• Nie Znaleziono Wyników

Radema her ([7℄, Satz 3) showed s(n;b) &gt

N/A
N/A
Protected

Academic year: 2021

Share "Radema her ([7℄, Satz 3) showed s(n;b) &gt"

Copied!
12
0
0

Pełen tekst

(1)

Dedekind sums with predi table signs

by

Kurt Girstmair (Innsbru k)

1. Introdu tion and main results. Letb and n be integers, b6= 0,

with(b;n)=1. The (inhomogeneous)Dedekindsum isde nedby

s(n;b)= jbj

X

k=1

((k=b))((kn=b))

wherethesymbol((:::))has theusualmeaning( f.,e.g., [8℄). We note the

relations

(1) s(n; b)=s(n;b) and s(n+b;b)=s(n;b):

Hen eweobtainallDedekindsumsifbisrestri tedtonaturalnumbersand

n to the range 0  n < b. The general de nition, however, willbe useful

later.

In general, it is not easy to guess what the sign of s(n;b) may be.

Radema her ([7℄, Satz 3) showed s(n;b) > 0 for 0 < n <

p

b 1. In this

notewe givea onsiderablegeneralizationofRadema her's result. Roughly

speaking,weshallshowthatthereareagreatmanyintervalsI in[0;b[su h

thats(n;b)takesa predi table and xed sign forea h n2I.

To this end we x the natural numberb forthe time being. Let d <b

beanothernatural number. De ne

(2)

d

=

b(d 1)(d 2)

2(bd 1)

;

d

=

(b d) 2

bd 1

and

(3)

d

=

d +

q

d +

2

d

;

the square root being positive. To ea h fra tion =d, 2 Z, ( ;d) =1, we

atta h an intervalof length2

d

=dwith midpoint b =d, namely,

I( ;d)=fx2R :jx b =dj<

d

=dg:

1991 Mathemati sSubje tClassi ation: Primary11F20.

(2)

Both \half-intervals"

I( ;d) =fx2I( ;d):x<b =dg; I( ;d) +

=fx2I( ;d):x>b =dg

are nonempty. Moreover, ea h number n 2 Z, (n;b) = 1, lying in I( ;d)

belongsto one of these half-intervals. Otherwise n=b =d, but then djb

be ause of ( ;d) = 1, so b=d divides (n;b), whi h is 1. This is impossible

sin eb=d>1. Our rst mainresult is

Theorem 1. As above, let d <b be natural numbers and an integer

with ( ;d)=1. Let n be an integer in I( ;d), (n;b) =1. Then s(n;b) <0

if n2I( ;d) ,and s(n;b)>0 if n2I( ;d) +

.

If d = 1, then

d

= 0 and

d

= b 1, so

d

=d =

d

= p

b 1 and

I(0;1) +

= ℄ 0;

p

b 1 [. Therefore, the ase d = 1 of Theorem 1 ontains

Radema her's above-mentioned result. In view of (1) and the well-known

identity

(4) s( n;b)= s(n;b);

it is lear that Radema her's theorem is equivalent to this spe ial ase of

Theorem1.

We look at the intervals I( ;d) more losely. It suÆ es, of ourse, to

onsider onlythose parts of them that are ontained in[0;b[ . Apart from

thehalf-intervalsI(0;1) +

andI(1;1) =℄ b p

b 1;b[ ,thesepartsarejust

the omplete intervals I( ;d), 2d <b,with 1 <d, ( ;d)=1. It will

beshownbelowthat, ifb4,then

(5)

p

b=d 3

1<

d

=d<

p

b=d 3

( f. Lemma2,(20), (21)). Thismeans thatthelength 2

d

=dof an interval

I( ;d) is of order of magnitude  p

b if d 3

is small relative to b. In this

ase we say thatI( ;d) is \large". Obviously,largeintervals ontain many

integers n. There is no reason, however, to rule out \small" intervals. It

follows from (5) that I( ;d), ( ;d) = 1, ontains at least one integer if

d < (3=4)b 1=3

; and it turns out that at least some of the intervals I( ;d)

ontain an integer as long as d <

p

b. Conversely, I( ;d)\Zis empty for

d p

b (see theremarkfollowingthe proofof Theorem1). In view ofthis,

itis naturalto studythesubset

(6) R (b)=I(0;1) +

[I(1;1) [ [

2d<

p

b [

1 <d

( ;d)=1 I( ;d)

of [0;b[ . The setR (b) willbe alled theregion of predi table sign. It would

bedesirable to knowthenumber

(7) S(b)=jR (b)\Zj

(3)

Theorem 2. If b islarge enough,then

1:8b 2=3

<S(b)<4:75b 2=3

:

A ording to Theorem 2 the number of integers in the region of pre-

di table sign is substantially larger than the size of large intervals I( ;d).

