• Nie Znaleziono Wyników

Second-order wave interaction with two-dimensional floating bodies by a time-domain method

N/A
N/A
Protected

Academic year: 2021

Share "Second-order wave interaction with two-dimensional floating bodies by a time-domain method"

Copied!
11
0
0

Pełen tekst

(1)

Second-order wave interaction with

two-dimensional floating bodies by a

time-domain method

Joseph Y . T . Ng & Michael Isaacson

Department of Civil Engineering, University of British Columbia, Vancouver, B.C. Canada, V6T 1Z4

I n this paper a time-domain method is used to simulate second-order wave interactions with a large floating body in two dimensions. I n the numerical scheme adopted, a boundary integral equation method based on Green's theorem is used to calculate the velocity potential of the resulting flow field at each time step, and the second-order free-surface boundary conditions and the radiation condition of the corresponding initial-boundary value problem are treated by a time-integration scheme to obtain the development of the flow. The equations of motion of the body are solved numerically by the fourth-order R u n g e - K u t t a algorithm. The method is applied to the case of a semi-submerged circular cylinder. Numerical calculations presented include the transient m o t i o n of a freelyfloating cyhnder with a specified initial displacement, and the d i f f r a c t i o n -radiation of Stokes second-order waves by a moored floating cylinder. Important second-order wave effects associated with the hydrodynamic forces and motions of the floating structures in regular waves are highlighted. I t is found that the present approach is both computationally efficient and stable.

Key words: wave-structure interactions, hydrodynamics, floating structures, second-order solution, time-domain, wave forces.

time-stepping procedure (e.g. V i n j e & Brevig,^ Isaac-son,^ a n d C o i n t e ' ) . A n alternative n u m e r i c a l m e t h o d recently developed by Isaacson & C h e u n g ' " m a y be considered as a h y b r i d o f these t w o approaches. T h e i r m e t h o d involves T a y l o r series expansions a n d the a p p l i c a t i o n o f the Stokes p e r t u r b a t i o n procedure, a n d a t i m e - i n t e g r a t i o n scheme is used t o o b t a i n the r e s u l t i n g flow development.

M o s t previous investigations o f the related n o n l i n e a r wave r a d i a t i o n p r o b l e m i n v o l v i n g f o r c e d m o t i o n s o f a r i g i d b o d y i n otherwise s t i l l water have been f o r m u l a t e d i n the f r e q u e n c y - d o m a i n , a n d i n m o s t cases t w o - d i m e n s i o n a l bodies have been considered (e.g. P o t a s h , ' ' P a p a n i k o l a o u & N o w a c k i , ' ^ a n d K y o z u k a ' ^ ) . B y a d o p t i n g the t i m e - d o m a i n m e t h o d , the secondorder wave r a d i a t i o n p r o b l e m f o r t w o -d i m e n s i o n a l structures o f a r b i t r a r y shape u n -d e r g o i n g sinusoidal f o r c e d m o t i o n s has been presented b y Isaacson & N g . ' ' * T h e Stokes p e r t u r b a t i o n p r o c e d u r e a n d T a y l o r series expansion a b o u t the m e a n b o d y p o s i t i o n can be used t o o b t a i n the c o r r e s p o n d i n g b o d y - s u r f a c e b o u n d a r y c o n d i t i o n t o second order. I n general, the m e t h o d has been f o u n d t o be accurate, c o m p u t a t i o n a l l y efficient, a n d n u m e r i c a l l y v e r y stable. 1 I N T R O D U C T I O N

P r e d i c t i o n s o f h y d r o d y n a m i c loads a n d responses f o r large floating structures have generally been o b t a i n e d o n the basis o f linear h y d r o d y n a m i c t h e o r y w h i c h is v a l i d f o r the case o f small-ampUtude sinusoidal waves. D e t a i l reviews o f the available a n a l y t i c a l methods have been given b y W e h a u s e n , ' M e i , ^ a n d Y e u n g . ^ O v e r the past decade, researchers have focused increasingly o n the study o f n o n l i n e a r w a v e - s t r u c t u r e interactions i n order t o extend the a p p l i c a b i l i t y o f the c o n v e n t i o n a l Hnear a p p r o a c h . C o m p l i c a t i o n s o f this nonhnear p r o b l e m are t h a t the s o l u t i o n is r e q u i r e d to satisfy the t w o n o n l i n e a r free-surface b o u n d a r y c o n d i t i o n s , a n d the f o r m u l a t i o n s h o u l d i n v o l v e a correct treatment o f the r a d i a t i o n ( f a r -field) c o n d i t i o n . A survey o f previous w o r k indicates t h a t the n o n l i n e a r free-surface flow p r o b l e m can be solved b y t w o categories o f m e t h o d : one a p p r o a c h is a second-order f r e q u e n c y - d o m a i n s o l u t i o n based o n the Stokes p e r t u r b a t i o n p r o c e d u r e , (e.g. M o l i n , ' ' E a t o c k T a y l o r & Jung,^ a n d K i m & Y u e ^ ) , a n d the other is a f u l l n o n l i n e a r s o l u t i o n t o the r e s u l t i n g wave field b y a Applied Ocean Research 0141-1187/93/$06.00

(2)

96 Joseph Y.T. Ng, Michael Isaacson

T h e extension o f the second-order d i f f r a c t i o n a n d r a d i a t i o n problems to t r e a t i n g wave interactions w i t h f l o a t i n g structures is o f considerable p r a c t i c a l engineer-i n g engineer-i m p o r t a n c e . O g engineer-i l v engineer-i e ' ^ has p r o v engineer-i d e d an extensengineer-ive survey o n this subject area. T r a d i t i o n a l l y , second-order forces acdng o n fixed o r floadng bodies have been evaluated by t w o t h e o r e t i c a l approaches. T h e f a r - f i e l d m e t h o d ( M a r u o , a n d F a l t i n s e n & M i c h e l s e n ' ^ ) equates the m e a n second-order forces to the t o t a l change o f fluid m o m e n t u m flux. T h i s a p p r o a c h is restricted t o the mean components o n l y a n d is considered t o be c o m p u t a ü o n a l l y i n e f i f c i e n t f o r the v e r d c a l plane forces a n d m o m e n t s . T h e alternative near-field a p p r o a c h ( P i n k s t e r ' ^ ) involves the direct i n t e g r a t i o n o f h y d r o -d y n a m i c pressure c o n t r i b u t i o n s over the instantaneous w e t t e d b o d y surface, a n d general expressions can be derived f o r a l l h y d r o d y n a m i c f o r c e components to second order. T h i s m e t h o d has the advantage o f p r o v i d i n g physical i n s i g h t i n t o the resulting forces a n d indicates the relative significance o f each c o m p o n e n t .

I n general, the emphasis o f previous research has been o n s o l v i n g the c o r r e s p o n d i n g wave d i f f r a c t i o n and r a d i a t i o n problems separately u p t o second order using the m o r e c o n v e n t i o n a l f r e q u e n c y - d o m a i n a p p r o a c h . T h e present paper considers the second-order wave d i f f r a c t i o n - r a d i a t i o n p r o b l e m f o r a floating structure i n t w o dimensions by the t i m e - d o m a i n m e t h o d . I n order to i l l u s t r a t e the m e t h o d , n u m e r i c a l examples presented relate t o the transient m o t i o n o f a f r e e l y - f l o a t i n g cylinder i n otherwise still water, a n d the i n t e r a c t i o n o f regular waves w i t h a m o o r e d floating cylinder. I m p o r t a n t features related to the secondorder h y d r o -d y n a m i c forces a n -d m o t i o n s o f floating structures i n regular waves are discussed. W i t h suitable m o d i f i c a -tions, i t is expected t h a t the present m e t h o d can readily be extended t o the three-dimensional p r o b l e m w i t h structures o f a r b i t r a r y shape.

