• Nie Znaleziono Wyników

Left ventricular outflow tract pseudoaneurysm occlusion with fusion of live 3‑dimensional transesophageal echocardiography and fluoroscopy

N/A
N/A
Protected

Academic year: 2022

Share "Left ventricular outflow tract pseudoaneurysm occlusion with fusion of live 3‑dimensional transesophageal echocardiography and fluoroscopy"

Copied!
2
0
0

Pełen tekst

(1)

C L I N I C A L V I G N E T T E  LVOT pseudoaneurysm occlusion with 3D TEE and fluoroscopy 647 a coaxial microcatheter into the pseudoaneu‑

rysm, allowing deployment of 8 detachable coils, followed by a Medtronic Micro Vascular Plug de‑

vice used to seal the neck (FIGURE 1D). Postdeploy‑

ment angiography showed no flow into the pseu‑

doaneurysm. The total fluoroscopy time and to‑

tal radiation dose were 51.8 minutes and 340 mGy, respectively.

Transthoracic echocardiography showed nor‑

mal left ventricular size and function and no flow into the aneurysm. A repeat chest com‑

puted tomography showed decreased fluid col‑

lections anterior to the sternum and posterior between the sternum and the descending aorta, with only residual soft tissue thickening.

Percutaneous treatment, is a viable alterna‑

tive to surgery for closure of pseudoaneurysm.1,2 The size and relations of the neck of the pseudo‑

aneurysm are essential determinants for device selection. We have used the strategy of combin‑

ing packing coils within the body of the pseu‑

doaneurysm with Nitinol devices at the neck of the lesion.

Fusion of fluoroscopic and echocardio‑

graphic images on the same screen facilitates appreciation of anatomical relationships, in particular the orifice of the pseudoaneurysm and close proximity of the aortic valve.3,4 Fu‑

sion of these images with fluoroscopy made cannulation of the neck of the pseudoaneu‑

rysm straightforward and facilitated stabi‑

lization of the delivery catheter during mul‑

tiple coil and device deployment.

Three months after a Ross ‑Konno procedure, an 18‑year ‑old male patient presented to his lo‑

cal hospital with wound swelling. He had been taking warfarin postoperatively as antithrom‑

botic prophylaxis. Ten milliliters of coagulat‑

ed blood was aspirated from the wound. One month later, he presented to our emergency de‑

partment with recurrent swelling. Transthorac‑

ic echocardiography showed a pulsatile struc‑

ture anterior to the aortic root and extending laterally (Supplementary material, Figure S1A).

Computed tomography demonstrated a 2‑ to 3‑mm opening at the junction between the left ventricular outflow tract and the neo ‑aortic valve, leading to a false lumen (6.6 × 1.5 cm), po‑

sitioned on the left side of the aortic root (FIG- URE 1A; Supplementary material, Figure S1B). This pseudoaneurysm was determined to be com‑

pressing the aortic root, right ventricular out‑

flow tract, and main pulmonary artery (Sup‑

plementary material, Figure S1C). There was also a complex subcutaneous fluid collection (3.9 × 4.2 cm) anterior to the sternum.

Although no obvious connection could be identified, there was a concern for a tract be‑

tween the aneurysm and the sternal wound. Un‑

der general anesthesia, with fusion of fluoros‑

copy and 3‑dimensional transesophageal echo‑

cardiography (Supplementary material, Figure S1D) (EchoNavigator, Philips Healthcare, Best, the Netherlands), a target marker was placed to mark the entrance to the pseudoaneurysm arising from the anterolateral aspect of the left ventricular outflow tract (FIGURE 1B). This was used to position a guide catheter (FIGURE 1C) and then

Correspondence to:

Gareth J. Morgan,   Department of Cardiology,  Colorado Children’s Hospital,  University of Colorado Hospital,  13 123 East 16th Avenue, Aurora,  Colorado, 80 045, United States,  email: gareth.morgan@

childrenscolorado.org Received: March 7, 2019.

Revision accepted: April 10, 2019.

Published online: May 24, 2019.

