• Nie Znaleziono Wyników

A Kutta condition for ship seakeeping computations with a Rankine Panel Method

N/A
N/A
Protected

Academic year: 2021

Share "A Kutta condition for ship seakeeping computations with a Rankine Panel Method"

Copied!
10
0
0

Pełen tekst

(1)

A K u t t a Condition for Ship Seakeeping Computations

with a Ranlcine Panel Method

V o l k e r B e r t r a m , T U Hamburg-Harburg^ G e r h a r d D . T h i a r t , Univ. Stellenbosch^

1. I n t r o d u c t i o n

The ship (especially including the rudder) can be considered as a vertical f o i l of very short span. For a steady yaw angle, i.e. a typical manoeuvring application, one w o u l d certainly enforce some k i n d of K u t t a condition i n a p o t e n t i a l flow computation. However, f o r the corre-sponding periodic m o t i o n i n seakeeping, even mentioning of the K u t t a c o n d i t i o n is rarely f o u n d for 3-d methods. Wu (1994) includes the K u t t a condition to compute the r a d i a t i o n problem for an oscillating surface-piercing plate at f o r w a r d speed using a Green f u n c t i o n method. Zou

(1995) solves the same problem using a Rankine panel method. T h e only apphcations t o ships

at f o r w a r d speed are an extended abstract by Zou (1994) for ^ Rankine panel m e t h o d and

Schellin and Rathje (1995) for a Green f u n c t i o n method. However, Zou solves only the

ra-d i a t i o n problem anra-d neglects the steara-dy ra-disturbance potential, anra-d Schellin anra-d R a t h j e have some inconsistency i n f u l f i l l i n g the free-surface condition. For the related p r o b l e m of fluttering vibrations of airfoils i n aerospace engineering, enforcing a I ^ u t t a c o n d i t i o n appears to be stan-dard procedure. I t is unclear i f o m i t t i n g the K u t t a condition is based on some physical insight about the negligible effects or oversight. I t is of no importance as long as the applications are l i m i t e d to head or following waves, i.e. the most frequent test cases. B u t of course, for prac-tical requirements a method must be applicable for a l l wave directions. We shall numerically investigate the effect of the K u t t a c o n d i t i o n and hope to contribute this way to a clarification of its necessity.

2. P h y s i c a l m o d e l

We consider a ship w i t h average speed /7 i n a regular wave of small a m p l i t u d e h. Bertram

(1996) , Bertram and Thiart (1998) presented a linearized 3-d Rankine panel m e t h o d i n c l u d i n g

a l l forward-speed effects. T h e same m e t h o d is now extended to include the K u t t a c o n d i t i o n . We w i l l therefore o m i t other details of the m e t h o d and focus here only on the K u t t a c o n d i t i o n and the associated dipole elements applied to compute the motions i n oblique waves.

The p r o b l e m is f o r m u l a t e d i n right-handed Cartesian coordinate systems. T h e i n e r t i a l

Oxyz system moves u n i f o r m l y w i t h velocity U. x points f o r w a r d , z downwards. T h e angle of

encounter / i between body and incident wave is defined such t h a t n = 180° denotes head sea and fi = 90° sea f r o m starboard.

The ship has 6 degrees of freedom f o r r i g i d body m o t i o n expressed i n the m o t i o n vector ü = { u i , U 2 , « 3 } ^ and the r o t a t i o n a l m o t i o n vector d = { u 4 , u g , u e } ^ . A p e r t u r b a t i o n f o r m u l a t i o n for the p o t e n t i a l is used o m i t t i n g higher-order terms:

is the p a r t of the p o t e n t i a l independent of the wave amplitude h. I t is the s o l u t i o n o f the steady wave-resistance problem, (j)^^^ is p r o p o r t i o n a l to h and accounts (Hnearized) for the contributions of the seaway.