2 M A T H E M A T I C A L F O R M U L A T I O N

Statement of boundary value problem

T h e f u f l n o n l i n e a r w a v e - s t r u c t u r e i n t e r a c t i o n p r o b l e m d e f i n i n g the fluid m o t i o n is first considered. T h e t w o -d i m e n s i o n a l p r o b l e m , as i l l u s t r a t e -d i n F i g . 1, is -define-d w i t h respect t o t w o r i g h t - h a n d e d cartesian c o o r d i n a t e systems: one is the i n e r t i a l (space-fixed) c o o r d i n a t e system (x, z); the second is the b o d y - f i x e d c o o r d i n a t e system ( x , z ) . W h e n the b o d y is i n its e q u i l i b r i u m p o s i t i o n , the t w o sets o f c o o r d i n a t e systems are p a r a l l e l a n d the centre o f mass is located at (A'g,Zg) w i t h respect t o the i n e r t i a l c o o r d i n a t e system. T h e seabed is assumed impermeable a n d h o r i z o n t a l a l o n g the plane z = —d. Based o n the assumptions o f a homogeneous, i n v i s c i d a n d incompressible fluid, a n d an i r r o t a t i o n a l flow, the fluid m o t i o n can be described by a v e l o c i t y p o t e n t i a l 4>

y / / } / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ^ ^ ^ ^ Fig. 1. Definition sketch.

w h i c h satisfies the Laplace e q u a t i o n w i t h i n the fluid d o m a i n , together w i t h b o u n d a r y c o n d i t i o n s o n the seabed, the instantaneous wetted b o d y surface 5^^, a n d the free surface 5*5 at z = 77, where 77 denotes the f r e e surface e l e v a t i o n above the s t i l l water level. F i n a l l y , f o r a well-posed b o u n d a r y value p r o b l e m , a suitable b o u n d a r y c o n d i t i o n o n a c o n t r o l surface S^, w h i c h is located at a s u f f i c i e n t l y f a r distance f r o m the b o d y is a p p l i e d t o ensure t h a t a l l waves scattered a n d r a d i a t e d b y the s t r u c t u r e are p r o p a g a t i n g i n the o u t g o i n g d i r e c t i o n . The m a j o r difficulties o f the r e s u l t i n g m a t h e m a t i c a l p r o b l e m are associated w i t h the s o l u t i o n being r e q u i r e d t o satisfy the t w o n o n l i n e a r free-surface b o u n d a r y c o n d i t i o n s a n d the k i n e m a t i c b o d y -surface b o u n d a r y c o n d i t i o n at the f r e e -surface a n d the w e t t e d - b o d y surface, respectively, b o t h o f w h i c h are u n k n o w n a priori, as w e l l as a p o o r l y d e f i n e d r a d i a t i o n c o n d i t i o n i n the f a r - f i e l d .

C o n v e n t i o n a l l y , the m o t i o n s o f the r i g i d t w o -d i m e n s i o n a l b o -d y are -define-d i n terms o f the t r a n s l a t i o n a l m o t i o n s i n the h o r i z o n t a l a n d v e r t i c a l directions and the r o t a t i o n a l m o t i o n a b o u t the centre o f mass, namely the sway, heave a n d r o l l m o t i o n s w h i c h are d e n o t e d by f , ( a n d a, respectively. Since r o t a t i o n a l m o t i o n is considered here, the displacement vector x a n d the instantaneous u n i t n o r m a l vector N = {N^,N2) at each p o i n t [x, z) o n the b o d y surface are given b y

X = {i + x{cosa - 1) - l - z s i n a ,

C — x s i n a - f z ( c o s a — 1)) (1) N = («^. cos a + n^ sin a, —n^ sin a -\- n^ cos a) (2)

where n = ( ; j ^ , 7 ? 2 ) is the u n i t n o r m a l vector directed o u t w a r d l y f r o m the fluid region w h e n the b o d y is at rest. T h e n o r m a l v e l o c i t y o f the b o d y surface is s i m p l y given b y X • N , where a n o v e r - d o t indicates a t i m e d e r i v a t i v e . I n s t u d y i n g the m o t i o n response o f floating structures, the h y d r o d y n a m i c loads i n d u c e d by the time-dependent flow field associated w i t h wave disturbances give rise t o the structure m o t i o n s . T h e i n t e r a c t i o n involves the k i n e m a t i c b o d y surface b o u n d a r y c o n d i t i o n r e l a t i n g the fluid velocities and structure m o t i o n s as w e l l as the equations o f m o t i o n o f the structure. T h e latter are

(3)

given f o r the three modes o f m o t i o n as:

(3) where ^ = , ( , a) represents the displacement vector o f the floating b o d y , M is the mass m a t r i x , K is the s t r u c t u r a l stiffness m a t r i x , and ¥* = {F^,F^,M^) is a vector c o n t a i n i n g the t o t a l h y d r o d y n a m i c forces, w i t h F^ a n d F^ d e n o t i n g the f o r c e c o m p o n e n t s i n the x and z direcdons, respectively, a n d My d e n o t i n g the m o m e n t c o m p o n e n t i n the y d i r e c t i o n , where y is the axis perpendicular t o the v e r d c a l plane o f the t w o - d i m e n s i o n a l p r o b l e m . Since the o r i g i n o f the b o d y - f i x e d axes is c o i n c i d e n t w i t h the centre o f mass o f the b o d y , the mass m a t r i x is d i a g o n a l , w i t h the first a n d second terms given as the mass o f the structure a n d the t h i r d t e r m g i v e n b y the mass m o m e n t o f i n e r t i a a b o u t the j^-axis. T h e c o m p o n e n t s o f the sdffness m a t r i x i n c l u d e c o n t r i b u t i o n s due to the m o o r i n g system. I t is n o t e d t h a t the drag-induced viscous d a m p i n g is neglected here. F u r t h e r m o r e , and i n contrast t o the f r e q u e n c y - d o m a i n a p p r o a c h , the c o n t r i b u t i o n s o f the h y d r o d y n a m i c added mass and d a m p i n g associated w i t h the m o t i o n s o f the s t r u c t u r e , a n d o f the h y d r o s t a t i c stiffness are i n c l u d e d w i t h i n the f o r c i n g vector o n the r i g h t - h a n d side o f eqn (3).

Second-order expansion

A s s u m i n g t h a t the amplitudes o f the b o d y m o t i o n s are smaU c o m p a r e d t o a p r i n c i p a l b o d y d i m e n s i o n a n d t h a t the wave height is m o d e r a t e , the body-surface a n d free-surface b o u n d a r y c o n d i t i o n s , o r i g i n a l l y defined o n the instantaneous surfaces, m a y be expanded a b o u t the c o r r e s p o n d i n g m e a n positions b y the use o f T a y l o r series expansions: ( V ^ + X - V ( V , / . ) dz 'dt dr] d(j) drj •).N-d X - ^ o n 5b 'dz d(j) drj d(j) dr] 0 o n 5„ (4) (5) •gv-1 'dz d<p^ dl + ''' • m i 0 o n 5„ (6)

where t denotes time a n d g is the g r a v i t a t i o n a l constant. T h e b o u n d a r y c o n d i t i o n s m a y n o w be i m p o s e d o n the surface o f a time-independent geometry w h i c h includes the m e a n b o d y surface 5b a n d the still water surface Sg. F o l l o w i n g the Stokes expansion p r o c e d u r e , quantities at first a n d second order are separated b y i n t r o d u c i n g a

p e r t u r b a t i o n series f o r ^ , </> and T]: (/) = e(pi + e^(j)-^ r] = erii+ + ••• (7) + ••• (8) (9) where e is a p e r t u r b a t i o n parameter related to the wave steepness w h i c h is s m a l l , a n d the subscripts 1 and 2 indicate, respectively, components at first a n d second order. T h e first a n d second-order p o t e n t i a l s a n d the f r e e surface e l e v a t i o n are f u r t h e r decomposed i n t o i n c i d e n t wave c o m p o n e n t s a n d wave disturbance c o m p o n e n t s due to c o m b i n e d wave d i f f r a c t i o n - r a d i a t i o n effects:

0 = e(<^r + 0 f ) + £ ^ ( < / . ^ + 0 f ) + V = <v7 + v f ) + e'{7]^'+v!) + \v

(10) (11) T h e first-order p o t e n t i a l (pf corresponds s i m p l y t o a s u p e r p o s i t i o n o f solutions t o the separate linear wave d i f f r a c t i o n a n d r a d i a t i o n p r o b l e m s , whereas the second-order p o t e n t i a l comprises n o n l i n e a r wave c o m p o n e n t s due to self- a n d cross-interactions o f the first-order i n c i d e n t a n d d i s t u r b e d wave p o t e n t i a l s . I n the c o n -v e n t i o n a l f r e q u e n c y - d o m a i n m e t h o d , this gi-ves rise to a n u m b e r o f sub-problems w h i c h are considered to be algebraically tedious. H o w e v e r , i n the present a p p r o a c h all the second-order wave c o m p o n e n t s due t o wave disturbances are collectively represented b y the wave p o t e n t i a l 0 f .

