• Nie Znaleziono Wyników

Converse type inequalities for averaged moduli of smoothness in Orlicz spaces generated by concave functions

N/A
N/A
Protected

Academic year: 2021

Share "Converse type inequalities for averaged moduli of smoothness in Orlicz spaces generated by concave functions"

Copied!
8
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXVI (1986)

H

e l e n a

M

u sie l a k

(Poznan)

Converse type inequalities for averaged moduli

of smoothness in Orlicz spaces generated by concave functions In [1] there was obtained a converse type inequality in generalized Orlicz space If2n generated by a convex (^-function, estimating the averaged modulus of smoothness in lf2n of order к for a bounded, measurable, 2 k - periodic function / by means of best one-sided approximations of / with trigonometric polynomials. Here, we obtain an analogous inequality in case of a real Orlicz space lf2n generated by a concave strongly s-convex (p- function with 0 < s ^ 1.

1.1. A function (p: R+~>R, is called s-convex with an se(0, 1) if (p{ocu + l3v) ^ as <p(u) + (p(r) for all u, v ^ 0, a, /? ^ 0, such that cts + fis — 1.

A function (p: R + -» R+ will be called strongly s-convex with an se(0, 1) if the function ф(и) = (p(ul/s) is convex. It is easily seen that a strongly s- convex function is s-convex. Obviously, if q> is strongly s-convex with an se(0, 1) and 0 < p ^ s, then (p is also strongly p-convex. Let us remark that if a (^-function (see [3], 1.9) is convex, then it is superadditive, and if it is concave, then it is subadditive. If (p satisfies condition (d 2) for all и ^ 0, i.e.,

<p(2u)/<p(u) is bounded for и ^ 0, then we shall write ф{и) — sup [<p (uv)/(p (i;)] ;

v>

0

we have ф (м) < x for all и ^ 0. If q> is strongly s-convex (s-convex) and satisfies (Л2), then ф is strongly s-convex (s-convex), too.

An s-convex (^-function q> defines an s-convex modular M / ) = iv { \f(t)\)d t

0

in the space of measurable, 27r-periodic functions f generating the Orlicz space

Цт = {f- Q«,W) < 00 for some X > ° l ’ with an s-homogeneous F-norm

ll/IIJ = inf \u > 0: ^ ( u _1/s/ ) ^ l |

(see [3]).

(2)

1.2. For any 2я-periodic f one defines

£ ( - 1 r m( k) f { t + mh),

m= 0 W

cok(/, x; 5) = sup{|d{/(i)|: t, t + k h e lk0{x)}, where

/J(x) = ( x —jk ô , x + ^kô}, for ô > 0, к = 1 , 2 , . . . , and arbitrary real x.

In the case of measurable bounded f (ok{f, •; <$) is also measurable (see [5], p. 28). Thus, for such functions / we may introduce the averaged modulus of smoothness of order к in If2n:

S) = ||cok(f, •; Э Д

and a modular averaged modulus of smoothness of order к in If2n:

* * (/; <5) = e A ^ k if, •; <5))-

The modulus xk possesses the same properties as given in [1], Theorem 3, with obvious modifications sprung from the fact that in our case cp does not depend on the parameter.

13. P roposition . Let (p be a concave, strongly s-convex (p-function, 0 < s ^ 1, satisfying condition (A2) for all и ^ 0, and let

, , , <p(uv) ф(и) = sup——

t>> 0 <p(v) ф (u) = ф (u(2r 1)/2)

with an integer r ^ ( s + 2)/2s. Let 0 < kS^oc/n, where a > 0. Then the following inequalities hold for an arbitrary trigonometric polynomial T„ of

degree ^ n:

т1(тп-,& )< с.,геЛк»?т<к)) and

т,(Т„; Й) < max(C> r, 1)(W)**||7<%, where Ca r is a positive constant.

P ro o f. Following the notation of [2], Theorem 2, we shall write 2 m + 1

t = t(2r ln) 1 m

2rn

k ,

where m = 0, 1 ,..., 2r 1 n — 1. Then, applying Lemma 2 from [4], formula

(3)

(1.7), to the fcth derivative T^k) of the trigonometric polynomial Tn of degree

^ n, we obtain

\ n k)(t)\ ^

2rn~

1

m= 0 I \ n k)(tj\ sin j n ( f - r j n sin — rm)

2 r - 1

2rn — 1

m= 0 where

Dr,n(t) sin j nt \ 2r 1

n sin j t J (K Un(t))i2r~l)12 >

with K ln given in [2], Lemma 2.