. ^ ( i ) = i ? e ( ^ W ( a ; , y , z ) e ' - ^ * ) (2)

The symbol " denotes a complex a m p l i t u d e . We is the encounter frequency. T h e harmonic potential (j)^^^ is decomposed i n t o the p o t e n t i a l o f t h e incident wave the d i f f r a c t i o n p o t e n t i a l

^Lammersieth 90, D-22305 Hamburg, bertram@schiffbau.uni-hamburg.d400.de ^Dept. Mech. Eng., 7600 Stellenbosch, South Africa

(2)

(p'^, and 6 r a d i a t i o n potentials:

<^(') = < ^ ' + r + E f « i (3) t"=i

I t is convenient to divide cf)^ and into symmetrical and antisymmetrical parts to take ad-vantage of the (usual) geometrical symmetry:

9 {x,y,z) = -I- (4)

(j)<i = / . « + ^''.« (5)

T h e K u t t a condition requires t h a t at the t r a i l i n g edge the pressures are equal on b o t h sides. I f the pressure is decomposed into a symmetric and an antisymmetric part, t h e n this is equivalent to requiring zero antisymmetric pressure:

^'•^ = -piiue^)''" + V<^(°)V<^*'°) = 0 (6)

where 4>^'°' is an antisymmetric unsteady pressure, i 1,3 and 5 for the three antisymmetric

radiation modes and i = d for the antisymmetric d i f f r a c t i o n part.

The f o u r antisymmetric potentials are solved i n a Rankine panel m e t h o d w h i c h uses first-order panels (plane and constant strength) on the h u l l (up to a height above the average wetted surface) and around the ship. I n a d d i t i o n , a dipole d i s t r i b u t i o n inside the h u l l and t r a i l i n g behind the h u l l is used for the antisymmetric cases. T h e theoretical details of the dipole dis-t r i b u dis-t i o n are discussed i n dis-the appendix. T h e K u dis-t dis-t a condidis-tion (6) is f u l f i l l e d adis-t dis-the lasdis-t column of collocation points at the ship stern. A corresponding number of semi-infinite dipole strips is used on the centerplane of the ship. T h e dipole strips start amidships and have the same height as the corresponding last panel on the stern. T h e simultaneous f u l f i f i m e n t of no-penetration condition and K u t t a condition on the collocation points poses no numerical p r o b l e m , as already demonstrated by Zou (1994). T h e four systems of equations f o r the a n t i s y m m e t r i c a l potentials share the same coefficient m a t r i x w i t h only the r.h.s. being different. A l l f o u r cases are solved simultaneously using Gauss elimination. T h e subsequent computations leading t o the motions are then straight-forward.

3. R e s u l t s for S-175 c o n t a i n e r s h i p

T h e S-175 containership using the same discretisation as i n previous computations, Bertram

and Thiart (1998), was computed f o r Proude number F „ = 0.275. The results f o r the symmetric

motions are of course not affected by the K u t t a condition.

F i g . 1 shows the result for p = 150°, F i g . 2 for /.i = 6 0 ° . T h e results f o r heave and p i t c h show excellent agreement w i t h experiments. T h i s is typical f o r a l l wave lengths a n d angles of encounter investigated. No experimental results are available for surge f o r these angles of encounter, b u t the tendency is similar as f o r head waves i n previous computations, Bertram

and Thiart (1998).

For IJ, = 150° the K u t t a c o n d i t i o n has only significant effects for long waves i n the region where resonance occurs. Here the K u t t a condition simulates to some extent the effect o f viscous d a m p i n g and reduces drastically (by factors between 2 and 4) the a n t i s y m m e t r i c motions. However, f o r r o l l additional viscous effects (those t h a t would be apparent also at zero speed) reduce i n reality the motions even more. For yaw and sway, no experimental data are here available, b u t we expect that autopilots i n experiments w i l l also prevent the very large predicted m o t i o n amplitudes of the computations.

