangeness dynamics in HICs is also a necessary prerequisiteforsharpeningthesciencecaseofexperimentsatthe upcominglarge scale facilitiesas FAIR,NICA,J-PARC andthe low energyrunsofRHIC.

Acknowledgements

The HADES collaboration gratefully acknowledges the support by the grants SIP JUC Cracow (Poland), 2013/10/M/ST2/00042;

TU Darmstadt (Germany), VH-NG-823; GU Frankfurt (Germany), BMBF:05P15RFFCA,HIC forFAIR, ExtreMe Matter Institute EMMI;

TUMünchen,Garching(Germany),MLLMünchen,DFGEClust 153, DFG FAB898/2-1, BmBF 05P15WOFCA; JLU Giessen (Germany), BMBF:05P12RGGHM; IPN, IN2P3/CNRS (France); NPI CAS Rez (CzechRepublic),GACR13-06759S,MSMTLM2015049.

References

[1]D.B.Kaplan,A.E.Nelson,Phys.Lett.B175(1986)57.

[2]G.E.Brown,H.Bethe,Astrophys.J.423(1994)659.

[3]G.Q.Li,C.H.Lee,G.E.Brown,Phys.Rev.Lett.79(1997)5214.

[4]M.Hanauske,K.Takami,L.Bovard,L.Rezzolla,J.A.Font,F.Galeazzi,H.Stöcker, Phys.Rev.D96 (4)(2017)043004.

[5]C.Hartnack,H.Oeschler,Y.Leifels,E.L.Bratkovskaya,J.Aichelin,Phys.Rep.510 (2012)119.

[6]S.Okubo,Phys.Lett.5(1963)1975;

G.Zweig,CERNReport,1964,No. 8419/TH412;

J.Iizuka,Prog.Theor.Phys.Suppl.37(1966)38.

[7]A.Shor,Phys.Rev.Lett.54(1985)1122.

[8]C.H.Lee,G.E.Brown,D.P.Min,M.Rho,Nucl.Phys.A585(1995)401.

[9]J.Schaffner-Bielich,J.Bondorf,A.Mishustin,Nucl.Phys.A625(1997)325.

[10]M.F.M.Lutz,A.Steiner,W.Weise,Nucl.Phys.A574(1994)755.

[11]V.Koch,Phys.Lett.B337(1994)7.

[12]W.Cassing,E.L.Bratkovskaya,U.Mosel,S.Teis,A.Sibirtsev,Nucl.Phys.A614 (1997)415.

[13]D.Cabrera,L.Tolos,J.Aichelin,E.Bratkovskaya,J.Phys.Conf.Ser.668(2016) 012048.

[14]V.K.Magas,etal.,Phys.Rev.Lett.95(2005)052301.

[15]G.Agakishiev,etal.,HADESCollaboration,Phys.Rev.C87(2013)025201.

[16]F.Laue,etal.,KaoSCollaboration,Phys.Rev.Lett.82(1999)1640.

[17]M.Menzel,etal.,KaoSCollaboration,Phys.Lett.B495(2000)26.

[18]A.Förster,etal.,KaoSCollaboration,Phys.Rev.Lett.91(2003)152301.

[19]A.Förster,F.Uhlig,I.Böttcher, D.Brill, M.Debowski,etal., Phys.Rev.C75 (2007)024906.

[20]C.M.Ko,Phys.Lett.B120(1983)294.

[21]C.Hartnack,H.Oeschler,J.Aichelin,Phys.Rev.Lett.90(2003)102302.

[22]W.Cassing,L.Tolos,E.L.Bratkovskaya,A.Ramos,Nucl.Phys.A727(2003)59.

[23]C.Fuchs,Prog.Part.Nucl.Phys.56(2006)1.

[24]V.Zinyuk,etal.,FOPICollaboration,Phys.Rev.C90 (2)(2014)025210.