Both onstantsinTheorem2areratherpessimisti |thetrueorderofmag-

nitudeofS(b)seemstobe3:1b 2=3

. FurtherdetailsonthegrowthofS(b)

an befoundinSe tions 3 and4.

The diagramsbelow may give an idea of thebehaviourof the valuesof

s(n;b) inside and outside R (b). They display the ase b = 1009, a prime,

where S(b)=266. The small ir les represent pairs(n;12s(n;b)). Observe

that

j12s(n;b)j<b

holds for arbitrary numbers n, b with (n;b) = 1 ( f. (14)). In the rst

diagram the valuesn = 1 and n =b 1 have been omitted|just to save

spa e,sin ethese aretheonlyones withj12s(n;b)j losetob;foranyother

n, j12s(n;b)j<b=2. Thediagramssuggestthat R (b) ontainsallintegersn

forwhi hjs(n;b)jis\large"butnot only these; onversely,the omplement

[0;b[nR (b) seemsto onsist only of numbersnwithjs(n;b)jsmall. Indeed,

our omputationsshowthatj12s(n;b)jseldomex eeds p

bifnisnotinR (b),

whereasthere aremanynumbers ninR (b) withj12s(n;b)j<

p

b.

2. The proof of Theorem 1. Theorem 1 is based on a relation for

Dedekindsums(Lemma1) thatgeneralizestheusualthree-termrelationof

Radema her [6℄. Thislemma is a onsequen e of thetransformationlawof

thelogarithmofDedekind's-fun tion. Relationsofthismore generaltype

were given by Dieter [4℄ and frequently used by Bruggeman ( f., e.g., [3℄,

formula (3.1); [2℄, part 2.3). Nevertheless it seems that these relations are

not ommonly known ( f. the redis overy in [5℄). For the onvenien e of

the readerwe in lude a short proof,sin e it may be toilsome to adapt the

resultsof [4℄to the situation onsideredhere.

Let d, b be natural numbers and n, integers with (n;b) = ( ;d) = 1.

We write

(8) n b =d=q=d;

whereq isan integer. Supposeq 6=0 and put

"=sign(q) (2f1g):

Moreover, letj and k be integerssu hthat

(9) j+dk=1

and put

(4)

a

a

a

a

a

a

a a

a

a a

a a

a a

a a a

a aa

a a a

a

a a

a

a a

a

a a

a

a a

a a

a

a

a a

a

a

a

a a

a

a a

a

a

a

a

a a

a

a

a a

a

a aa

a a

a a

a a

a

a

a

a

a

a

a

a

a a

a

a a

a a

a a

a

a

a a

a

a

a

a

a a

a

a a

a a

a

a

a a

a a

a a

aa a a

a

a a

a a

a

a a

a

a a

a

a a

a

a

a

a

a a

a

a a

a

a a

a

a a

a a

a

a a

aa

a a

a a

a a

a

a

a a

a a

a a

a

a

a

a

a

a a

a

a

a a

a a

a a

a a a

a

a

a

a

a

a

a

a

a a

a

a a

a a

aa a

a

a a

a

a a

a

a

a

a

a

a a

a a

a

a

a

a a

a

a

a

a a

a a

a a

a

a a

a

a

a a

a a a a

aa a

a a a

a a

a a

a a

a

a a

a

a

a

a

a

a

a

b=1009: thevaluesof12s(n;b)forn2R (b),n6=1;b 1

Lemma 1. In the above situation,

12s(n;b)=12s( ;d)+"12s(r;q)+ b

2

+d 2

+q 2

bdq

3":

Proof. The transformation lawof thelogarithm of Dedekind's-fun -

tion says

(10) (AB)=(A)+(B) 3sign(A)sign(B)sign(AB)

( f. [8℄, pp. 49 ). Here A, B denote matri es inSL(2;Z) and  and sign

arede ned inthefollowingway: If

A=



Æ



;

thensign(A)=sign( ) (2f0;1g), and

(A)=



=Æ if =0;

(5)

In oursituationwe put

A=



u v

b n



; B=



k

d j



;

whereu;v areintegerssu h that

(11) un vb=1:

Onapplying(10) one readilyobtains(observe (4))

12s(n;b)=12s( j;d)+"12s(r;q) (12)

+(u vd+bk jn)=q+(u+n)=b+(j )=d 3":

Be ause of (9), j 1 mod d, and a well-known identity( f. [8℄, p. 26)

says

s( j;d)=s( ;d):

Therefore,therightsideof(12)hasthedesiredshapeifonlythesumofthe

three fra tions equals (b 2

+d 2

+q 2

)=(bdq). But this follows from a short

al ulation whi h takes theidentities(9)and (11) into a ount.