(3)

For / i = 60° some short-comings of the present method become apparent. Yaw is predicted w i t h good accuracy over most of the range of frequencies, b u t for low frequencies (long waves) the computations overpredict motions strongly, even i f a K u t t a c o n d i t i o n is enforced. We suspect t h a t this is due t o an autopilot used i n experiments which restores motions for low frequencies, b u t this assumption would require f u r t h e r investigation. R o l l motions show only satisfactory agreement between computations and experiments. However, the measured r o l l motions appear less plausible f o r high frequencies t h a n the computations. Sway shows strong scatter of results. A p p a r e n t l y the K u t t a condition makes things worse here.

A conclusive improvement of results due to the K u t t a c o n d i t i o n could not be demonstrated. The improvements for the narrow region of resonance are drastic, b u t ad hoc solutions h m i t i n g the response amplitude operators to m a x i m u m values t a k i n g f r o m experiments for similar ships may work almost as well i n practice, while being a lot simpler. Sway motions for low encounter frequencies ( i n f o l l o w i n g oblique waves) require special treatment. T h i s w i l l be subject to f u r -ther research.

R e f e r e n c e s

BERTRAM, V, (1996), A 3-d Rankine panel method to compute added resistance of ships, IfS-Report 566, Univ, Hamburg

BERTRAM, V.; T H I A R T , G.D. (1998), Fully three-dimensional ship seakeeping computations with a

surge-corrected Rankine panel method, J. Marine Science Technology 3/2

SCHELLIN, T.E.; RATHJE, H. (1995), A panel method applied to hydrodynamic analysis of twin-hull

ships, FAST'95, Travemiinde

W U , G.X. (1994), Wave radiation by an oscillating surface-piercing plate at forward speed, Int. Shipb. Progr. 41, pp.179-190

ZOU, Z.J. (1995), A 3-d numerical solution for a surface-piercing plate oscillating at forward speed, 10th Workshop Water Waves and Floating Bodies, Oxford

ZOU, Z.J. (1994), A 3-d panel method for the radiation problem with forward speed, 9th Workshop Water Waves and Floating Bodies, K u j u

SÖDING, H. (1975), Springing of ships, ESS-Report 7, Univ. of Hannover

(4)

1.0-T , o o q, 0 >-3 4 uJLJ^ -90 H O o o o 1.(1 \Ü2\/h 0.5 •] è o o o + ,-1- + f 41 4 uJhfg 0^ -90- * é 41 | « 3 | M 1,0-0.5 H 2.0 H

1.0-112

J3 90 i -90-4 ul^fL^Q 90¬ 0¬ -90-+ •*••• 0 i i ' » 4 ' - 9 . m 2 3 4 u>^JL^9 * + o • O O , + + O M i 1.0 4 0.5-5i> n r-4 ui^Jhlg 90--90 H 1.0 0.5 I M 1.4 i l . 6 90 0 -90 is * 3 4 w^/Vs -*

!p-Fig. 1: Response amplitude operators for S-175, p, = 150°, Fn = 0.275; experiment, -|- R P M witiiout K u t t a condition, o R P M with Kutta condition

(5)

\\ü,\lh 1.0 4 O O O 1.0 4 0.5--1 n 1 2 3 4 w^/LJ^ 90¬ 0¬ -90-904 0¬ -90-3 4 wJhlg + * 1.0 0.5 \uz\lh O • S ° 90 0 -90 1.0 0.5 1 2 3 4 u,s/L/g |M5 kh "O 3 4 uj^/YTTa 90-1 0¬ -90-G.O 5.0 4.0 3.0 2.0 1.0 90 O -90 4 kh 1.0 4 0.5 1W6 /c/i 90 O -90 ~i n 3 4 w-^/L/g ? + O 1 2 3 4 Uy/L/^ e O * -^ è f

Fig. 2: Response amplitude operators for S-175, fj, = 60°, = 0.275; experiment, + R P M without K u t t a condition, o R P M with K u t t a condition

(6)

Appendix: Velocity Potential for a Rectangular Vortex Panel w i t h Harmonically

Oscillat-ing Strength

The oscillating ship creates a vorticity. The problem is similar to that of an oscillating airfoil. The circulation is assumed constant within the ship. Behind the ship, vorticity is shed downstreams with ship speed U. Then:

u f ) ^ { x , z , t ) = 0. ( A l )