U p o n s u b s t i t u t i n g the Stokes p e r t u r b a t i o n expansions f o r ^, cf) a n d r] i n t o the g o v e r n i n g L a p l a c e e q u a t i o n a n d the c o r r e s p o n d i n g b o u n d a r y c o n d i t i o n s e x p a n d e d a b o u t their m e a n positions, a n d c o l l e c t i n g terms o f equal order, the c o r r e s p o n d i n g b o u n d a r y value p r o b l e m s f o r the e a n d terms i n the p o w e r series expansions m a y be developed.

Solution to second order

T h e b o u n d a r y value p r o b l e m at each o r d e r is n o w linear a n d is f o r m u l a t e d w i t h respect to a time-independent fluid d o m a i n D b o u n d e d b y the seabed, the b o d y surface i n its e q u i l i b r i u m p o s i t i o n 5b, the still w a t e r surface a n d the c o n t r o l surface S^. I n the /cth o r d e r wave d i f f r a c t i o n - r a d i a t i o n p r o b l e m ( w i t h ^ = 1, 2 i n t u r n ) , the disturbance p o t e n t i a l satisfies the Laplace e q u a t i o n i n D

V'<P^ = 0 inD (12) a n d is subject to the b o u n d a r y c o n d i t i o n s a p p h e d o n the

seabed, the m e a n b o d y surface a n d the s t i f l w a t e r surface, given respectively as

9 ^

dz 0 a t z -d

o n Su

(13)

(4)

98 Joseph Y. T. Ng, Michael Isaacson

wave p r o p a g a t i o n (e.g. Orlanslci,'^ L e & L e o n a r d , ^ " a n d

d4

dri ,

dt grik^fk o n 5 „

(15)

(16) T h e terms f ^ , fl- a n d fl/ are given respectively as

w / i = - ^ + (^1 + + (Cl - a i ' ^ ) « z (17a) w f l dn + (il + ó-2z)n^ + ( 4 - a2x)n. dn 2 dn dsdn 2 "X dsdn (Cl - «1'^') d<p\ d(j)i dn ds + ainA Cl - ^ n , . - - ^ ? 7 . . a,n^[i:i-—n.+—n^ 7 dv'^\ ^dcPxdrji ^ ö V i dz dt r dx dx "^^'dz^ fl'=0 f 2 = -dzdt (17b) (18a) (18b) (19a) (19b)

H e r e n denotes distance i n the d i r e c t i o n o f the u n i t n o r m a l vector n, s is the t a n g e n t i a l d i r e c t i o n o n the m e a n b o d y surface as s h o w n i n F i g . 1, a n d the subscript /c indicates the p e r t u r b a t i o n order. T o account f o r the structure m o d o n s , the three equations o f m o t i o n at each order m a y be expressed i n m a t r i x f o r m as

Mék+Mk = n (20)

I n the present context, the second-order h y d r o d y n a m i c f o r c e is made u p o f the steady d r i f t f o r c e a n d o s c i l l a t o r y f o r c e at twice the first-order i n c i d e n t wave f r e q u e n c y . T h e q u a d r a t i c terms i n the second-order b o d y surface b o u n d a r y c o n d i t i o n can be i n t e r p r e t e d as corrections t o the time-dependent m o t i o n s o f the fluid-structure interface. Each secondorder f o r c i n g t e r m o n the r i g h t -h a n d side o f eqns ( 1 7 ) - ( 1 9 ) i n p r i n c i p l e can be calculated either f r o m the first-order s o l u t i o n or f r o m the Stokes second-order i n c i d e n t wave components, once the m o t i o n s o f the b o d y are o b t a i n e d f r o m the d y n a m i c analysis procedure.

W i t h respect to a p p l y i n g the b o u n d a r y c o n d i t i o n o n the c o n t r o l surface S^., the S o m m e r f e l d r a d i a t i o n c o n d i t i o n m a y be m o d i f i e d to treat the case o f unsteady

Isaacson & C h e u n g ' " ) , a n d is a p p r o x i m a t e d as:

9<Pk

dt + c dn 0 o n 5"^ (21) where c is the time-dependent celerity o f the p e r t u r b e d waves at the c o n t r o l surface. T h i s c o n d i t i o n p e r m i t s wave disturbances due to d i f f r a c t i o n - r a d i a t i o n to be t r a n s m i t t e d o u t o f the a r t i f i c i a l c o m p u t a t i o n a l d o m a i n w i t h o u t r e f l e c t i o n . B y u t i l i z a t i o n a suitable t i m e -dependent celerity o n S^, e q n (21) can then be a p p l i e d t o calculate the p o t e n t i a l at each t i m e instant o n the c o n t r o l surface.

Integral equation

U s i n g Green's second i d e n t i t y , the p o t e n t i a l at /cth o r d e r o n the surface o f the s o l u t i o n d o m a i n m a y be expressed b y the f o l l o w i n g b o u n d a r y i n t e g r a l e q u a t i o n :

i ? ( x )

T T j s ' dn

^ f ( x ' ) g ( x , x ' ) ] d 5 (22)

Here x ' represents a p o i n t ( x , z ) o n the surface S' over w h i c h the i n t e g r a t i o n is p e r f o r m e d , G is a Green's f u n c t i o n a n d n is measured f r o m the p o i n t x ' . I n the present context the surface S' w o u l d comprise the m e a n b o d y surface b e l o w the still water level, the s t i l l w a t e r surface So, the c o n t r o l surface S^ s u r r o u n d i n g the b o d y a n d the seabed. H o w e v e r , f o r the case o f constant w a t e r d e p t h , the seabed can be discarded f r o m S' b y c h o o s i n g a Green's f u n c t i o n c o r r e s p o n d i n g t o the f u n d a m e n t a l s o l u t i o n o f the Laplace e q u a t i o n a n d its image a b o u t the seabed. T h i s is

G ( x , x ' ) - £ l n ( r , ) (23) k = \

where , \ is the distance between the p o i n t s x a n d x ^ . T h e source p o i n t s x^ are defined such t h a t x'l = {x',z) is a p o i n t o n S'; a n d •s!2 — {x,-{z' + 2d)) is the r e f l e c t i n g image o f x'l a b o u t the h o r i z o n t a l seabed.

A c c o r d i n g t o the b o u n d a r y i n t e g r a l e q u a t i o n f o r m u l a t i o n , either the p o t e n t i a l or its n o r m a l derivative o n each p o r t i o n o f the b o u n d a r y S' is given f r o m the c o r r e s p o n d i n g b o u n d a r y c o n d i t i o n s , the s o l u t i o n to the i n t e g r a l eqn (22) can n o w be solved b y a n u m e r i c a l procedure f r o m w h i c h the r e m a i n i n g b o u n d a r y variables can be evaluated. I n the present a p p l i c a t i o n o f a floating structure, the c o u p l e d fluid-structure equations can be solved b y a t i m e - i n t e g r a t i o n scheme i n v o l v i n g a d i s c r e t i z a t i o n o f the surface S' a n d a suitable iterative p r o c e d u r e .

