• Nie Znaleziono Wyników

H in strong electric field

N/A
N/A
Protected

Academic year: 2021

Share "H in strong electric field"

Copied!
23
0
0

Pełen tekst

(1)

H in strong electric field

𝑝!" + 𝑝#"

2 − E u" + v" + 𝐹 𝑢$ − 𝑣$

2 Ψ = 2Ψ the semi-parabolic coordinates 𝑢 = 𝑟 + 𝑧, 𝑣 = 𝑟 − 𝑧

(2)

Hydrogen

– the diamagnetic term

Presuming 𝐵 along z-direction.

!!

"# ⃗𝑟×𝐵 $ = "&%! B$(x$ + y$)

With atomic units ℋ = '$! () + *"! 𝑥$ + 𝑦$ + *$ 𝐿+ where, 𝛾 = ,,

" with 𝐵- = 2.35 ⋅ 10.𝑇 . Effect negligible for n~1. But for n~50

Diamagnetism as 1st order perturbation for 𝐿+ = 0 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑙𝑖𝑓𝑒 𝑠𝑖𝑚𝑝𝑙𝑒𝑟 Using Hellmann-Feynman theorem. /0/1 = 𝜓 /ℋ/1 𝜓

As /*/0! ∼ 𝜓 𝑥$ + 𝑦$ 𝜓 the energy changes in a linear fashion ∝ 𝛾$.

All levels upwards; states localized far from the Oz axis most affected With the observation that ℋ = '$! () + *"! ⟨𝑥$ + 𝑦$

Sph.(−$3(!) Cylindrical symmetry. ∼ 𝛾$𝑛4

(3)

When both symmetries compete à the onset of Chaos.

Scaling possible ⃗𝑟% = 𝜆 ⃗𝑟, ⃗𝑝% = 𝜆&!" ⃗𝑝, 𝐸% → 𝜆&'𝐸, 𝛾 → 𝜆&#"𝛾 leads to:

ℋ = 𝜆 𝑝%"

2 1

𝑟% + 𝛾"𝜆&(

8 𝑥′" + 𝑦′"

With 𝜆&(𝛾" = 1,

E/ 𝜆 =E 𝛾&"/( = 𝜖 = *"" +'$ + ', 𝑥" + 𝑦"

𝜖

(4)
(5)

Poincare surface of section:

Basic atomic physics 2021

This classical transition to chaos manifests itself in the properties of quantum spectra

(6)

Multi-electron atoms: non-Coulombian potential (central)

• when?

some multi-electron atoms (e.g. alkali) have 1 electron

with average distance from the nucleus >> than the distances of other electrons,

F

valence el. and atomic shell Different states of such an atom;

has generally different valence el. trajectories.

with the shell unchanged

the electron "feels" the potential of el-stat. from the charge of the nucleus + Ze (Z = num. of protons) and from the charge of - (Z-1)e atomic shell

® the resulting effective potential from the shell has charge + e in the center, possible calculations as for a hydrogen atom

with potential V (r) = -(1/4pe ) (e / r)

Possible situations:

- e + Ze -(Z-1) e

1) orbit not penetrating the shell

(7)

7/ 19

Penetration:

• small - circular orbits (large l)

• large - elongated orbits - elliptical (small l) (exception l= 0)

2) orbit penetrating

outside potential potential inside

constant is selected so as to match the potentials int. and ext. @ r =r

r V e

4 0

1

= pe 4 .

1

0

const r

V = Ze + pe

shell (valence electron penetrates the shell)

sodium

shell

|Y(r) |2

Additionally

u change with distance

® orbit precession

Basic atomic physics 2021

(8)

in Quantum Mech. no clas. orbits

→ description by Schrödinger eqn. using potential Energy

values from to

W (r) = qV = -eV

exact calculations difficult® model potentials ®calculate numerically simple, analytical model potential:

÷ø ç ö

èæ + -

r r

1 1 .

7 .