Proof of Theorem 1. We onsider the ase n > b =d rst. Let q be

de ned by(8), soq >0and "=1. By thelemma, s(n;b)>0holdsif, and

onlyif,

(13) 12s( ;d)+12s(r;q)+(b 2

+d 2

+q 2

)=(bdq) 3>0:

Next we applytheestimate

(14) j12s(x;y)j(jyj 1)(jyj 2)=jyj;

whi hholdsforarbitrary oprimeintegersx;y,y6=0( f. [7℄). Thereby,the

left sideof (13) is>0 ifonly

(d 1)(d 2)=d (q 1)(q 2)=q+(b 2

+d 2

+q 2

)=(bdq) 3>0:

Thisis thesame assayingthatf(d;q)<0, wheref(d;q) isthepolynomial

de nedby

(15) f(d;q)=bq(d 1)(d 2)+bd(q 1)(q 2) (b 2

+d 2

+q 2

)+3bdq:

We onsiderf(d;q) asapolynomialinq onlyand note

f(d;q)=(bd 1)=q 2

2

d

q

d

( f. (2)). Hen e f(d;q) isnegative if,and onlyif, q liesbetweenthe zeros

d

 q

d +

2

d

of f(d;q). Sin e q is positive,this meansnothing butq <

d

( f. (3)) and

+

(6)

In the ase n < b =d we have q < 0 and " = 1. One shows, in

the same way, that s(n;b) < 0 if f(d;jqj) < 0, whi h means jqj <

d and

n2I( ;d) .

Remark. We drawthereader'sattention tothefa tthatthede nition

(15)off(d;q)is symmetri ind andq. Thisallows rephrasingtheassertion

\n 2 I( ;d)" in another way. Indeed, let q be de ned by (8). Then \n 2

I( ;d)" is the same as saying jqj <

d

or f(d;jqj) < 0. This, however, is

equivalent to f(jqj;d) < 0 or d <

jqj

. Now the (still unproved) estimate

(5), appliedto

jqj

,gives

jqj

<

p

b=jqj ; son2I( ;d) an holdonlyif

d<

p

b=jqj :

In parti ular,I( ;d)\Zis empty ifd p

b|aswe said inSe tion1.