Now, we apply the formula

t + h H'l+A wm - i + h

AkhT„(t) = A\~n J { J ...( J T}m)(wm)dwm)...dw 2}dw1, m ^ k

f W1 wm~ 1

(see [6], p. 150), in the case m = k, obtaining

t + h w i + h wk - i + h

Akh T„(t) = J { J ...( J 7l k)(wk)dwk)...d w 2}dwl .

t V V J Wfc-1

Hence we have for t, t + k h e lk6{x)

x + kô/2

\AkhT M < m k~i j \m k](u)\du

x - k ô / 2

2rn — 1 x + kô/2

<(kô)k~l X |7?>(tJ J \DrJ u - t m)\du.

m = 0 x — kô/2

Thus,

2rn — 1 x + kô/2

( o M , x ; 6 ) ^ ( k S r l X |îï‘’( t j f

m = 0 x - k ô / 2

Hence, by subadditivity of (p and the definition of ф, we have

2n 2rn— 1 x + kô/2

if ( Г, ; 5) < f v - 1 X 17?> (tJI f |Д,,„ (u - rJ|Ai} dx

0 m= 0 x — kô/2

2n 2 rn — 1 x + kô/2

X <»>!(^)‘ |7Α,( U I( ^ ) - 1 f I D , J u - l J \ d u ) d x

0 m= O x - k ô / 2

2rn - 1 2

k

x + kô/2

X «> ( \DrJv)\dv}dx,

m = О Ь x — kô/2

Prace Matematyczne 26.2

(4)

because Drn(u) is 2л-periodic. Denoting

A4 f ,n , Ч| /2л; kô 2n(j+ \) k ô \\

M j t k

= max< |Д.>и(м)|: u e ( - — y , ---+ y we obtain

2 tc

jc + J k ^ / 2

Ф 1

0 x —kô/2

2тт n ^

\ D r . n ( v ) \ d v } d x ^ —

X

ф ( М ]гк) .

./= «

But 0 ^

k ô

^ oc/n, and so

M j t k

^ Ca/(/ + l)2r 1 for every

j ,

where Ca > 0 is independent of

j

(see [6], p. 151). By s-convexity of

ф

we thus have

ф ( М и ) ^ ф ( С а

1 1

ü + i p - n ^ ' ^ ^ ÿ + u 2’

and so

2 r"~1 2 tü 00 1

n j = i2

m= 0

я2 ___ 271 2Г"~1

= ~ т Ф { С а ) ~

£ <jo((^)k|7jfc,(OI}- 6 n ,„e0

Now, denoting = x,- = 2 tc //JV for j — 0, 1, 2, ..., iV—1, we have tj — x f r,l)

= n/2r n. Hence, defining

Q%(Tn) = ~ sup J] «pflr^x + jc,)!)

* 7 = 0

(see [2], 2), we get

2 k 2r”_1

62 ; n((kS)k T<k>)>— x <?{(/d5)w>(o)i}.

^ П 7 = 0 Hence

тГ(Т„; 5) ^ и 2 Ф { С , ) Т е ^ ( ( к 0 ) к V k>)- Consequently, applying [2], Theorem 2, we get

т ? (Т „ ;0 )а и 2Ф(С.)2'2г$(1 + 2жп/2' n) e„ ((kS)k 7?>)

= C „ e„((fa5)‘ T'k>), where Cxr = 5 it2

ф

(CJ 22r ф (1 + 2n/2').

Let us write Car = max(Ca ,, 1); then

Qq> ) < - J - t U T . ; S) « e„((fa5)‘ 72**).

