• Nie Znaleziono Wyników

The finite difference method in the 2D Fourier equation with Robin’sboundary condition

N/A
N/A
Protected

Academic year: 2022

Share "The finite difference method in the 2D Fourier equation with Robin’sboundary condition"

Copied!
7
0
0

Pełen tekst

(1)

THE FINITE DIFFERENCE METHOD IN THE 2D FOURIER EQUATION WITH ROBIN’S BOUNDARY CONDITION

Grzegorz Biernat, Sylwia Lara-Dziembek, Edyta Pawlak Institute of Mathematics, Czestochowa University of Technology

Częstochowa, Poland

grzegorz.biernat@im.pcz.pl, sylwia.lara@im.pcz.pl, edyta.pawlak@im.pcz.pl

Abstract. This paper contains the application of the Finite Difference Method in the two-dimensional Fourier equation using Robin’s boundary condition (the third boundary condition).

Keywords: block matrices, n-band matrices, determinant, Fourier equation, boundary condition

Introduction

In this paper we consider the Fourier equation describing the heat transfer in a two-dimensional domain. This equation is supplemented by the third boundary condition, which is often called Robin’s condition.

This condition is the most “natural” condition, which can be assumed on the parts of area adjacent to the environment. It constitutes a mathematical notation of the heat flux's continuity and it is based on the law of Newton.

In the paper we give the direct FDM formula for the solution of the Fourier equation with Robin’s boundary condition.

1. Solution of the problem

We consider the 2D Fourier equation [1-3]

( ) ( ) ( )

2 2

2 2

, , , , , ,

T x y t T x y t T x y t

x y c t

λ  ∂ ∂  ρ ∂

+ =

 

 ∂ ∂  ∂

  (1)

(2)

where λ is a thermal conductivity [W/mK], c is a specific heat [J/kgK], ρ is a mass density [kg/m

3

], T is temperature [K], , x y denote the geometrical co-ordinates and t is time [s].

Then approximations of the second order partial derivatives using FDM are as follows

( )

( )

2

1, , , , 1, ,

2 2

2

, 1, , , , 1,

2 2

2 , 1 1

2 , 1 1

i j l i j l i j l

i j l i j l i j l

T T T

T i m

x x

T T T

T j n

y y

− +

− +

− +

∂ = ≤ ≤ −

∂ ∆

− +

∂ = ≤ ≤ −

∂ ∆

(2)

The initial condition has the form

, , 0

, 0

i j ini

T = T ≤ ≤ l q (3)

where T

ini

is the initial temperature.

Below we present a system of equations containing the Fourier equation with the third boundary conditions [2]

( )

( )

1, ,

0, ,

,1,

, 0,

2 2

2 2

2

2

j l env

j l env

i l env

i l env

T T

T T

x

T T

T T

y

T T T

x y c t

λ α

λ α

λ ρ

 −

= −

 ∆

  −

 = −

 ∆

   ∆ ∆  ∆

  ∆ + ∆  = ∆

  

(4)

where α is the heat transfer coefficient and T

env

is the ambient temperature (the temperature of environment).

Successively we consider the systems of equations corresponding to the four verti- ces and lateral edges of our domain, which is a rectangle.

For i = 0, j = 0 we have

(3)

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

1, 0,

0, 0,

0,1,

0, 0,

0, 0, 1, 0, 0, 0, 0,1,

2 2 2 2 2 2

0, 0, 0, 0, 1

2

2

2 2

l env

l env

l env

l env

env l l env l l

l l

T T

T T

x

T T

T T

y

T T T T T T

x x x y y y

T T

c t

λ α

λ α

λ λ λ λ λ λ

ρ

 −

= −

 ∆

  −

= −

 ∆

 

 − + + − + =

 ∆ ∆ ∆ ∆ ∆ ∆

 −

 =

 ∆

(5) After transformations we get the following form

( ) ( ) ( ) ( )

( ) ( )

0, 0, 1, 0,

0, 0, 0,1,

0, 0, 1, 0, 0,1,

2 2 2 2

0, 0, 1

2 2

2 2

2 2

2 2

l l env

l l env

l l l

env l

T T T

x x

T T T

y y

c T T T

x y t x y

T c T

x y t

λ λ

α α

λ λ

α α

λ λ ρ λ λ

λ λ ρ

  

− = −

 ∆   ∆  

   

 − =  − 

∆ ∆

  

  

  + +  − − =

   ∆ ∆ ∆   ∆ ∆

   

=  +  +

   ∆ ∆   ∆

(6)

The main matrix above the system of equations is as follows

( )

2

( )

2

( )

2

( )

2

0 2

0

2

2 2

x

A y

c

x y t x y

α λ α λ

λ λ ρ λ λ

 − 

 

 ∆ 

 − 

 

=  ∆ 

 

 + + − − 

 ∆ ∆ ∆ ∆ ∆ 

 

(7)

On the basis of the determinant of the matrix A we obtain the limitations on the

steps of the differential grid [4]

(4)

0 2

0 2

det 0

x y A α λ α λ

 − >

 ∆

 

− >

 ∆

  >

 

(8)

Hence

2 2

x y

λ λ

α α

λ λ

α α

 < ∆ <

 

 < ∆ <



(9)

The determinant of the main matrix is expressed by the following formula

( ) ( )

2

2 2

1 1

det

2 2

A c

x y x y t x y

λ λ λ ρ

α

   

= ∆ ∆    ∆ + ∆ + ∆ −   ∆ + ∆     

(10)

Then we have the determinant corresponding to the variable T

0,0,l

( ) ( )

0 ,0 ,

2

0, 0, 1

2 2

1 1

det

2 2

T l env l

A T c T

x y x y x y t

λ λ λ ρ

α

     

 