a a

a a

aa a

a a a a

a a

a

a

a a

a a

a a a

a a

a

a a

a a a a

a

a a a a

a

a a

a

a a

a

a a a a

a

a

a a

a aaa

a a a

a aa

a

a

a a a

a a

a a aaa

a

a a

a a

a a

a a a

a a

a a

a aa a

a

a a

a a

a

a a a

a a

a a

a a

aa a

aaa a

a a

a

a

a a

a a

a a

a a

a a

a a

aa a

a a a a

a a

a a a

aa aa

a

a aa

a a

a a a

a a

aa

aaa aa a a

a a

a a

a a a

a a

a a a

a aa

aa aaaa

a

a a

a a a a a

a a

a a

a a

a a

a

a a

a a

a a

a a a

a aa a a

a a

aa a

a a a

a a

a a a

a a

a

a a

a a

a

a a

a aa a a

a a a

a a

a

aa

aaa a

a

a a a

a a

aa a

a a

a

aa aaa

a

a

aaaa a

aa a

a a

a a a a

a

aa

a a

a a

a a

a a a

a a a

a a a

aa aa

a

a a

a a

aaa a a

a

a a

a a

a a

a a a

a

aa a

a

a a a

a a

a aa

a a

a

a a a

a aa

a a a

aa a a

a a

a a a a aa

a

a a

a aa a a

a a

a a

a

aaa a

aaa

a a a

aaa

a a a

a aaa a

a

a aa

a

a a a

a a

a a

a aa

a a aaa

a a

a a

a

aa aa

a a a

a a a aa a

a a

a a

a a

a aa

a a a a

a a

a a a

a aaa

a

a

a aa

a a a

a

a a

a aa

a a

a a a

a

a a

a a

a a

a

a a

a a a

a a a

a a

a a a a

a a

a a

a

a a

a aa

a a

a aa

a a a

a a

a a

a aa

a

a a a

a a

aa

a a

a

a a

a a

a aaa

aa a aa

a a

aaaa a

aa

a

a a

a a a

a a

a aa

a a

a a

a a

aaaaa

aa

a a

a a a

a a

aa a

a aa

aa

a aa

a a

a a a a

a aa

a a

a a

a a

a a

a a

a a

a

a

a a

a a aa

a a

a

a a

a a

a a

a a a

a

a aa a

a

a a a a

a a

a a

a aa

a aa a

a a

a a a a

aa

a a

a aa

aa aaa

a a a

a aa a

a a

a

a

a a

a a

a

a a

a

a a

a

a a a a

a

a a aa

a a

a

a a

a a a

a a

a a

a

a

a a

a a a a

a a a

a a

a a

b=1009: thevaluesof12s(n;b)forn62R (b),1n<b

3. The sums S

1

(b) and S

2

(b). Obviously,thesets I( ;d)\Zmustbe

(7)

thede nitions(6) and (7)show

S(b)= X

1d<

p

b S

b;d

with

(16) S

b;d

= X

0 <d

( ;d)=1

jI( ;d)\Zj:

The proofof Theorem2 isbased on theseparatetreatment of thesums

(17) S

1 (b)=

X

1d<b 1=3

S

b;d

; S

2 (b)=

X

b 1=3

d<

p

b S

b;d :

Infa t, someoftheestimates usedforthe rstsumdonotwork inthe ase

of these ond and onversely. We shallshow

Proposition 1.(a) For ea h suÆ iently large natural number b,

18

 2

b 2=3

9

8 p

b<S

1 (b)<

27

 2

b 2=3

:

(b) If b is large enough, then

S

2

(b)<2b 2=3

+b 0:51

:

Both parts(a) and(b) togetheryield

1:8b 2=3

<S

1

(b)S(b)=S

1 (b)+S

2

(b)<2:74b 2=3

+2:01b 2=3

=4:75b 2=3

and hen e Theorem2. Next we list some estimates neededfor theproof of

Proposition1.

Lemma 2. Let d <b be natural numbers and

d ,

d ,

d

as in (2) and

(3). Then

( d 3)=2<j

d

j<d=2;

(18)

p

b=d p

d=b<

p

d

<

p

b=d ; (19)

d

=d>

p

b=d 3

1=

p

bd 1=2;

(20)

d

=d<

p

b=d 3

: (21)

Finally,if 12d<b,

(22)

d

<



1+ 4

d



b

d 2

:

Proof. Observethat

2j

d j=

b(d 1)(d 2)



b(d 1)(d 2)

>

d 2

3d

:

(8)

Moreover, ifd =1,j

d

j<d=2is true. Ford2,

2j

d j=

(d 1)(d 2)

d 1=b

d 2<d:

Thisproves(18). Inorder to prove(19), note

d

=

(b d) 2

bd 1

>

(b d) 2

bd

;

hen e p

d

>(b d)=

p

bd= p

b=d p

d=b . Further,

d

= b d

d

 b d

b 1=d

 b d

d

<b=d:

Assertion (20)is immediatefrom the de nition(3) of

d

, theupperbound

for j

d

j and the lower bound for p

d

whi h are displayed in (18), (19),

respe tively. In orderto show(21) we use

q

d +

2

d

 p

d +j

d j;

whi h an be veri ed bysquaring. This gives

d

 p

d

<

p

b=d , by (19).

Finally,(19)implies

d

< j

d j+

q

b=d+ 2

d :

We show

(23)

q

b=d+ 2

d

(1+4=d)b=d 2

+j

d j;

whi h yields(22). However,



1+ 4

d



b

d 2

+j

d j



2

 2

d +2j

d j



1+ 4

d



b

d 2

 2

d

+(d 3)



1+ 4

d



b

d 2

;

by(19). One he ks that(d 3)(1+4=d)dwheneverd12 andobtains

(23).