7 is the vortex density, i.e. the strength distribution for a continuous vortex sheet. The following

distribution fulfills condition ( A l ) :

^ix,z,t) = Re {%{z) • e'(<^"/t')(^-=^".) . e'^'') for x < Xa (A2)

where 7a is the vorticity density at the trailing edge Xa (stern of the ship). We continue the vortex sheet inside the ship at the symmetry plane y = 0, assuming like Zou (1994) a constant vorticity density:

7(.T, z, t) = Re {% {z) • e''^'*) for a;,, < a; < Xf (A3) Xf is the leading edge (forward stem of the ship). This vorticity density is spatially constant within the

ship.

A vortex distribution is equivalent to a dipole distribution i f the vortex density 7 and the dipole density m are coupled by:

dm / i ,\

The potential of an equivalent semi-infinite strip of dipoles is then obtained by integration. This potential is given (except for a so far arbitrary 'strength' constant) by:

^x,y,z)=Re [ ƒ J miO^ dC e'^A = Re {tp{x,y, z) • e'^'') (A5)

with r = ^/{x -^y +y' + {z-Cy and

" ^ ( 0 - [ (1 - ei(-=/c^)(«-<-)) -f {xj - Xa) for - 00 < e < Xa ^ '

I t is convenient to write ip as:

<p{x, y, z) = [yh + f i h + hh + hyh] (A7)

where h =

fj

^d^dC (A9)

Zo Xa I ƒ ^<^^dC (AIO) Zu —00 Zo Xa h = • ƒ ƒ ^'"'^^"^d^dC ( A l l ) 2u —00 h = X f - x (A12) ƒ3 = i L + ( a , . ; - 3 ; „ ) (A13) lUJe = IL^-i^.^./u (A14)

(7)

The velocity components and higher derivatives are then derived by differentiation of $, which reduced to differentiation of <p:

V $ = Re ( - 7 „ • • e'"=*) with

<^a; = yhx hhm + hhx + Uvhx

tpy = Ii+yliy + hhy + hhy + ƒ4 (^4 + yhy) = yhz + fihz + f s h z + liyhz

^xx = yhxx - 2 / 2 x + l2l2xx + hhxx + fiyhxx (Pyy = 2hy + yhyy + f i h y y + Szhyy + h{'i-hy + yhyy)

Vxy = hx + y h x y - hy + f2l2xy + f s h x y + U i l i x + y h x y )

<Pyz = h z + y h y z + f 2 l 2 y z + h h y z + M h z + y h y z )

H>xz = Vhxz - hz

+

j2hxz

+

hhxz

+

f^yUxz

The integral I\ and its derivatives are:

'{{z - Zg) + rao)((z - Zu) + r/u)" {{z - Zo) + rfo){{z - Zu)+rau).

where rao - ^/{x - i v ) ^ + y'^ + {z - ZoY, = y^(a; - a;/)^ + j/2 + - x „ ) 2 , etc,

a; — So a; — a; ƒ x — xj Jl = In can be (A15) (A16) (A17) (A18) (A19) (A20) (A21) (A22) (A23) (A24) ' 1 ; / [z- Zo + r.

Taoiz - Zo+Tao) Tfu{z - Zu + rJu) rfo{z - Zo + rfo) Tau{z - Zu + ran)

y V y y rfu{z - Zu+r/u) rfo{z - Zo + r/o) {Z-Zu + Tau)

1 1 1 — + Llxx — Llxy nyz -llxz

rlojz - Zo+ Tgo) - {x - Xa)'^{z - Zp + 2rao) rlo{z - Zo + Vao)^

'r)uiz - Zu+Tfu) - (a; - Xf)'^{z - Zu + 2rfu)