= ∆ ∆       ∆ + ∆ −   ∆ + ∆      + ∆   

(11) Thus, the temperature of node (0,0) at the time l is as follows

( ) ( )

( ) ( )

0, 0, 1

2 2

0, 0,

2 2

1 1

2

1 1

2

env l

l

T c T

x y t

x y

T c

x y t

x y

λ λ ρ

α

λ λ ρ

α

   

+ − + +

 ∆ ∆  ∆ ∆   ∆

   

 

=  

+ −  ∆ + ∆  + ∆

∆ ∆  

(12)

Taking the following notation

(5)

( )

2

( )

2

1 1

, , ,

2

a b c d c

x y t

x y

λ λ ρ

α  

= ∆ = ∆ =   ∆ + ∆   = ∆ (13)

we have

0, 0,l env 0, 0,l1

a b c d

T T T

a b c d a b c d

= + − +

+ − + + − +

(14)

Similarly, we proceed for the other vertices: (m, 0), (m, n), (0, n).

Then we repeat the procedure for each edge.

And so, on the edge (i, 0), where 1 ≤ i ≤ m − 1 , j = 0 we receive

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

1, 0, 1, 0,

, 0,

,1,

, 0,

1, 0, , 0, 1, 0, , 0, ,1,

2 2 2 2 2 2

, 0, , 0, 1

2

2

2 2

i l i l

i l env

i l env

i l env

i l i l i l env i l i l

i l i l

T T

T T

x

T T

T T

y

T T T T T T

x x x y y y

T T

c t

λ α

λ α

λ λ λ λ λ λ

ρ

+ −

− +

 −

= −

 ∆

  −

= −

 ∆

 

 − + + − + =

 ∆ ∆ ∆ ∆ ∆ ∆

 −

 =

 ∆

(15) Therefore

( ) ( )

2

2 2

1 1

det

2 2

A c

x y x y t x y

λ λ λ ρ

α

   

= ∆ ∆    ∆ + ∆ + ∆ −   ∆ + ∆     

(16)

( ) ( )

,0 ,

2

1, 0, , 0, 1

2 2

1 1

det

2 2

i l

T env i l i l

A T T c T

x y y x y x t

λ λ λ ρ

α

− −

     

 

= ∆ ∆       ∆ −   ∆ + ∆      + ∆ + ∆   

(17)

Thus, the temperature on the edge (i, 0) 1 ≤ i ≤ m − 1 , j = 0 at the moment l is given

by the formula

(6)

( ) ( )

( ) ( )

1, 0, , 0, 1

2 2

, 0,

2 2

1 1

2

1 1

2

env i l i l

i l

T T c T

x y t

y x

T c

x y t

x y

λ λ ρ

α

λ λ ρ

α

− −

   

− + + +

 ∆   ∆ ∆    ∆ ∆

 

 

=  

+ −  ∆ + ∆  + ∆

∆ ∆  

(18)

Assuming markings (13) we obtain

, 0, 1, 0, , 0, 1

i l env i l i l

b c a d

T T T T

a b c d a b c d

a b c d

= − + +

+ − + + − + + − +

(19)

Analogously we calculate the temperature for the other edge points:

– 1 ≤ ≤ i m − 1, j = n – i = 0, 1 ≤ ≤ − j n 1 – i = m , 1 ≤ ≤ − . j n 1

The system of equations in the internal points of the area takes the following form

( ) ( ) ( )

( ) ( ) ( )

1, , , , 1, ,

2 2 2

, 1, , , , 1,

2 2 2

, , , , 1

2

2

i j l i j l i j l

i j l i j l i j l

i j l i j l

T T T

x x x

T T T

y y y

c c

T T

t t

λ λ λ

λ λ λ

ρ ρ

− +

− +

− + +

∆ ∆ ∆

+ − + =

∆ ∆ ∆

= −

∆ ∆

(20)

Conclusion

The above calculations give clues about generalization to the three-dimensional and n-dimensional case. The articles concerning these generalizations are in preparation.

References

[1] Biernat G., Lara-Dziembek S., Pawlak E., The determinants of the block matrices in the

3D Fourier equation, Scientific Research of the Institute of Mathematics and Computer Science

2012, 4(11), 5-10.

(7)

[2] Mochnacki B., Suchy J.S., Modelowanie i symulacja krzepnięcia odlewów, WN PWN, Warszawa 1993.

[3] Biernat G., Siedlecka U., Finite difference method in Fourier equation internal case-direct formulas, Scientific Research of the Institute of Mathematics and Computer Science 2011, 2(10), 11-16.

[4] Biernat G., Mazur J., Finite difference method in the Fourier equation with Newton’s boundary

conditions direct formulas, Scientific Research of the Institute of Mathematics and Computer

Science 2008, 2(7), 123-128.

Cytaty

Powiązane dokumenty

In this paper we present some recent results concerning convergence rate esti- mates for finite-difference schemes approximating boundary-value problems.. Special attention is given

3. Criteria of the rationality of the boundary spectrum. From now on we only consider the real space X. The rationality of boundary spectrum in this case was established already

Let us consider the Banach space L(Ω h ) consisting of all mesh functions y h which are bounded and such that the norm ky h k ∗ defined by (3.1)

Summing up, the BEM using discretization in time constitutes the effective numerical method of hyperbolic equation solution but it requires a proper choice of

[2] Biernat G., Lara-Dziembek S., Pawlak E., The determinants of the block band matrices based on the n-dimensional Fourier

The interval calculations of the source function connected with the crystalliza- tion process modelling require to take into account the interval values of the nucle- ation coefficient

In the paper we give the direct FDM formulas for the solutions of the Fourier equation with the Newton boundary condition in the x, t

Interval methods for solving wave equation on floating-point interval arithmetic give solutions, in form of intervals, which contain all possible numerical