÷ø ç ö

èæ +

÷ = ø ç ö

èæ +

= -

r b r

C r

b r

r e

W 1 1

4 ) 1 (

2

pe0

r r Ze

W

2

4 0

) 1

( pe

= -

r r e

W

2

4 0

) 1

( pe

= -

V(r)

.2 .4

r

r - Ze r

-e

0

-100

-200

The choice of b allows one to

glue the potential in different

regions

(9)

9/ 19

Schrödinger Eqn. with model potential

potential V(r) still central - possible wave separation (as for hydrogen):

Y(r,q,j) = R (r) Y (q,j), substitute c(r) º r R (r)

0 )

) ( 1 1 (

2 2

) (

2 2

2 2

2 úû =

ê ù ë

é ÷ - +

ø ç ö

èæ + -

+ r

r l l r

b r

E C r

d r

d c µ µ c

!

!

0 )

) ( 1 (

) (

2 2

2 =

úûù êëé - - +

+ r

r l l r

A B r

d r

d c c

analogous to the hydrogen equation:

(

+ +1

)

2

-

= *

p l

E Rhc

n

(

l pRhc1

)

2 nRhc2

En

= - +

+

= -

= -

*2

n E Rhc

n

n*= n - Dl -effective

main quantum num., Dl = l - l* - quantum defect

Basic atomic physics 2021

(10)

Quantum defect D l = l - l

*

Coulomb potential non-Coulomb potential

(hydrogen atom) (alkaline atoms)

n2

E Rhc

n

= - 2 2

) (n l

Rhc n

En Rhc

D -

= -

= -

*

l*(l*+1) = (l - Dl) (l - Dl +1) º l (l + 1) - Bb

Dl2 - 2 l Dl - Dl = - Bb, if b << 1, (D l)2 << Dl then

2 0 1

1 1

2 a

b l

l l Bb

= +

» + D

2

21 0

, 1

÷÷ ø ö çç

è æ

- +

= -

l a n b E Rhc

l n

For potential C (1 + b / r) / r degeneracy in l removed

* it makes sense to label the energy levels. by a pair of numbers n, l,

* degeneracy of hydrogen levels due to l is accidental because it only occurs for Coulomb potential (related to the shape 1 / r, and not related to

more fundamental properties e.g. the spherical symmetry. of central potential.)

(11)

11/ 19 3s

3p

3d

1 2 3 4

l = 0

5s

5d 5f 5g

5p 4s

4p

4d 4f n =¥

-13.6 -3.4 -1.51 -0.85 0

E [eV] l = 0 1 2 3 4

n = 1 n = 2 n = 3 n = 4

hydrogen sodium

Sodium and hydrogen

(electrons from n = 1 and 2 form a closed hull)

Basic atomic physics 2021

(12)

Summary:

$ 3 important quantum num.

® full system characteristics º state of the system n, l, ml, (we neglect ms and nucleus)

- energy depends on n ® shell n2

E Rhc

n

= -

2

21 0

, 1

÷÷ø çç ö

è æ

- +

= -

l a n b

En l Rhc (n l)2

E Rhc

n - D

= -

for coulomb. pot. only – accidental degeneracy - non-coulomb pot. also depends on l - electron ang. momentum values

® designations of atomic states: set

(n, l) n= 1, 2, 3, ... l = s, p, d, f, ..., n-1

® subshell 1, 2, 3, 4, ...

- when there is no external fields, energies do not depend on ml (degenerate)

- classic orbit ® probability distribution (orbital)

(13)

13/ 19

Quantum defects. in alkali:

l Dl

4 3 2 1 00

s 1

p

2 d

3 f Cs (55)

Rb (37) K (19) On (11)

Li (3) Basic atomic physics 2021

(14)

And the inner shells? log scale!