(5)

Free surface elevation and hydrodynamic forces

A f t e r s o l v i n g f o r the v e l o c i t y p o t e n t i a l , the free surface elevation to second o r d e r is calculated e x p l i c i t l y b y the d y n a m i c free surface b o u n d a r y c o n d i t i o n given b y eqn (16). F o r regular wave e x c i t a t i o n , the free surface elevation T] t o second o r d e r contains three c o m p o n e n t s

rjx, ?7o a n d 772, w h i c h are, respectively, the f i r s t - o r d e r

o s c i l l a t o r y c o m p o n e n t at the wave f r e q u e n c y , the order steady c o m p o n e n t a n d the second-o r d e r second-o s c i l l a t second-o r y c second-o m p second-o n e n t at twice the wave f r e q u e n c y . T h e expressions f o r rjx, rjo a n d 772 are given respectively as: V i = -1 fd(l>i Vo V2 Vl

dzdt I

a 9'

where ( ) denotes a time average. T h e c o m p o n e n t s 770,772 are associated, respectively, w i t h a steady set-up o r set-down o f the m e a n w a t e r level due t o the non-zero m e a n o f the free surface b o u n d a r y c o n d i t i o n s at second order, a n d an o s c i l l a t o r y v a r i a t i o n o f the free surface e l e v a t i o n at second o r d e r due t o b o t h forces a n d free waves.

T h e h y d r o d y n a m i c forces a n d m o m e n t s exerted o n the b o d y can be calculated b y c a r r y i n g o u t a direct i n t e g r a t i o n o f the d y n a m i c pressure over the i n s t a n -taneous w e t t e d b o d y surface 5 ^ . I n the present a p p l i c a t i o n , the pressure i n the fluid can be d e t e r m i n e d b y the unsteady B e r n o u l h e q u a t i o n :

0 0 1 , ,

(27)

where p is the fluid density. T o account f o r the b o d y m o t i o n s , the pressure a c t i n g o n the instantaneous b o d y surface can consistentiy be expanded a b o u t the m e a n b o d y surface b y a T a y l o r series expansion, f o l l o w e d b y the s u b s t i t u t i o n o f the p e r t u r b a t i o n series o f 0 a n d C. R e t a i n i n g terms to second order, t h i s gives

d4> 1 2

- pg[ C2 - Q2X - - a x z ] - p{Cx + oixz)

- p(Ci -

axx)

o n 5h (28)

By a direct pressure i n t e g r a t i o n , the r e s u l t i n g f o r c e a n d m o m e n t vectors are given respectively b y the i n t e g r a l s

¥ = p pNdS

My = p\ p[{z - z^)N, - [x - x^)N,]&S\

(29)

(30)

where j is the u n i t v e c t o r i n the y d i r e c t i o n . N o t e t h a t the m o m e n t is t a k e n a b o u t the centre o f mass o f t h e b o d y . T h e t o t a l h y d r o d y n a m i c forces F t o second o r d e r consists o f three f o r c e components: F j , Fg a n d F 2 , w h i c h are, respectively, the first-order o s c i l l a t o r y f o r c e at the i n c i d e n t wave f r e q u e n c y , the second-order steady f o r c e , a n d the second-order o s c i l l a t o r y f o r c e at t w i c e the wave f r e q u e n c y ; a n d are given respectively as:

— - n dS - /3g^„(Ci - a i X f j k Sh 01 (31) Fo = - ^ p ( | | ^ j V 0 i p n d 5 ^ + i p g (77, - C ] - | - a i x ) ^ n d M ' [ ( 6 + a . s (Cl - ai^-) n d ^ n d S 5, ^ " ".vk)d5j> - ^ pgA,,Zg(a?)k 1 (32) Fa = - P d 5 - p g ^ w ( C 2 - a 2 X f ) k - \ p \ \V<t>i?n&S + l-pg 2 2 t . 5 (771 - Cl +axxfndw (Cl - aix) d (I dndt wdS ndS - P ^ " 1 ("zi - « . x k ) d 5 - ^pgA,^Zga]k - F 0 (33) where ^ „ is the m e a n w a t e r p l a n e area, Xf is the x c o o r d i n a t e o f the centre o f flotation w i t h respect t o the i n e r t i a l c o o r d i n a t e system, a n d i, k denote u n i t vectors i n the X a n d z d i r e c t i o n s , respectively. F u r t h e r m o r e , the c o r r e s p o n d i n g m o m e n t c o m p o n e n t s Mxy, M^y a n d M2y

(6)

100 Joseph Y. T. Ng, Michael Isaacson

can be o b t a i n e d i n a similar m a n n e r , as s h o w n b y Isaacson & N g . ' ' * I t is m e n t i o n e d that there are alternative expressions f o r the f o r c e a n d m o m e n t c o m p o n e n t s p r o v i d e d i n the l i t e r a t u r e , a n d t h e i r differences are m a i n l y associated w i t h the d e f i n i t i o n o f the t w o f r a m e s o f c o o r d i n a t e reference a n d the assumed p o s i t i o n o f the centre o f mass.

3 N U M E R I C A L P R O C E D U R E

T h e s o l u t i o n m e t h o d o l o g y o f t r e a t i n g the b o u n d a r y integral eqn (22) a n d m a t h e m a t i c a l f o r m u l a s used i n the time-stepping scheme have been presented i n detail b y Isaacson & C h e u n g ' " i n the c o n t e x t o f the w a v e d i f f r a c t i o n p r o b l e m , a n d therefore o n l y a b r i e f s u m m a r y o f the m e t h o d is o u t l i n e d here.

Field solution

T h e surfaces S<a, a n d S^, are dlscretized i n t o finite n u m b e r s o f facets m a d e u p o f straight-line segments, a n d the c o r r e s p o n d i n g values o f 0 ^ a n d dcj^/dn are assumed constant over each facet a n d a p p h e d at the facet c e n t r o i d . T h i s enables the p r o b l e m to be f o r m u l a t e d as a m a t r i x e q u a t i o n f o r the u n k n o w n values o f a n d dcpf/dn, w i t h m a t r i x coefficients t h a t are f u n c t i o n s o f geometry o n l y , a n d a r i g h t - h a n d side i n p u t vector w h i c h contains time-dependent b o u n d a r y variables. T h u s , a m a t r i x i n v e r s i o n a n d m u l t i p l i c a t i o n is r e q u i r e d o n l y once t o o b t a i n the s o l u t i o n t o the system o f hnear algebraic equations, a n d subsequently a m u l t i p l i c a t i o n o f the r e s u l t i n g m a t r i x a n d the i n p u t vector at each time step t h e n gives the flow development. T h e i n p u t vector contains d(j)f /dn o n the b o d y surface 5),, a n d o n the c o n t r o l surface a n d the still water surface S,,- These are evaluated respectively b y the b o d y surface b o u n d a r y c o n d i t i o n s o n 5b a p p l i e d i n c o n j u n c t i o n w i t h the equations o f m o t i o n , a n d b y time-stepping procedures applied to the r a d i a t i o n c o n d i t i o n o n a n d the free surface b o u n d a r y c o n d i t i o n s o n

S^-Time-stepping scheme

T h e r a d i a t i o n c o n d i t i o n a n d the t w o free-surface b o u n d a r y c o n d i t i o n s are treated i n the m a n n e r described i n detail b y Isaacson & C h e u n g . ' " A t i m e -i n t e g r a t -i o n procedure -is appl-ied t o the a p p r o x -i m a t e r a d i a t i o n c o n d i t i o n given b y eqn (21) i n order to o b t a i n (pf o n the c o n t r o l surface S^. f r o m a n u m e r i c a l e x t r a p o l a t i o n based o n values o f (pf near 5^ a n d inside the d o m a i n at previous time steps. A d i f f e r e n t t i m e - i n t e g r a t i o n procedure is a p p l i e d t o the free-surface b o u n d a r y c o n d i t i o n s to evaluate the free-free-surface elevation qf a n d p o t e n t i a l (pf at a new time step / I -i n terms o f the k n o w n s o l u t -i o n u p t o t -i m e t. T h e f-irst-

first-o r d e r A d a m s B a s h f first-o r t h e q u a t i first-o n is a p p l i e d t first-o the k i n e m a t i c free-surface b o u n d a r y c o n d i t i o n t o o b t a i n ?/f, a n d the first-order A d a m s M o u l t o n e q u a t i o n is applied t o the d y n a m i c free-surface b o u n d a r y c o n d i t i o n to o b t a i n ( p f . F i n a l l y , the n o r m a l derivative d(pf/dn o n the e q u i l i b r i u m b o d y surface 5b is given b y the b o d y -surface b o u n d a r y c o n d i t i o n , e q n (14), i n terms o f the b o d y displacements a n d velocities, and these are o b t a i n e d b y s o l v i n g the equations o f m o t i o n e m p l o y i n g a s t a n d a r d f o u r t h - o r d e r R u n g e - K u t t a m e t h o d .

