• Nie Znaleziono Wyników

Finite difference method in the Fourier equation With Newton’s boundary conditionsdirect formulas

N/A
N/A
Protected

Academic year: 2022

Share "Finite difference method in the Fourier equation With Newton’s boundary conditionsdirect formulas"

Copied!
6
0
0

Pełen tekst

(1)

FINITE DIFFERENCE METHOD IN THE FOURIER EQUATION WITH NEWTON’S BOUNDARY CONDITIONS

DIRECT FORMULAS

Grzegorz Biernat, Justyna Mazur

Institute of Mathematics, Czestochowa University of Technology, Poland e-mail: imi@imi.pcz.pl

Abstract. In the paper we give the direct FDM formulas for the solutions of the Fourier equation with the Newton boundary condition in the

x,t case.

1. Formulation of the problem

In limited spatial solid (centres) approximate to the one-dimensional case the temperature distribution T

x,t with the Newton boundary conditions and deter- mined initial conditions (without the internal heat source) is defined by the equations

t t x c T x

t x T

w w w

w , ,

2

2 U

O (1)

(heat conduction in the centre-Fourier’s equation)

environment

border

border

, ,

 

w 

 w x

x

T t x n T

t x

T D

O (2)

(heat exchange on the border-Newton’s equation)

x,0 Tinitial

T (3)

where the positive coefficients O,U,c and Dwe receive as a constant.

Classical difference methods lead to the linear systems equations

t T cT x

T T

Ti l il i l il il '

 '



  

 1

2 1

1 2

U

O (4)

where 1didm and lt1(internal case)

(2)

°°

¯

°°®

­

'

 '



 ' 





t T cT x

T T T

T x T

T T

l l l

l l l

1 0 0 2

1 0 env

env 0 env 1

2 2

U O

D O

(5)

where lt1and Tenv !T0l !T1l (border case)

ini

0 T

Ti (6)

where 0didm (initial case)

2. Solution of the problem

From the linear system (5) we calculate only T0l with the limitation

DO DO  x'  2

1 (7)

In fact, the first equation from the system (5) gives

l

l T xT T

T1 env 2 env 0

 '

 O

D (8)

so

¸

¹

¨ ·

©

§ ' 



 '





 2 2 1

0 env 0

env env

0 1

0 T T T xT T T T x

Tl l l l l

OD

OD (9)

and because Tenv T0l !0 and T0l T1l !0, that is

2 1

! O 'x

D or

D O

!2

'x (10)

And now the linear system (5) gives

1 0 2 env

2 1 2 0

env 1

0

2

2 2

' 

' 

'

¸¹

¨ ·

©

§

' '

¸¹

¨ ·

©

§

 '

 '

l l

l l l

tT T c

T x T x

t x c

x T xT

T

U O

O O

U

D O D O

(11)

(3)

with the determinant condition

2 0 2

1 2 2

2

2 2

2

!

'

 ' '

 '

 '

 ' '

 '

x x t c x x

t x c

x O U D O

O O

U D O

(12)

It only needs to point out that the determinant on the right side

2 2

2 2 2

2 1

t x c x x

t x

c '

 '

'

'

' '

 D U O

O U D

(13)

is positive, when

2 0 2 2

2 ¸!

¹

¨ ·

©

§  ' ' '

' 

 D O O D

x x x

x (14)

so

!0 'O D

x or

DO



'x (15)

The solution T0l of linear system (5) has then the next intermediate form

env 1

0

0 2

2

2 T

x x t c

x T x

x x t c

t c

T l l

¸¹

¨ ·

©

§ 

'

 ' '

¸¹

¨ ·

©

§ 

'

 '

¸¹

¨ ·

©

§ 

'

 ' '

' 

O D U

O D O D

U

U

(16)

For the internal linear system (4) and from symmetry condition Tm1l Tm1l we receive

2 1 2 1

1 2 1

2 1 2 2

1 2 2 3

2 2 2 1

1 1 2 0

2 2 2 1

2 2

2

. ...

...

...

...

...

...

...

2 2

















¸ '

¹

¨ ·

©

§

 '

 '

'

' '

¸ 

¹

¨ ·

©

§

 '

 '

'

' '

¸ 

¹

¨ ·

©

§

'

 '

'

 ' '

'

¸¹

¨ ·

©

§

 ' '

ml ml

l m

l m ml

l m l

m

l l

l l

l l

l l

tT T c

t x T c

x

tT T c

T x t x

T c x

tT T c T x

t x T c

x

tT T c T x

T x t x

c

U O

U O

U O

O U O

U O

O U O

U O

O O

U

(17)

(4)

with the positive determinant (see [1, 2])

m

x m

t c x

x x

t c x

x x

t c x x

x t c x

x t x

c

' u

' 

'

'

' ' '



'

' ' '



'

' ' '



'

' '

2 2

2 2

2

2 2

2 2

2 2

2 2

2 0 2

0 . . .

.

0 2 . . .

.

2 0 .

. .

.

. .

. .

. . .

.

. .

. .

. . .

.

. .

. .

. . .

.

. .

. .

2 .

. .

. .

. 2 0

DET

O U O

O O

U O

O O

U O O

O U O

O O

U

(18)

4 2

DET 

' m

m D

D Ox (19)

where

2 ...