Kardiol Pol. 2019; 77 (6): 647-648 doi:10.33963/KP.14841 Copyright by Polskie Towarzystwo  Kardiologiczne, Warszawa 2019

C L I N I C A L V I G N E T T E

Left ventricular outflow tract pseudoaneurysm occlusion with fusion of live 3‑dimensional

transesophageal echocardiography and fluoroscopy

Daniel McLennan1, Sebastian Góreczny1,2, Pei ‑Ni Jone1, Alexander Haak3, Gareth J. Morgan1 1  Department of Cardiology, Colorado Children’s Hospital, Aurora, Colorado, United States

2  Department of Cardiology, Polish Mother’s Memorial Hospital, Research Institute, Łódź, Poland 3  Philips Healthcare, Andover, Massachusetts, United States

(2)

KARDIOLOGIA POLSKA 2019; 77 (6) 648

SUPPLEMENTARY MATERIAL

Supplementary material is available at www.mp.pl/kardiologiapolska.

ARTICLE INFORMATION

CONFLICT OF INTEREST None declared.

OPEN ACCESS This is an Open Access article distributed under the terms of  the Creative Commons Attribution -NonCommercial -NoDerivatives 4.0 Internation- al License (CC BY -NC -ND 4.0), allowing third parties to download articles and share  them with others, provided the original work is properly cited, not changed in any  way, distributed under the same license, and used for noncommercial purpos- es only. For commercial use, please contact the journal office at kardiologiapol- ska@ptkardio.pl.

HOW TO CITE McLennan D, Goreczny S, Jone P, et al. Left ventricular out- flow tract pseudoaneurysm occlusion with fusion of live 3-dimensional trans- esophageal echocardiography and fluoroscopy. Kardio Pol. 2019; 77: 647-648. 

doi:10.33963/KP.14841

REFERENCES

1  Elshershari H, Gossett JG, Hijazi ZM. Percutaneous closure of left ventricular  pseudoaneurysm after Ross procedure. Ann Thorac Surg. 2008; 85: 634-636.

2  Dryżek P, Góreczny S, Moszura T, et al. Right ventricular outflow tract giant  pseudoaneurysm: percutaneous approach and complications. Kardiol Pol. 2013; 

71: 1076-1078.

3  Jone PN, Ross MM, Bracken JA, et al. Feasibility and safety of using a fused  echocardiography/fluoroscopy imaging system in patients with congenital heart  disease. J Am Soc Echocardiogr. 2016; 29: 513-521.

4  Jone PN, Haak A, Petri N, et al. Echocardiography -fluoroscopy fusion imaging  for guidance of congenital and structural heart disease interventions. JACC Cardio- vasc Imaging. 2019; pii:S1 936-878X(18)31 043-X. [Epub ahead of print].

C

B

D A

MPA Ao a

LV FIGURE 1 Computed

tomography (A) revealing the pseudoaneurysm (a), with the neck (arrow) below the level of the aortic valve (dashed line). A marker was placed at the entrance to the pseudoaneurysm just below the level of the aortic valve and projected at the fusion screen (B).

The marker facilitated cannulation (C) of the neck of the pseudoaneurysm, which was subsequently filled with coils and  a Medtronic 0Micro Vascular Plug device (arrow) (D).

Abbreviations: Ao, aorta; LV, left ventricle; MPA, main pulmonary artery

Cytaty

Powiązane dokumenty

Ocenę palenia tytoniu oraz biernego narażenia na dym ty- toniowy (ETS, environmental tobacco smoke) przeprowadzo- no, opierając się na: badaniach ankietowych (test Fa- gerströma)

Selective angiography of coronary arteries (E — left, F — right) show two coronary artery fistulas, originating from the large septal branch of the left anterior descending artery

5-year outcomes of transcatheter aortic valve replace- ment or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised

Left atrial appendage peak antegrade flow velocity measured during the procedure before (A) and minutes after (B) transcatheter aortic valve implantation with help of

Early regression of left ventricular mass associated with diastolic improvement after transcatheter aortic valve implantation.. Levy D, Garrison RJ, Savage DD, Kannel WB,

A 60 year-old patient was referred to our hos- pital with sustained monomorphic VT one month after biologic AVR (Medtronic Hancock 29 mm) and triple aortocoronary bypass surgery due

The finding of an a-dip of the aortic valve by M-mode echocardiography indi- cates that the generated left ventricular A-wave was high enough to open the aortic valve and that

C – 3‑dimensional echocardiography showing the tumor causing subtotal occlusion of the left ventricular outflow tract (white arrow); red arrow indicates the anterior mitral leaflet;