T h e wave field at the advanced t i m e t + At can n o w be o b t a i n e d b y s o l v i n g the m a t r i x e q u a t i o n w i t h a k n o w n r i g h t - h a n d side vector. I n f a c t , a n iterative process is needed t o treat the free-surface b o u n d a r y c o n d i t i o n s . T h i s is because the d y n a m i c c o n d i t i o n used t o o b t a i n (pf requires rif, a n d the k i n e m a t i c c o n d i t i o n used to o b t a i n rjf requires d(pf/dn, w h i c h is itself o b t a i n e d as a s o l u t i o n to the field e q u a t i o n . T h u s , an i n i t i a l c a l c u l a t i o n o f a l l the b o u n d a r y variables at the advanced time is c a r r i e d o u t , a n d r e f i n e d values o f 'qf are o b t a i n e d using the calculated values o f d(pf/dn. T h e successive steps can t h e n be repeated i d e n t i c a l l y w h i c h lead t o m o r e accurate values o f (pj^ o n 5b f o r h y d r o d y n a m i c f o r c e calculations. Previous c o m -p u t a t i o n a l ex-perience indicates t h a t o n l y a f e w iterations are r e q u i r e d t o achieve r a p i d n u m e r i c a l convergence a n d the c o m p u t a t i o n can t h e n proceed t o the n e x t t i m e step.

4 R E S U L T S A N D D I S C U S S I O N

Computational considerations

I n o r d e r t o d e m o n s t r a t e the present m e t h o d , n u m e r i c a l results are presented f o r a semi-submerged c i r c u l a r cylinder i n deep water w i t h its centre o f mass a t the intersection o f the still water level a n d the v e r t i c a l plane o f s y m m e t r y . Examples considered here relate to the transient m o t i o n o f a f r e e l y - f l o a t i n g cylinder i n otherwise still water, a n d the i n t e r a c t i o n o f Stokes second-order waves w i t h a m o o r e d floating cylinder.

T y p i c a l l y , a b o u t 4 0 0 - 6 0 0 facets m a d e up o f straight-line segments are used f o r the discretization o f the b o d y surface, the c o n t r o l surface a n d the s t i l l water surface. T h e influence coefficients i n the dlscretized b o u n d a r y i n t e g r a l e q u a t i o n are calculated b y a f o u r - p o i n t Gaussian i n t e g r a t i o n a n d d o u b l e p r e c i s i o n is used t h r o u g h o u t the c o m p u t a t i o n . T h e m a x i m u m t i m e step size f o r a given d i s c r e t i z a t i o n can be d e t e r m i n e d b y the C o u r a n t c r i t e r i o n . W i t h the Green's f u n c t i o n chosen t o satisfy the b o u n d a r y c o n d i t i o n o n the seabed, the seabed can be excluded f r o m the surface d i s c r e t i z a t i o n scheme leading to a substantial saving i n c o m p u t a t i o n a l costs i n terms o f the r e q u i r e d C P U t i m e a n d v i r t u a l m e m o r y storage. T o describe the m o r e r a p i d v a r i a t i o n s o f the p o t e n t i a l near the b o d y surface a n d t o speed u p the

(7)

convergence o f the n u m e r i c a l calculations w i t h o u t increasing the facet density everywhere, smaller facets are used on the b o d y surface a n d o n the nearby free surface t h a n those f u r t h e r away f r o m the b o d y surface. T h e c o m p u t a t i o n s r e p o r t e d here were p e r f o r m e d o n an I B M 3090/150S c o m p u t e r at the U n i v e r s i t y o f B r i d s h C o l u m b i a . A s a n i n d i c a t i o n o f the c o m p u t a t i o n a l e f f o r t r e q u i r e d , a p r o b l e m i n v o l v i n g 500 facets t y p i c a l l y requires a C P U t i m e o f a b o u t 40 seconds f o r setting u p a n d s o l v i n g the m a t r i x e q u a t i o n , and a b o u t 10 seconds f o r the flow c o m p u t a t i o n over 100 t i m e steps.

I n o r d e r to m i n i m i z e adverse transient effects related t o an a b r u p t i n i d a l e o n d i d o n a n d aUow a g r a d u a l d e v e l o p m e n t o f the r e s u l t i n g wave field, the n o r m a l d e r i v a t i v e o f the i n c i d e n t wave p o t e n t i a l o n the r i g h t -h a n d side o f eqn (14), w -h i c -h corresponds t o t-he b o d y surface b o u n d a r y c o n d i t i o n , a n d the h y d r o d y n a m i c pressure forces exerted o n the b o d y surface are m u l t i -p l i e d b y a m o d u l a t i o n f u n c t i o n w h i c h increases g r a d u a l l y f r o m zero to u n i t y over a specified m o d u l a -t i o n -t i m e (Isaacson & C h e u n g ' " ) . I n effec-t, -the i m m e r s e d b o d y surface g r a d u a l l y materiahzes a n d the d y n a m i c pressure o f the s u r r o u n d i n g fluid is s l o w l y established over the m o d u l a t i o n t i m e . I n the results r e p o r t e d here, a m o d u l a t i o n time T^ — 2T, where T denotes the incident wave p e r i o d , is a d o p t e d t o p r o v i d e a stable and s m o o t h development o f the steady state s o l u t i o n a f t e r the d u r a t i o n o f the m o d u l a t i o n .

Transient motion of a freely-floating cylinder

T h e unsteady free surface flow p r o b l e m r e l a t i n g t o the transient heave m o t i o n o f a f r e e l y floating c y l i n d e r w i t h a specified i n i t i a l displacement has been the subject o f a n u m b e r o f a n a l y t i c a l investigations (e.g. M a s k e f l & U r s e f l , ^ ' Yeung^^ a n d Lee & Leonard^") based o n a l i n e a r i z e d p o t e n t i a l flow t r e a t m e n t . T h i s transient p r o b l e m extended t o second order has been used as a p r e l i m i n a r y test case o f the present t i m e - d o m a i n a p p r o a c h p r i o r t o t r e a t i n g the m o r e general case o f a floating b o d y i n waves. Since the r a d i a t e d waves generated by the b o d y m o t i o n s are unsteady, the celerity o f the o u t w a r d p r o p a g a t i n g waves at the c o n t r o l surface is determined n u m e r i c a l l y at each t i m e step. F u r t h e r m o r e , f o r this p r o b l e m the m o d u l a t i o n f u n c t i o n is n o t needed, a n d the i n i t i a l c o n d i t i o n is t a k e n t o c o r r e s p o n d t o zero v e l o c i t y p o t e n t i a l everywhere, a specified i n i t i a l v e r t i c a l b o d y displacement, a n d zero i n i t i a l v e l o c i t y .