2 2 2

1 2 1

8 4 4 2 4

2 2 2

2 

¸ '

¹

¨ ·

©

§

'

¸¸¹ '

¨¨© ·

§ 

¸ '

¹

¨ ·

©

§

'

¸¸¹ '

¨¨© ·

§ 

¸¹

¨ ·

©

§

 ' '





x t x

j c x t x

j c t x

D c

j j

j

j U O U O O U O O

(20) Finally, we can write

m

x m

t c x

x t x

c x

x t x

c x x

t x c x

x x

t c

' u

' 

'

'

' '

'

'

' ' '



'

' ' '



'

' '

2 2

2 2

2

2 2

2 2

2 2

2 2

2 0 2

0 . . .

.

0 2 . . .

.

2 0 .

. .

.

. .

. .

. . .

.

. .

. .

. . .

.

. .

. .

. . .

.

. .

. .

2 .

. .

. .

. 2 0

DET

O U O

O O

U O

O O

U O O

O U O

O O

U

(21)

(5)

¸¸

¸¸

¸¸

¸¸

¸

¹

·

¨¨

¨¨

¨¨

¨¨

¨

©

§

' 

¸¹

¨ ·

©

§

' '







' 

¸¹

¨ ·

©

§

' '





' 

¸¹

¨ ·

©

§

' '

 

¸ '

¹

¨ ·

©

§

' '

¸ 

¹

¨ ·

©

§

' '









2 ...

! 4

5 6 7

2

! 3

4 5

2

! 2

3 2

2

16 8 8 2

12 6 6 2

8 4 4 2 4

2 2 2

DET 2

x x t c m m m

x t x

c m m

x t x

c m x t x

c

x m t c

m m

m m

m

O O U

O O U

O O U O

O U

O

U (22)

Next, the algebraic complements of the matrix

m

x m

t c x

x t x

c x

x t x

c x x

x t c x

x t x

c

u

»»

»»

»»

»»

»»

»»

»»

»

¼ º

««

««

««

««

««

««

««

«

¬ ª

' ' '



'

' ' '



'

' ' '



'

' ' '



'

' '

2 2

2 2

2

2 2

2 2

2 2

2 2

2 0 2

0 . . .

.

0 2 . . .

.

2 0 .

. .

.

. .

. .

. . .

.

. .

. .

. . .

.

. .

. .

. . .

.

. .

. .

2 .

. .

. .

. 2 0

O U O

O O

U O

O O

U O O

O U O

O O

U

(23)

there are the simple induction formes (see [2])

1

2 1

1 1 2 2

1 1

4 2 2 2 1

2

1 1

for 1

2 1 2

1 0

for 1





 





 

 











 



 d

¸ d

¹

¨ ·

©

§

'



¸¹

¨ ·

©

§

'

¸¹

¨ ·

©

§

'

 '



 d

¸¸¹ d

¨¨© ·

§

'

¸¹

¨ ·

©

§

'



m mm

k k m k

m mk

k k m m

k km

p k m p

k m k p p

k p

kk

D A

m k x D

A

x D x

t A c

k m p x D

D x D

A

O

O O U

O O

(24)

according to the formula for Dj.

Also, the direct solutions of the linear system (17) are given

DET

1 1

1 1 1

1 1

2 0l l i m l m i ml mi

il

A tT A c

tT A c

tT T c T x









  '

'

¸ 

¹

¨ ·

©

§

' '

U U

U

O 

(25)

for 1didm2

(6)

DET

1 1 1

1 1 1 1

1 1 1 2 0

1

















 '

 '

¸ 

¹

¨ ·

©

§

 '

' l l m m l m m ml mm

l m

A tT A c

tT A c

tT T c T x

U U

U

O 

(26)

DET

1 1

1 1 1

1 1

2 0l l m m l m m ml mm

ml

A tT A c

tT A c

tT T c T x









 '

 '

¸ 

¹

¨ ·

©

§

 ' '

U U

U

O 

(27)

according to the formulas for Apq.

References

[1] Mostowski A., Stark M., ElemenW\DOJHEU\Z\ĪV]HM, PWN, Warszawa 1970.

[2] %LHUQDW*%RU\Ğ-&DáXVLĔVND,6XUPD$The three-band matrices (to appear).

[3] Majchrzak E., 0HWRGDHOHPHQWyZEU]HJRZ\FKZSU]HSá\ZLHFLHSáD, Wydawnictwo Politechniki

&]ĊVWRFKRZVNLHM&]ĊVWRFKRZD

[4] Mochnacki B., Suchy J.S., 0RGHORZDQLH L V\PXODFMD NU]HSQLĊFLD RGOHZyZ, WN PWN, War- szawa 1993.

[5] Majchrzak E., Mochnacki B., Podstawy teoretyczne, aspekty praktyczne i algorytmy, Wydaw- nicWZR3ROLWHFKQLNLĝOąVNLHM*OLZLFH

Cytaty

Powiązane dokumenty

Di Blasio, Differentiability of spatially homogeneous solution of the Boltzmann equation in the non Maxwellian case, Comm.. Ehlers, Survey of general relativity theory,

The paper [5] is devoted to relating the asymptotic properties of solutions of the delay equation (1.1) to the behaviour of solutions of the linear functional nondifferential

M u sialek, The Green's function and the solutions of the Neumann and Dirichlet problem,

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X IX (1976) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGOF. Séria I: PRACE MATEMATYCZNE

The interval calculations of the source function connected with the crystalliza- tion process modelling require to take into account the interval values of the nucle- ation coefficient

Summing up, the BEM using discretization in time constitutes the effective numerical method of hyperbolic equation solution but it requires a proper choice of

[2] Biernat G., Lara-Dziembek S., Pawlak E., The determinants of the block band matrices based on the n-dimensional Fourier

This paper contains the application of the Finite Difference Method in the two-dimensional Fourier equation using Robin’s boundary condition (the third boundary