Proof of Proposition 1(a). Sin e I( ;d) is an open interval of length

2

d

=d, itis learthat

2

d

=d 1jI( ;d)\Zj2

d

=d+1:

Therefore, (16)gives

(24) '(d)(2

d

=d 1)S

b;d

'(d)(2

d

=d+1);

where'(:::) denotesEuler'sfun tion. Now theassertionfollowsfrom (17),

(20), (21), and thefollowingthree formulas thathold forlargeb:

X

1=3 '(d)

d 3=2

= 12

 2

b 1=6

+C+O(b 1=6

logb);

(9)

with 0:56<C<0,

(25)

X

1d<b 1=3

'(d)

p

d

=O(

p

b);

and

X

1d<b 1=3

'(d)= 3

 2

b 2=3

+O(b 1=3

logb):

Ofthese, (25)is quiteelementarysin eits leftsideis

 X

1d<b 1=3

p

d =O((b 1=3

) 3=2

):

The remaining two formulas are appli ations of standard results ( f. [1℄,

p.62, Theorem3.7,and p.71, Exer ise7).

The upperboundforS

b;d

given in(24)isnotgoodenoughfortheproof

of Proposition1(b). Instead, we shalluse

Lemma 3. Let 1d<b. Then

S

b;d

2

d

+(d;b):

Proof. By (24), theassertion is true ford =1. Suppose, hen eforth,

d2. S

b;d

isthe numberof all integers n, 0n<b,su hthat n2I( ;d)

holdsforsome ,0 <d,( ;d)=1. Butsaying\n2I( ;d)" isthesame

assaying

(26) jnd b j<

d :

Forevery k2Zde ne(k)

b

2Zbythe onditions

(k)

b

k mod b; b=2(k)

b

<b=2

(so(k)

b

isa ertainrepresentativeofthe ongruen e lassofkmodb). Now

(21), togetherwith theinequalities1<

p

b=d<b=db=2, yields

d

<b=2.

Consequently,(26) an hold onlyifj(nd)

b j<

d

. Butthen

(27) S

b;d

jfn :0n<b; j(nd)

b j<

d gj:

We writeÆ=(d;b),d=d 0

Æ,andb=b 0

Æ. Theidentity

(nd)

b

=(nd 0

)

b 0

readily shows

(28) jfn:0n<b; j(nd)

b j<

d gj

=Æjfn:0n<b 0

; j(nd 0

)

b 0

j<

d

=Ægj:

Sin e (d 0

;b 0

) = 1, the map n 7! (nd 0

)

b

0 is inje tive on fn : 0  n < b 0

g.

Thus,

jfn:0n<b 0

; j(nd 0

)

b 0j

<

d

=Ægj2

d

=Æ+1:

By (27)and (28), S 2 +Æ,asdesired.

(10)

Proof of Proposition 1(b). Lemma3 yields

S

2

(b)2 X

b 1=3

d<

p

b

d +

X

b 1=3

d<

p

b (d;b):

The se ondsum is dominatedby

X

1d<

p

b

(d;b) X

djb

djfn: 1n<

p

b; djngj X

djb d

p

b=d= p

b X

djb 1;

whi hisb 0:51

assoonasbislargeenough. Asto the rstsum,weassume

b 1=3

12 and use(22) togetherwith theformulas

X

db 1=3

1=d 2

=b 1=3

+O(b 2=3

);

X

db 1=3

1=d 3

=O(b 2=3

)

( f. [1℄, pp. 55 ). This on ludes theproof.

4. Additional observations. The proof of Theorem 2 might suggest

thatthesumS

2

(b)doesnota tuallyplaya roleforthegrowthof S(b)|for

instan e, we did not even use S

2

(b) > 0. Numeri al examples, however,

indi ate that S

1

(b) and S

2

(b) have the same order of magnitude, namely

b 2=3

( f. Table 1,whi h displayssome ases inwhi h bisa prime).

If oneassumesthatthebehaviouroftheregionR (b)relativeto integers

is\random",oneexpe tsthatits(usual)measure%(b)is losetoS(b). This

is the ase in the examples listed below. Here we note that the intervals

I( ;d) are mutually disjoint|so this is true not only for the integers in

these intervals. Therefore,

%(b)= X

1d<

p

b

'(d)2

d

=d:

However, we abstain fromprovingthesaid disjointness,some detailsbeing

fairlytoilsome. Withtheaidof Lemma 2it isnotdiÆ ultto show

%(b)<

36

 2

b 2=3

:

The rightsideseems to be amore realisti upperboundforS(b)thanthat

of Theorem2.