(15)

15/ 19

Orders of magnitude:

the so-called atomic units:

- energy

m

e

c

2

- Compton length

l

C

= h / m

e

c

=

3.5x10

-3 Å ( photon wave len. with en.

h n = m

e

c

2)

typical values:

a

0

= (1/2 p ) l

C

/a = 137 l

C

/ 2 p

Rhc = a

2

m

e

c

2

/ 2

137

1 4

1 2

0

÷ »

÷ ø ö çç

è

= æ

c e

pe

!

a

Fine structure constant

@ 13.6 eV

l

C

a

0

l

atom

»1 /a »1 /a

electron speed:

u » a Zc << c

Þapproximate non-relativist. when Z small wavelength of atomic spectra, eg Lya :

length

Basic atomic physics 2021

(16)

Orders of magnitude:

30 µsec - 3 msec 1-10 nsec

life time

10 meV

(cf. kBT = 30 meV @ T = 300 K)

3 mm

» 10 eV

» 600 nm Energy Levels struc.:

- en. of binding el.

(ionization en. ) - freq. for

transition btwn. adjacent pos.

» 100 nm (0.1 µm)

» 0.1 nm (1 Å) (a0= 0.5 Å) Radius of

el. orbits

n » 30 n » 1

-2

µ n E

I

-3

w

µ n

n

2

r Y µ Y !

w p

l

= 2 c/

1 = Aµ n-3

t

(17)

17/ 19

1. El-static: electrons - nucleus (M =¥) 2. El-static between electrons

3. magnetic spins and orbital angular mom. (result: $ el. spin and $ µ|| J) 4. magnetic between spins

5. Nuclear structure (Þ hyperfine and isotope ) a) magnetic and electric moments.

b) nuclear mass and size, charge distribution

Interactions in the atom

Start with considering el-stat. seperately (neglect 3.)

å å

= >

÷ +

÷ ø ö çç

è

æ- D -

=

j

i i j

Z

i i

i r

K e r

e K Z

H m

2 1

2 2

2

!

4

0

1 º pe K

4

0

1 º pe K

Basic atomic physics 2021

(18)

I II III

) ... 2 ... 1

, 3 , 2 (

3, , 1

4 1 1

) 1 (

1

21 2

12

ïî ¥ ïí ì

= =

= -

= -

»

=

=

å

å

>

Z Z Z Z

Z r Z

r r

Z r II

III

i j i

i i

j

i ij

V º V

c

+ V

nc

divide seperately

inter-atom.

between cental and non-central int.

å

å

>

+ -

=

j

i i j

i i r

K e r

e K Z

V

2 2

H = H

free

+ V = H

0

+ V

nc

unsolvable when Z> 2, impossible perturbative calculation, because too big corrections from separate inter-electron interac.:

G

Central field approximation

V r H

K e r

e K Z

H m

free

j

i i j

Z

i i

i

÷÷ + = +

ø çç ö

è

æ - D -

= å å

>

=

2 1

2 2

2

!

(19)

19/ 19

Central field approximation - cont

H = H

0

+V

nc

å

å

ú =

û ê ù

ë

é- D +

=

i i

i i Vc ri h

H m ( )

2

2 0

! ¬ approx. independent

electrons in the central field

2 2

21 0

, 1 *

= -

÷÷ ø ö çç

è æ

- +

= -

i i

i l

n n

Rhc

l a n b

E Rhc

i i

* non-central correction:

å å

å

+ -

-

= -

=

> i c i

j

i i j

i i

c

nc V r

r K e

r e K Z

V V

V ( )

2 2

* self-consistent solution:

V

c

(r

i

)

spatial distribution

y

Z-1 electr. r=½y½2

* if Vc is large, and in comparison Vnc is a small correction - variational methods are effective

Start from a known solution e.g. this one:

Typically other numerical initial guesses

Basic atomic physics 2021

(20)

Central field approximation - energy levels

• for a given n,

E

nl ä

,

if

l

ä

,

that is, the circular orbits lie higher than elliptical

• for small n, n uniquely defines energy;

all levels in n = 2 are below n = 3

F

already for n = 4 (Z> 14), changes Enl due to l are » changes due to to n

å å Þ =

= h

i

E E

nl

H

0 2

12 0

, 1

÷÷ ø ö çç

è æ

- +

= -

l a n b E Rhc

l n

G

But, E (n) changes are getting smaller with increasing n, and Dl does not depend on n