[25]B.Kämpfer,R.Kotte,C.Hartnack,J.Aichelin,J.Phys.G28(2002)2035.

[26]W.S.Chung,G.Q.Li,C.M.Ko,Nucl.Phys.A625(1997)347.

[27]A.Mangiarotti,etal.,FOPICollaboration,Nucl.Phys.A714(2003)89.

[28]G.Agakishiev,etal.,HADESCollaboration,Phys.Rev.C80(2009)025209.

[29]K.Piasecki,etal.,FOPICollaboration,Phys.Rev.C91(2015)054904.

[30]P.Gasik,etal.,FOPICollaboration,Eur.Phys.J.A52(2016)177.

[31]K.Piasecki,etal.,FOPICollaboration,Phys.Rev.C94(2016)014901.

[32]M.Lorenz,etal.,HADESCollaboration,PoSBORMIO2010(2010)038.

[33]G.Agakishiev,etal.,HADESCollaboration,Eur.Phys.J.A47(2011)21.

[34]G.Agakishiev,etal.,HADESCollaboration,Eur.Phys.J.A52 (6)(2016)178.

[35]H.Schade,G.Wolf,B.Kämpfer,Phys.Rev.C81(2010)034902.

[36]J.Steinheimer,M.Bleicher,J.Phys.G43(2016)015104.

[37]G.Agakishiev,etal.,HADESCollaboration,Eur.Phys.J.A41(2009)243.

[38]B.Kardan,DiplomaThesis,Goethe-UniversityFrankfurt,2016.

[39]H.Schuldes,PhDThesis,Goethe-UniversityFrankfurt,2016.

[40]S.A.Bass,etal.,Prog.Part.Nucl.Phys.41(1998)225.

[41]B.Holzman,etal.,E917,Nucl.Phys.A698(2002)643.

[42]S.V.Afanasiev,etal.,NA49,Phys.Lett.B491(2000)59.

[43]I.Fröhlich,etal.,J.Phys.Conf.Ser.219(2010)032089.

[44]Y.Maeda,etal.,ANKECollaboration,Phys.Rev.C77(2008)015204.

[45]T.Ishikawa,etal.,Phys.Lett.B608(2005)215;

M.Hartmann,etal.,Phys.Rev.Lett.96(2006)242301;

F.Balestra,etal.,Phys.Rev.C63(2001)024004;

A.Sibirtsev,W.Cassing,Eur.Phys.J.A7(2000)407.

[46]D.Cabrera,A.N.HillerBlin,M.J.VicenteVacas,Phys.Rev.C95(2017)015201.

[47]E.E.Kolomeitsev,B.Tomasik,D.N.Voskresensky,Phys.Rev.C86(2012)054909.

Cytaty

Powiązane dokumenty

The difference between the number of partitions of n into an even number of parts from the multiset S and the number of partitions into an odd number of parts from S is bounded if

The fitted quantity is a probability distribution function (p.d.f.), so the most natural way is to use the maximum likelihood (ML) method, where the likelihood function is

Procentowy udział gospodarstw ekologicz- nych w powiecie gostynińskim i płockim w stosunku do gospodarstw ekologicznych w województwie mazowieckim 2009-2016 – bez gospodarstw

The problem considers fleet status, maintenance capacity, and other maintenance constraints to schedule hangar checks for a specified time horizon.. The checks are scheduled within

In this paper we are interested in the factorization problem and in the study of the properties of the factor in the case when the function Πiω is matrix-valued and non-rational, but

Fisher, Transm ission through barriers and resonant tunneling in an interacting one-dim ensional electron gas, Phys.. Ghoshal and

For small nonzero values of |H|, the resonant energy exchange mechanism governing scat- tering in the bulk φ 4 model is changed in two ways in the boundary theory: (i) the

Here, we use the coordination number 共CN兲 distribution in the liquid as the only descriptor of local atomic structure for matching with crystal structures although other local