+

r%{z-zu + rfu)^

T)O{Z -ZQ-V Tjo) - (x - x f f { z - z„ + 2r/o) '••)okz- Zo-^TfoY

rlujz -Zu+ Tau) - j x - Xa)'^(z - Z^ + 2rau) rluiz - Zu + rau)^

I'lojz -Zo + rao) -y'^jz- Zo + 2rao) rlo{z- Zo+rao)'^

+

T)U{Z

-ZU+ Tfu) - y'^iz - + 2 r / u )

Zu + Tfu)'^

r%{z- Zo+Tfo) -y'^(z-Zo + 2rfo) Tjoiz- Zo +rfo)'^

''auiz ~ Zu + Tau) -y'^{z-Zu+ 2rau)

+

rlu(z - Zu+Tau)^

(x - Xa)y{z - Zo + 2rao) _ {x-Xf)y{z-Zu + 2rju) rL{z -Zo+ Tao)"^ rj^{z -Zu+ Tfu)^ {x~Xf)y{z- Zo + 2rfo) ^ {x - Xa)y{z -Zu + 2rau)

r}oiz - Zo+Tfo)'^ rluiz - Zu+Tau)'^ jy y ^ y ^ y

/ft3 7»3 ,p3 ij>3

' ao ' fu ' fo ' a u

X "^fl ^ f ^ ' ƒ ^ ^Ci

ao ' f o

(8)

The integral I2 and its derivatives are;

'{Z - Zo){x-Xf) I2 = arctan

-arctan {Z-Zu){x-Xf)

- arctan [z - Zo)ix - Xa)

yrfu + arctan yVao {Z - Zu){x - Xa) yi'a (A25) hx = hy =

y{z - Zo) y{z- Zo)

'•fo{{x-Xf)^-Vy-') rao{{x-Xa)^+y^) y{z - Zu) _|_ y{z - Zu)

rfu{{x -Xf)'^ + rau{(x - Xa)'^ + y2)

1 -{x-Xf){z-Zo) + {X - Xa){z - Zo) + {X-Xf){z-Zu) -{x - Xa){z - Zu) y j x - x f )

rfo{(x -Xf)'^ + y 2 ) Tfoiiz - ZoY + y^)

1 1

+ •

Taoiix-XaY^y-") r „ „ ( ( z - Z„)2 + y^)

1 1

+

r/ii((a; - a;/)2 + J/2) Tfu{{z - ZuY ^y"^)

1 1

+

VTau{{x - XaY + 2/^) Taui^Z - ZuY + y^) y{x - Xa)

Tfoiiz-Zo)^+y-') raoiiz-Zo)^ + y^) y j x - X f ) yjx - Xg)

z — z.

^•^•yy

rfuiiz-zu)^ + y^) Tauiiz - zuf+y'')

{x-Xf)yiz-Zo)iir%-iz-Zo)-') (a; - a;,)j;(^ - ^ „ ) ( 3 r L - (

jx - Xf)yiz - Zu)i^u - j z - Zu?) jx - Xa)yiz - Zu)i2.rlu - (z - Zu)^)

r)uii^~^fy+v'Y Tlui{x-Xa)^+yT ( x - x f ) y i z - Zo) Ho {x - Xa)yiz - Zo) rlui{x-xa)'+y^)^ 3r%-iz-Zo)' 3r%-ix-xf)'' 3 r L - ( ^ - ^ o ) ^ , 3rlo-ix-Xa)'-. ( ( a ; - 3rlo-ix-Xa)'-. T „ ) 2 + 2 / 2 ) 2 + ( ( ^ _ ^ ^ ) 2 + y 2 ) 2

(g; - Xf)yiz - Zu) ï ^ r ^ - j z - Z u ) ' 3r%-ix-Xf)^

r% [{ix-Xf)^+y^)-^ ^ ( ( ^ _ ^ J 2 + j / 2 ) 2

{x - Xa)yiz - Zu) \ 2>rlu - iz - Zuf 3r^„ - jx - x^ 2 1

hxy -'••iyz Z - ZQ 1'ao Z - Zu Tfu ^ Z - Z u Tau X — Xf T f o X - Xc au \" ^ui . au { X x - X a Y ^ W y iiz-ZuY^y-'f 1 y 2 ( 3 ^ 2 ^ _ ( ^ _ ^ ^ ) 2 ) -(a; - a;/)2 + 1/2 r2^(-(a; _ a.^)2 + ^^2^2 1 ^2(3^2^ _ ( ^ _ _ , ^ ) 2 j

Xx-XaY + y-" rloiix-Xaf-Vy-^Y.