3s

3p 3d

1 2 3 4

l = 0

5s

5d 5f 5g

5p 4s

4p 4d 4f

å å Þ =

= h

i

E E

nl

H

0 2

12 0

, 1

÷÷ ø ö çç

è æ

- +

= -

l a n b E Rhc

l n

Typical properties of energies as in this formula

(it is however NOT valid except for some alkali atoms)

(21)

21/ 19

Sequence of filling the shells

energies 4s ȣ 3d, 5s ȣ 4d,

6s ȣ 5d, 4f

empirical rule:

energy ä if n + l ä

(Erwin Madelung) BUT!

exceptions when close to the energies of the subshells, e.g. 24Cr and 29Cu - almost

degenerate 4s and 3d)

E.

n l

ä , if n ä

Basic atomic physics 2021

(22)

Summary the central field approx.

*

energ. lev.

S

Enl (+ correct) Þ order of filling the shells

* eigenstates (wave fn.)

- sought in the form of a tensor product of single-electron functions:

å

=

=

º º

y

a

y

z g

b a z

g b a y

E E

E H

Z !

! , , ,

3 2 1

- definitions: shell = set of all electrons with a given n

subshell = set all electrons with a given (n, l) configuration = {(ni, li)}

ground state = configuration with minimum energy

a a

Ea

h = a , b ,!1-el. orthonorm states. a = n,l

(23)

23/ 19

* electrons = indistinguishable fermions

ÞIt is not possible to have a state in which 2 el. have the same quantum numbers

Summary the central field approx. - cont

0

, , ,

, , , ,

, ,

=

îí ì

= -

=

bb bb

y

b g b a

b g b b a

g b a

y

!

! ! ¬ identity

¬ antisymmetry

Pauli’s principle

* wave fn. satisfying ­ - Slater's determinant

( )

Z Z

Z Z

r r

z z

z

a a

a y

!

"

#

"

"

#

"

!

$

2 1

2 1

1 !

, = 1

* consequences of Pauli's principle:

•you can specify max. num. el. in the atom that have the same energy - filled shell

•max. num. el in subshell (n, l) = 2 (2l + 1)

•max. num. el. in the shell 1 2

0

2 2 ) 1 4(

2 4

2 ) 1 2 (

2 n n n

n l

n l

n

l l

- = +

= +

=

å

- +

å

•can determine degree of degeneracy = number of states correspond. to a config.=

•Periodic system of elements -determined by the order in which the shells are filled Fermions - particles with half spin

and antisymmetric wave function.

Basic atomic physics 2021

Cytaty

Powiązane dokumenty

Przyczyn powstawania licznych fundacji nie można dopatrywać się jedynie w wyrzutach sumienia bogatych kupców6 , lecz ra­ czej w duchowości ludzi tamtych

frazeologią „narodowowyzwoleńczą”, co zbytnio dziwić nie może, bo na skutek ciągłego b rak u czasu na dłuższe zatrzym anie się nad każdą ważniejszą

Bardzo ważnym źródłem informacji na temat rzeczywistych rozmiarów emigracji Polaków, w tym mieszkańców województwa zachodniopomorskie- go, są wyniki Narodowego Spisu

The author presents the way the understanding of justice developed, from its being treated as the principle of harmony ruling the universe, through justice reduced to distribution

Oczywiście nie umknęło to uwadze teoretyków wojskowości, którzy starali się po­ znać motywację i morale nie tylko własnych oddziałów, lecz także wrogów Cesarstwa,

Początki ruchomych obrazów –2 • W 1877 roku Edweard Muybridge wynajduje sposób na fotografowanie ruchu – ustawia rząd 12 kamer wyzwalanych elektrycznie; każda

In order to check the abrasive efficiency of diamond segments produced on metallic bonds identified and highly probably used in Ancient Egypt, diamond segments were produced using

W związku z deklaracjami Prezesa UOKiK, wpro- wadzeniem programu dla sygnalistów i wejściem w życie ustawy o roszczeniach związanych z na- ruszeniem prawa konkurencji