F i g u r e 2 shows calculated time histories o f the heave m o t i o n a n d the vertical h y d r o d y n a m i c f o r c e c o m p o n e n t s o n the c y l i n d e r f o r case c o r r e s p o n d i n g to 1^1/0 = 0 - 1 , rf/fl=10-0 and Ljd=A-0, where \A\, a a n d are respectively the i n i t i a l v e r t i c a l displacement o f the c y l i n d e r , the radius o f the c y l i n d e r , a n d the h o r i z o n t a l length o f the c o m p u t a t i o n a l d o m a i n . N o t e t h a t t h e c y l i n d e r axis is situated at x/L = 2-0. F o r _]0 I 1 1 1 \ . 1 1 I I I 1 1 0.0 1.0 2.0 3.0 4.0 B.0 6.0 -1.5 0.0 1.0 2.0 3.0 4.0 5.0 6.0 t / T

Fig. 2. Development with time of vertical displacement and vertical hydrodynamic force components for a semi-submerged circular cylinder undergoing transient heave motions with \A\/a = OT and d/a = 10-0. , solution to first order; , solution to second order; , second-order

component.

convenience, t i m e / is n o r m a h z e d w i t h respect t o y V ö / g w h i c h is associated w i t h the n a t u r a l p e r i o d o f the c y l i n d e r i n heave. T h e present first-order s o l u t i o n o f the displacement gives excellent agreement w i t h the c o r r e s p o n d i n g results o f M a s k e l l & U r s e l l , ^ ' such t h a t t h e i r results o v e r l a p f u l l y w i t h the first-order p l o t i n the figure a n d hence are n o t s h o w n . N o t e t h a t the t i m e between each successive zero upcrossing o f the heave m o t i o n a n d the c o r r e s p o n d i n g h y d r o d y n a m i c force varies shghtly, i n accordance w i t h the unsteady features o f the m o t i o n . T h e figure also indicates t h a t differences between the first a n d second-order solutions are h a r d l y distinguishable f o r this case, so t h a t errors caused b y neglecting the second-order s o l u t i o n t o the i n i t i a l - b o u n d a r y value p r o b l e m w o u l d be m i n i m a l .

T h e development w i t h t i m e o f the c o r r e s p o n d i n g free-surface p r o f i l e s t o second order is s h o w n i n F i g . 3. T h e unsteady r a d i a t i o n w a v e m o t i o n s c o n t i n u o u s l y t r a n s m i t energy away f r o m the c y l i n d e r a n d , i n t u r n , d a m p o u t the h a r m o n i c b o d y m o t i o n s . I n contrast t o the results f o r the case o f a c y l i n d e r u n d e r g o i n g f o r c e d sinusoidal m o t i o n s r e p o r t e d earlier b y Isaacson & N g , ' ' ' i n w h i c h substantial second-order effects can be observed, the c o n t r i b u t i o n o f the second-order wave c o m p o n e n t s t o the free surface elevation, i n the present case, is f o u n d to be i n s i g n i f i c a n t .

Wave interaction with a moored floating cylinder

N u m e r i c a l results i n c l u d i n g h y d r o d y n a m i c forces a n d m o t i o n responses t o second o r d e r are presented f o r a m o o r e d semi-submerged c i r c u l a r c y l i n d e r subject t o deep water regular waves. T o the a u t h o r s ' k n o w l e d g e , such results have n o t yet been r e p o r t e d . H o w e v e r , the c o r r e s p o n d i n g first a n d second-order results o b t a i n e d b y the time-domain m e t h o d f o r wave d i f f r a c t i o n (Isaacson & C h e u n g ' " ) a n d w a v e r a d i a t i o n (Isaacson & N g ' ' ' ) have recently been c o m p a r e d w i t h p u b l i s h e d t h e o r e t i c a l a n d e x p e r i m e n t a l data a n d i n d i c a t e excellent agreement. F o r

(8)

102 Joseph Y.T. Ng, Michael Isaacson t/T = 7.4 t/T = 2.6 t/T = 1.0 t/T = 0.2 0 1 2 3 4 x / d

Fig. 3. Development w i t h time o f free surface profiles to second order for a semi-submerged circular cylinder undergoing transient heave motions with |.4|/a = 0T and c?/a=10-0.

Successive profiles are at times 0-4 T apart.

s i m p l i c i t y , the c y l i n d e r m o t i o n is c o n s t r a i n e d i n the x d i r e c t i o n b y a p a i r o f hnear h o r i z o n t a l springs l o c a t e d at the s t i l l w a t e r level a n d w i t h a c o m b i n e d e q u i v a l e n t stiffness k = {•K/2)pga. W i t h this p a r d c u l a r c o n f i g u r a -d o n , r o t a -d o n a l m o -d o n s i n -d u c e -d b y the m o m e n t c o m p o n e n t s v a n i s h and are therefore n o t considered i n the c o m p u t a t i o n . T h e i n c i d e n t waves c o r r e s p o n d t o a Stokes secondorder wave t r a i n inside the c o m -p u t a d o n a l d o m a i n , and the m o d u l a t i o n f u n c t i o n is used t o p r o v i d e the i n i t i a l c o n d i t i o n s a n d the i n i t i a l d e v e l o p m e n t o f the f l o w .

F i g u r e 4 shows the d e v e l o p m e n t w i t h time o f the free surface p r o f i l e s t o f i r s t a n d second o r d e r f o r

i/a/g = 0-4, A/a = 0-3 a n d deep w a t e r , where u> a n d A are, respectively, the angular f r e q u e n c y a n d a m p l i t u d e

o f the first-order i n c i d e n t wave t r a i n . T h e c y l i n d e r is located at the centre o f the d o m a i n w i t h h o r i z o n t a l l e n g t h o f AL, where L is the w a v e l e n g t h o f the i n c i d e n t wave t r a i n . I n the figure, a steady state is a t t a i n e d f o r the f u l l y developed wave field a f e w cycles a f t e r the m o d u l a t i o n t i m e , and the secondorder wave c o m -ponents associated w i t h the f o r c e d a n d free waves are observed to be c o n c e n t r a t e d near the c y l i n d e r . I n a d d i t i o n , the u p w a v e r e g i o n i n w h i c h i n c i d e n t a n d p e r t u r b e d waves p r o p a g a t e i n opposite directions is characterized b y the presence o f s t r o n g second-order wave effects. Since the i n c i d e n t a n d p e r t u r b e d waves i n the d o w n w a v e r e g i o n are o u t o f phase a n d p r o p a g a t e i n the same d i r e c d o n , the r e s u l t i n g wave a m p l i t u d e a n d the related second-order c o m p o n e n t s are relatively s m a l l . I n the deep water case considered here, the free wave

' i ' :

^ ^ t / T = 3 — y

1 . 1 , 1 .

1 — ' 1 — >

1 . 1 , 1 .

Fig. 4. Development with time of free surface profiles f o r a moored semi-submerged circular cylinder in waves f o r

iJa/g = 0-4, A/a = 0-3 and deep water. , solution to

first order; , solution to second order.

system is expected to be the d o m i n a n t second-order wave c o m p o n e n t .

F i g u r e 5 shows d e v e l o p m e n t w i t h t i m e o f the h o r i z o n t a l a n d v e r t i c a l m o t i o n s (denoted b y ^ a n d C respectively) a n d the c o r r e s p o n d i n g h y d r o d y n a m i c f o r c e c o m p o n e n t s ( d e n o t e d b y a n d F^ respectively) t o first a n d second o r d e r f o r the same c o n d i t i o n s , u/a/g = 0-4,

A/a = 0-3 a n d deep water. A s i n d i c a t e d i n the figure, the

b o d y m o t i o n s a n d the h y d r o d y n a m i c forces are m o d u l a t e d t o suppress the transient effects associated w i t h the i n i t i a l c o n d i t i o n s , a n d a second-order steady state s o l u t i o n is g r a d u a l l y developed over a reasonably s h o r t d u r a t i o n a f t e r the f u l l i m p o s i t i o n o f the b o d y -surface b o u n d a r y c o n d i t i o n . I n this p a r t i c u l a r case, the second-order c o m p o n e n t s c o n t r i b u t e s i g n i f i c a n t l y t o the t o t a l v e r t i c a l h y d r o d y n a m i c f o r c e a n d the c o r r e s p o n d i n g

Fig. 5. Development with time of the motion response and hydrodynamic force components f o r a moored semi-sub-merged circular cylinder i n waves for u/a/g = 0-4, A/a = 0-3 and deep water. , solution to first order; , solution

(9)

heave m o t i o n . O n the other h a n d , the amplitudes o f the second-order force components i n the x d i r e c t i o n an the r e s u l t i n g sway responses are relatively s m a l l c o m p a r e d w i t h those o f the first-order s o l u t i o n . I t is seen t h a t the h o r i z o n t a l d r i f t f o r c e a n d the r e s u l t i n g steady m o t i o n are i n the d i r e c t i o n o f wave p r o p a g a t i o n as expected, w h i l e their v e r t i c a l counterparts are i n the negative z d i r e c t i o n .