1 V\^r)^ - j z - z u f )

ix-XfY^y"^ rj^iix-Xf)^ +y^)^

1 y'i3rlu-iz-zu)')

{x-XaY+y' rluiix-xaY+y'Y

1 yH3r%-ix-Xf)^)'

' ao

X y fo v-^ ^fJ J

iz-ZoY + y' " r%iiz-ZoY + y'Y_

1 ,/^3rlo-ix-Xa)^]

iz-zoY + y^ rU(z-ZoY + y^Y

(9)

X — X Xf +-y^{3r%-ix-Xfr) (z-ZuY+y^ r%i(z~ZuY+yY

1 y^3rlu-{x-xary

ran [ { z - z ^ r + y ^ r l u i i z - Z u Y + y ^ Y l2xz J y_ '''fo ' ' a o 'ƒ11 ' Ö U ^3 + „ 3

The integral h and its derivatives are:

h — arctan —arctan {z-Zo){x - Xa) yrao [Z - Za){x - Xa) — arctan {Z - Zo) yva '{z - Zu)' + arctan '{z - Zu)' . y . (A26)

y{z - Zo) y{z

-

Zu)

raoiix-Xa)^+y^) rauiix-xa)^+y^)

1

hy = -{X - Xa){z - Zo)

+ {x - Xa)iz - Zu) Z - Zo

Vaoiix - Xa)^ + y^) + ra„{{z - Zo? + 2/^) J

1 1

+

1

+

Tau{{x-Xay ^y-") Tau{{z - Zu? + y^)

Z- Zu

hz =

{z-ZoY^-y•' {z-zu)'' + y-'

y{x - Xg) y { x - X a )

+

hxx — hyy = {x-Xa)y{z-Zo){?,rlo-{z-Zo)'^) { x - X a ) y { z - Z u ) { 2 , r l , ^ - { z - Z u ) ' ' ) Tlo{{x-Xa)-'-yy^)-' ^ r l j { x - x a ) ^ + y ^ ) ^ 3 r l { z Z o ) ' i r l j x x g ) ^ -iix~xa)^+y^)^ ^ ( i z - Z o ) ^ + y ^ ) \ {X - Xa)y{z - ZQ) r ^ ' Q O jx ~ Xa)y{z - Zu)

2y{z - Zo) 2y{z - Zu)

( { z - Z o ) ' + y ^ ) ' ^ i{z-zu)^ + y^)^ Srlu-jz-zu)' 3rlu-{x-xa)' {{x-XaY + y')^^ { i z - Z u ) ^ + y T hxy — hyz Z - ZQ Tao Z — Z y^{irlo-{z-ZoY [ x - x a Y + y ' ' rlo{{x-xaY + y''Y. 1 y^2,rlu-{z-Zu)-') X Xn ' { x - X a Y + y ^ rluii^-XaY + y'Y 1 yH^rlo~ix-Xa)Y Tao X - Xa {z-ZoY+y' rlo{(z-ZoY+y^Y 1 y^3rlu-{x-XaY ' au hxz — — X z - z u Y + y ' rlu({z-zuY + y'Y j z - Z o Y - y ' j z - Z u Y - y ' { { z - z o Y + y'Y { { z - z u Y + y^Y y ' ao 'au

The integral h and its derivatives are:

Xa

T, = [ pi'^'i/" Z-ZQ Z-Zu J [ r o { { x - i Y + y^) ru{{x~iY + y^)

—OQ

(A27)

(10)

where To = ^/{x - + + {z - Zof and r „ = sj{x - ^ y''^ {z - z^Y.