Table1

b S(b) S

1 (b) S

2

(b) %(b) (36=

2

)b 2=3

10 5

+ 3 6338 4378 1960 6308.8 7858.6

10 6

+ 3 30210 20716 9494 30123.4 36475.7

10 7

+19 143010 97536 45474 142693.3 169305.1

10 8

+ 7 672954 457150 215804 671954.9 785843.6

10 9

+ 7 3153674 2136180 1017494 3150637.2 3647562.6

(11)

One may ask whether the intervals I( ;d) of Theorem 1 are \largest

possible" or, onversely, whether they an be extended to larger intervals

with the same behaviour of the sign. Indeed, an extension is possible in

individual ases but not ingeneral. Radema her ([7℄, Satz1) showed that

s(n;b)=0 ifn= p

b 1 ,sotheintervalsI( ;1) annot be enlargedifb 1

happens to bea square. Inaddition, we investigatedmanynumbers d>1

andfoundnumerousexamplesof sign hangesof s(n;b)assoon asnpasses

one of theboundariesof I( ;d).

Thebehaviourofs(n;b)insidetheintervalsI( ;d)isexplained,partially

at least, bythe followingobservation, whi h isbased on Lemma 1,too ( f.

also [3℄, part 2.4): Ifd issmall relative to band nis lose to the midpoint

b =d of I( ;d), the point (n;12s(n;b)) is lose to the point (x;y) of the

hyperbola

(x b =d)y=b=d 2

with x =n. In parti ular, thesign of s(n;b) agreeswith that of y. When

n moves away from b =d, thepoint (n;12s(n;b)) may gradually leave its

ompanion (n;y)|however, it must not ross the asymptote y =0 of the

hyperbola as long asn remains inside I( ;d). The reader may inspe t the

ases d=2;3in the rst diagramabove.

Finally,weobserve thatthe estimate(21) implies

jn=b =dj<1=(2d 2

)

for any n2 I( ;d) if onlyb  12 (re all that d must be <

p

b if I( ;d) is

nonempty). Therefore, thefra tion =d isa onvergent of n=b a ording to

Legendre's riterion. Inorder to test whethera given numbern, (n;b)=1,

is in the region R (b) one may pro eed as follows: Compute the ontinued

fra tion of n=b and he k whether some onvergent =d, d <

p

b, satis es

(26). If this is the ase, n is in I( ;d) and hen e inR (b), otherwisen lies

outside R (b).

Referen es

[1℄ T.M.Apostol,Introdu tiontoAnalyti NumberTheory,Springer,NewYork,1976.

[2℄ R. Bruggeman, On the distribution of Dedekind sums, in: Contemp. Math. 166,

Amer.Math.So .,1994,197{210.

[3℄ |,DedekindsumsforHe kegroups,A taArith.71(1995),11{46.

[4℄ U.Dieter,Beziehungenzwis henDedekinds henSummen,Abh.Math. Sem.Univ.

Hamburg21(1957),109{125.

[5℄ J. E. Pommersheim, Tori varieties, latti e points, and Dedekind sums, Math.

Ann.295(1993),1{24.

[6℄ H.Radema her,Generalizationofthere ipro ityformulaforDedekindsums,Duke

Math.J.21(1954),391{397.

(12)

[8℄ H. Radema her and E.Grosswald,Dedekind Sums,Carus Math. Monographs

16, Math.Asso .Amer.,1972.

InstitutfurMathematik

UniversitatInnsbru k

Te hnikerstr.25/7

A-6020Innsbru k,Austria

E-mail:Kurt.Girstmairuibk.a .at

Re eivedon18.7.1997

andinrevisedformon16.9.1997 (3229)

Cytaty

Powiązane dokumenty

It turns out that it is the only relation between rank and the cardinality of the quotient group C(T )/wcl{T n : n ∈ Z} in the class of ergodic dynamical systems.. There are

[r]

korzystając ze wzoru dwumianowego Newtona można pokazać, że wyrazy przedostatniego ciągu są mniejsze niż 1 + (2/n).. Zbadać zbieżność ciągów

Ile kroków jest potrzebnych by przenieść wieżę z pręta A na B, gdy krążki równej wielkości nie są

The proof uses the meromorphic continuation of Eisenstein and Poincar´e series in spectral parameter and weight jointly.. This continuation is given in [2], [3] for the

By using the estimates for character sums and the mean value theorem for Dirichlet L-functions, we shall prove the following main

Bruggeman [2, 3] has investigated the points (p/q, D(p/q)/q) in R 2 , using the representation theory of the group SL(2, Z). It would be of interest to investigate the distribution

362–392] and arising in the transformation formulas of the logarithms of the classical theta-functions, are analogous to the regular Dedekind sum.. 112] about Dedekind sums to the