F i g u r e 6 shows the a m p l i t u d e a n d phase angle o f the first-order o s c i l l a t o r y f o r c e i n the h o r i z o n t a l a n d v e r t i c a l directions as f u n c t i o n s o f dimensionless wave f r e q u e n c y

uP'alg

f o r a semi-submerged c i r c u l a r c y l i n d e r i n deep water. I n order t o c o n f i r m these results, c o r r e s p o n d i n g first-order results have also been o b t a i n e d f r o m a f r e q u e n c y - d o m a i n s o l u t i o n o f the equations o f m o t i o n using added masses, d a m p i n g coefficients a n d wave-exciting forces o b t a i n e d f r o m the l i t e r a t u r e (e.g. D e a n & Ursell,^^ Vugts,^'' and Nestegard & Sclavounos^^). These results are i d e n t i c a l to those o f F i g . 6 a n d hence are n o t i n c l u d e d i n the figure. T h e first-order h o r i z o n t a l h y d r o d y n a m i c f o r c e is seen t o a p p r o a c h zero w h e n the dimensionless frequency u^ajg = TO, c o r r e s p o n d i n g t o the surge n a t u r a l frequency (defined w i t h the added mass excluded). T h e c o r r e s p o n d i n g phase angle t h e n undergoes a s h i f t o f ir. These features m a y readily be explained b y considering the e q u a t i o n o f m o t i o n i n the h o r i z o n t a l d i r e c t i o n , b e a r i n g i n m i n d t h a t wave r a d i a t i o n d a m p i n g is i n c l u d e d i n the h y d r o d y n a m i c f o r c e a n d t h a t the s t r u c t u r a l stiffness is p r o v i d e d solely b y the h o r i z o n t a l m o o r i n g lines. I n a s i m i l a r manner, the first-order vertical h y d r o d y n a m i c f o r c e approaches the

2.5

. g o I : ^ ' 1 ' 1 ' ' ' '

0.0 0.4 O.B 1.2 1.6 2.0 ua/g

Fig. 6. Amplitude and phase angle of first-order oscillatory forces on the cylinder as functions of u/a/g. • , horizontazl

component; O , vertical component.

h y d r o s t a t i c r e s t o r i n g f o r c e at the heave n a t u r a l f r e q u e n c y . F o r s m a l l values o f o?a/g, i t is i n d i c a t e d t h a t the first-order v e r t i c a l h y d r o d y n a m i c force is o u t o f phase w i t h the free surface elevation.

F i g u r e 7 presents the second-order h o r i z o n t a l a n d vertical d r i f t forces as f u n c t i o n s o f u^a/g f o r a semi-submerged c i r c u l a r cylinder i n deep water. I t is evident t h a t the h o r i z o n t a l d r i f t f o r c e always acts i n the d i r e c t i o n o f wave p r o p a g a t i o n , as first s h o w n b y M a r u o . F o r the floating cylinder considered here, the v e r t i c a l d r i f t f o r c e acts d o w n w a r d s and is p r i m a r i l y due t o negative d y n a m i c pressure associated w i t h the v e l o c i t y squared t e r m i n the B e r n o u l h e q u a t i o n . F u r t h e r m o r e , its m a g n i t u d e increases r a p i d l y w i t h w a v e f r e q u e n c y to a peak and then reduces to a f a i r l y m o d e s t value at h i g h wave frequencies. N o t e t h a t the h o r i z o n t a l a n d v e r t i c a l d r i f t f o r c e components are counteracted, respectively, by the m o o r i n g line r e s t o r i n g f o r c e and the second-order f o r c e due t o the h y d r o s t a t i c stiffness, a n d these together give rise t o the c o r r e s p o n d i n g steady d r i f t m o t i o n s .

T h e a m p l i t u d e a n d phase angle o f the c o r r e s p o n d i n g second-order o s c i l l a t o r y force i n the h o r i z o n t a l a n d v e r t i c a l directions as f u n c t i o n s o f u?a/g are presented i n F i g . 8. I n this case, the h o r i z o n t a l second-order o s c i l l a t o r y f o r c e approaches zero at Lo^a/g = 0-25, c o r r e s p o n d i n g t o a wave f r e q u e n c y o f h a l f the n a t u r a l f r e q u e n c y , a n d associated w i t h the second-order f o r c i n g o c c u r r i n g at twice the i n c i d e n t wave f r e q u e n c y . F o r higher w a v e frequencies, b o t h the h o r i z o n t a l a n d v e r t i c a l second-order o s c i l l a t o r y components increase steadily w i t h u?a/g.

C o r r e s p o n d i n g results r e l a t i n g t o the c y l i n d e r m o t i o n s are s h o w n i n Figs 9 - 1 1 . F i g u r e 9 shows the a m p h t u d e a n d phase angle o f the first-order o s c i l l a t o r y sway a n d heave response as f u n c t i o n s o f u^a/g. T h e heave m o t i o n exhibits v i r t u a l l y n o d y n a m i c a m p l i t u d e at s m a l l values o f u?a/g a n d is then i n phase w i t h the i n c i d e n t w a v e c o m p o n e n t , as expected. A s i n d i c a t e d i n the figure, the a m p l i t u d e s o f the sway a n d heave m o t i o n s , b o t h o f w h i c h e x h i b i t a s i m i l a r t r e n d , increase w i t h increasing

1.0 I ^ r

0.0 0.4 O.a 1.2 1.6 2.0

Fig. 7. Magnitude of second-order drift forces on the cylinder as functions of u?alg. • , horizontal component; O , vertical

(10)

104 Joseph Y. T. Ng, Michael Isaacson

0.0 0.4 1.6 2.0

Fig. 8. Amplitude and phase angle of second-order oscillatory forces on the cylinder as functions o f u/a/g. # , horizontal

component; O , vertical component.

Fig. 10. Magnitude o f second-order d r i f t motion response o f the cyhnder as functions of i^/a/g. 9, sway; O , heave. values o f uP'a/g to d i f f e r e n t peak values a n d d r o p o f f steadily at h i g h wave frequencies. Once again, cor-r e s p o n d i n g cor-results have been o b t a i n e d o n the basis o f a f r e q u e n c y - d o m a i n a p p r o a c h . These are i d e n t i c a l w i t h those o f F i g . 9 a n d hence are n o t i n c l u d e d i n the figure.

F i g u r e 10 shows the c o r r e s p o n d i n g m a g n i t u d e o f the second-order d r i f t sway a n d heave response as f u n c t i o n s

ofo/a/g. T h e results indicate t h a t the second-order d r i f t

m o d o n s e x h i b i t s i m i l a r trends to those o f the cor-r e s p o n d i n g d cor-r i f t f o cor-r c e c o m p o n e n t s , as expected. T h e m e a n sway response is caused by the h o r i z o n t a l d r i f t f o r c e a n d corresponds t o a constant offset i n the p o s i d v e

X d i r e c t i o n , whereas the mean heave response is i n d u c e d

(11)

set-down o f the cylinder. F i n a l l y , F i g . 11 shows the a m p l i t u d e a n d phase angle o f the c o r r e s p o n d i n g second-order oscillatory sway and heave response. I n the f i g u r e , the amplitudes o f the second-order o s c i l l a t o r y sway a n d heave response e x h i b i t considerable v a r i a d o n s over the f r e q u e n c y range o f interest. F u r t h e r m o r e , the t r e n d o f the second-harmonic heave response appears t o be s i m i l a r to that o f v e r t i c a l second-order o s c i l l a t o r y f o r c e f o r relatively l o w wave frequencies.