/

[z - Zu){x - QjSrl - {z - ZuY) _ {z - Zo){x - OiSrl - jz - ZQY) rliix-^Y + y^Y

rli{x-0^ + y^Y

jz - zu)y{3rl ~ { z - ZuY) (z - Zo)y{3rl - jz - ZQY)

rl{{x-0'+y^Y rl{{x-0^+y^Y 1 1 0 ' U J df i-Axx —

- I

'•iyy Uxy , rl-3{x-èY , 2{TI-2{x-0') (Z — Z-u) \ c / / . O S T 8{x-0'

riiix - 0^ + ' / ) rliix - 0' + y'Y Tuiix - 0' + y'Y 8{x -

0'

-iz-zo)\ I ' r ' t : ^ . . ^ ' ^ ' - ' ^ - ^ ^

rUi^-O' + y') riiix-O' + y'Y roHx-O' + y^Y

2 > 82/2 [Z - Zu) — oo -{z - Zo) y I e'"^(/"ix-0 [iz-Zo)(^

rl-3y^ , 2{rl-2y')

Tliix-O' + y') ri{{x-0'+y'Y ru{{x-0' + y^Y 82/2

rl - 3 2 / ' ^ 2{rl

-2y^

rUi^-O'+y') rl{{x-0^ + y'Y roi{x-0'+y^Y 4 ( 3 r g - ( . - . „ n 3

^Ti{{x-CY + y'Y rU{x-0^ + y^) 3 ) / 4 ( 3 r 2 - ( . - . . n E n

/

-3j/ / e 1 1 O ' t l J I' 0 ' u

The integral w i t h respect to f in the expressions for U and its derivatives are evaluated numerically following the modified Simpson's method of Söding (1975):

Xi+2h dx ^ikxi , 2 i M / 0 - 5 / i - 2 / 2 + 1.5/3 V , kh

' y '

k^h^j (A28)

+

1 . 5 A - 2 / 2 + 0.5/3 kh

where A = /(a;i), h = fi^i + h), h = f{xi + 2h), A ^ / ^ fi - 2h + /s.

The integration interval is truncated 0.1 x (a,^ - Xa) up- and downstream of the the field point x. The wake "panel" is subdivided into a suitable number of "sub-panels" depending on the minimum distance of the field point to the wake.

The Fortran source code for the elements is available upon request by email.

Cytaty

Powiązane dokumenty

Jak wykazują wyniki tych badań, turbulizacja przepływu paliwa w korpusie rozpylacza w istotny sposób zmienia charakterystykę emisji akustycznej rozpylanego paliwa. W

Że wśród secesjonistów znajdują się nazwiska niektórych członków Gromad Ludu Polskiego, a naw et nazwisko Jakuba Majewskiego, późniejszego emisariusza Gromady

Teksty odwołują się do mistyki męki, polegającej na łączności z cierpiącym Jezusem, szczególnie powstałej w kręgu zakonnym: Mechtyldy z Magdeburga, kon- templującej

Nieco później, w roku 1963, podobną opinię wyra- ziła na łamach „Życia Literackiego” Marta Wyka: „O twórczości Adolfa Rudnickiego pisano i pisze się często i na

Wiernos´c´ dziedzictwu Jana Pawła II znajdowała wyraz w kształtowaniu przez Ksie˛dza Profesora u studentów z˙ywej s´wiadomos´ci tego, z˙e Papiez˙ Polak jako pierwszy

Dobrym punktem wyjs´cia do badan´ nad tekstem jest słowo rb w wersie 12, a które, jak sie˛ uwaz˙a, spokrewnione jest z hebr. ryb oznaczaj ˛acym „przedsie˛wzi ˛ac´

The mesoscale Hydrologic Model (mHM; Samaniego(2010)) is a distributed model which was proven to be transferable to other regions, due to the used regionalization

For a pumping cycle kitepower system, the four most important wing properties with respect to the efficien- cy of the system are the lift to drag ratio, the wing loading,.. the