5 C O N C L U S I O N S

A t i m e - d o m a i n second-order m e t h o d has been extended to study n o n l i n e a r wave interactions w i t h a large floating structure o f a r b i t r a r y shape i n t w o d i m e n -sions. The resulting flow development a n d structure m o d o n s t o second order are o b t a i n e d by a time-stepping scheme, i n w h i c h the field s o l u t i o n at each t i m e step is calculated b y a b o u n d a r y i n t e g r a l e q u a t i o n m e t h o d based o n Green's t h e o r e m . Steady state solutions are a t t a i n e d over a r e l a t i v e l y short d u r a t i o n t h r o u g h a g r a d u a l i m p o s i t i o n o f the b o d y surface b o u n d a r y c o n d i t i o n . The present t i m e - d o m a i n m e t h o d provides a relatively algebraically s t r a i g h t f o r w a r d a n d c o m -p u t a t i o n a l l y effective n u m e r i c a l a l g o r i t h m f o r t r e a t i n g the second-order d i f f r a c t i o n - r a d i a t i o n p r o b l e m i n r e l a t i o n t o c o n v e n t i o n a l f r e q u e n c y - d o m a i n m e t h o d s .

T h e m e t h o d is a p p l i e d to the case o f a semi-submerged circular c y l i n d e r i n deep water, b o t h f o r the transient m o t i o n o f a f r e e l y - f l o a t i n g c y l i n d e r i n otherwise still water, as w e l l as the i n t e r a c t i o n o f Stokes second-order waves w i t h a m o o r e d c y l i n d e r . T h e results indicate t h a t n o substantial second-order w a v e effects are present i n the predicted f r e e b o d y m o t i o n s . I n the general case o f a m o o r e d floating b o d y i n regular waves, s i g n i f i c a n t second-order f o r c e a n d m o t i o n components are developed at c e r t a i n wave frequencies. The a p p l i c a t i o n o f the m e t h o d to three-d i m e n s i o n a l p r o b l e m s m a y r e a three-d i l y be achievethree-d o n the same basis.

R E F E R E N C E S

1. Wehausen, J.V., The motion of floating bodies. Annual Review of Fluid Mechanics, 3 (1971) 237-68.

2. M e i , C.C., Numerical methods in water-wave diffraction and radiation. Annual Review of Fluid Mechanics, 10 (1978) 393-416.

3. Yeung, R.W., Numerical methods in free-surface flows. Annual Review of Fluid Mechanics, 14 (1982) 395-442. 4. M o l i n , B., Second-order diffraction loads upon

three-dimensional bodies. Apphed Ocean Research, 1(4) (1979) 197-202.

5. Eatock Taylor, R. & Hung, S.M., Second order diflfraction forces on a vertical cylinder in regular waves. Applied Ocean Research, 9(1) (1987) 19-30.

6. K i m , M . H . & Yue, D.K.P., The complete second-order diffraction solution for an axisymmetric body. Part 1. Monochromatic incident waves. Journal of Fluid Mechanics, 200 (1989) 235-64.

7. Vinje, T. and Brevig, P., Nonlinear ship motions. Proceedings of the 3rd International Conference on Numerical Ship Hydrodynamics, Paris, France, 1981, pp. 257-68.

8. Isaacson, M . , Nonlinear wave eff'ects on fixed and floating bodies. Journal of Fluid Mechanics, 120 (1982) 267-81. 9. Cointe, R., Nonlinear simulation of transient free surface

ffows. Proceedings of the 5th International Conference on Numerical Ship Hydrodynamics, Hiroshima, Japan, 1989, pp. 239-50.

10. Isaacson, M . & Cheung, K . F . , Second-order wave diffraction around two-dimensional bodies by time-domain method. Applied Ocean Research, 13(4) (1991) 175-86.

11. Potash, R . L . , Second-order theory o f oscillating cylinders. Journal of Ship Research, 15(4) (1971) 295-324.

12. Papanikolaou, A . & Nowacki, H . , Second-order theory of oscillating cylinders i n a regular steep wave. Proceedings of the 13th Symposium on Naval Hydrodynamics, Tokyo, Japan, 1980, pp. 303-33.

13. Kyozuka, Y . , Non-linear hydrodynamic forces acting on two-dimensional bodies (2nd report, radiation problem). Journal of the Society of Naval Architects of Japan, 149 (1980) 47-53.

14. Isaacson, M . & N g , J.Y.T., Time-domain second-order wave radiation i n two dimensions. Journal of Ship Research (in press).

15. Ogilvie, T.F., Second-order hydrodynamic effects on ocean platforms. Proceedings of the International Workshop on Ship and Platform Motions. Berkeley, California, 1983, pp. 205-65.

16. Maruo, H . , The d r i f t of a body floadng in waves. Journal of Ship Research, 4(3) (1960) 1-10.

17. Faltinsen, O . M . & Michelsen, F.C., Motions of large strutures in waves at zero Froude number. Proceedings of the International Symposium on Dynamics of Marine

Vehicles and Structures in Waves, London, 1974, pp. 91-106.

18. Pinkster, J.A., Mean and low frequency wave drifting forces on floating structures. Ocecm Engineering, 6 (1979) 593-615.

19. Orlanski, I . , A simple boundary condition for unbounded hyperbolic ffows. Journal of Computational Physics, 21 (1976) 251-69.

20. Lee, J.F. & Leonard, J."W., A time-dependent radiation condition f o r transient wave-structure interactions. Ocean Engineering, 14(6) (1987) 469-88.

21. Maskell, S.J. & Ursell, F., The transient m o t i o n o f a floating body. Journal of Fluid Mechanics, 44 (1970) 303-13.

22. Yeung, R.W., The transient heaving motion o f ffoating cylinders. Journal of Engineering Mathematics, 16 (1982) 97-119.

23. Dean, R . G . & Ursell, F., Interaction of a fixed, semi-immersed circular cylinder with a train of surface waves. Hydrodynamic Laboratory, M . I . T . , Cambridge, Massachusetts, 1959, Technical Report N o . 37.

24. Vugts, J.H., The hydrodynamic coefficients f o r swaying, heaving and rolling cylinders i n a free surface. International Shipbuilding Progress, 15 (1968) 251-76. 25. Nestegard, A . & Sclavounos, P.D., A numerical solution

of two-dimensional deep waver wave-body problems. Journal of Ship Research, 28(1) (1984) 48-54.

Cytaty

Powiązane dokumenty

То есть Достоевский не столько отказался от учительства Го- голя (основателя «натуральной школы»), сколько создал свой «порождающий миф», который

на основании результатов опроса и вопреки выводам петрухи- ной глаголы греть — обогревать, фильтровать — профильтро- вывать, паковать —

Hipotezy te uszczegóławiają problem, odnosząc wzrost wyniku finansowego i przychodów podmiotów trzeciego sektora do takich zjawisk, jak doświadcze- nie na rynku,

Należy jed- nak podkreślić, że w europejskich systemach prawnych fundamentalna zasada dobra dziecka jest stawiana w centrum aksjologii prawa rodzinnego, podczas gdy

A short introduction that deals with the EAE and technical remarks opens the text of the publication, while its second section contains the, in most cases, fragmentary text of

На відміну від безпосередніх комунікативних мереж, соціальні мережі інтернет-простору мають додаткові власти- вості

У сфері адміністративної відповідальності виділяють також підставу проце- суальну, тобто акт компетентного суб’єкта про

Oczywiście zasłużył on na o wiele bardziej dosadną krytykę i zgodzić się należy, że już na tym etapie Tatar mógł być inspirowany przez sowieckie służby, niemniej jednak