(5)

Taking in this inequality TJulls in place of Tn, where и > 0, we obtain

2.1. Now, we shall give an estimation of the modulus xk by means of one-sided approximations.

The best one-sided approximation in lf2n of a bounded, real-valued measurable, 27i-periodic function / by means of trigonometric polynomials of degree ^ n is defined as

where H + (/) is the set of trigonometric polynomials P of degree < n for which P { x ) ^ f{ x ) in <0, 2тг> and H~ (/) is the set of trigonometric polynomials Q of degree ^ n for which f (x) ^ Q(x) in <0, 2тг) (see [5], p.

242). Arguing as in [1], Theorem 7, it is easily shown that for every n there exist trigonometric polynomials P * e H ^ (f) and Q * e H ~ (f) such that

£„(/) = IIP*'-<2*11;.

2.2. T heorem . Let tp be a concave, strongly s-convex (p-J'unction independent of the parameter, where 0 < s ^ 1, satisfying condition (A2) for all и ^ 0. Let f be a bounded, measurable, 2n-periodic function. Then there holds the inequality

for n — 1, 2, 3, ..., with a constant CkrS > 0 depending on к and s.

P roof. We choose P * e H f( f) and Q * e H ~ (f) so that £ „ (/) = ll^î —ÔÎIIJ, л = 1,2, ... Arguing as in the proof of [1], Theorems 3 and 1 (3), we obtain for <5 > 0

By Proposition 1.3 applied to к — 1 and T„ — P* — Q* with a = 4n, r being the least integer satisfying the inequality r ^ ( s + 2)/2s, we obtain

Hence

E n( f ) = inf{||P-Q||‘ : Q e H ~ (/)},

(6)

But, by [2], Theorem 3, there is a constant C > 0 such that ll(J>? - e ? ) #IIJ < Crf\\P*-Q*\\i = Crf Ën(f).

Hence

T i ( P * - Q * ; ô ) ^ C maix(Catrt l)ôsnsË„(f) for 0 < S ^ 4 n / n . Consequently,

4 ( / ; <5K тк (P* ; (5) + Tk (e* ; Ô) + Cl En(/) for 0 < <5 ^ 4n/n, where Cl = [2skC max(Car, 1)(4л)*+1] 2b .

Now, adopting the same notation as in the proof of [1], Theorem 3:

U0(x) = P f(x )-P $ (x ), Uv(x) = PJv(x )-P J v -iW , v = 1, 2, ...

we have

m

^ < Z т* ( ^ ; <5).

v = 0

Applying Proposition 1.3 with a' = 4кк to the polynomial Uv of degree ^ 2V and then [2], Theorem 3, we obtain

Tk(U v; ô) ^ max(C«,„ l)(k<5)kl t / < %

^ C2 (k<5)ks 2ksv || 17V||* for 0 < <5 sc 4 tt / 2v,

where C2 = Ckmax(Catr, 1). Hence, arguing as in the proof of [1], Theorem 3, we get

m

ч(Р*2„;б) * z c 2{ k s r £ 2tovi|(7v||j,

v = 0

m

s:2C2(fa5)“ (£0(/) + I 2‘" £ ,,_ ,(/))

v — 1

for 0 < <5 ^ 4n/2m. Taking into account an analogous inequality for T*(@2m;<5)> we thus obtain

xk(f;S)^4C2(kSr(Ë0(n+ I 2*"Ê m , (/)) + C, £ ,„ (/) v= 1

for 0 < 5 ^ 4n/2m.

Now, it is easily seen that

> V - 1

2favÊ2,_ 1( / ) 2 ' 2ta 2‘" Ё 2>- , ( / ) 2 - ‘* -‘

Hence, taking C, = max(22ftï, 2*s+1), we get 2b ’ £ 2,_ 1( / K C J

for ks ^ 1, for ks < 1 .

Л***-1 £,(/)■

(7)

This implies

2 m — 1

тк( / ; й ) ^ 4 С 2(И)ь !Ёо(Л + 2‘*Ё ,(Л + Сз X мь _ г £»(Л} + с , £ 2, ( Л Д=2

2

m ~ 1 - 1

< 4 C 2C3(fa5f !£0(Л + 2“ £ ,( Л + X ( v + i f - ‘ £ ,+ i ( f } +

V — I

+ Ct Ë2„ (f) for 0 < S < 4 7 i/2 " . Since Ê,,+1 (Л < £,(Л> we thus obtain

2m" i - l t k( / ; Ô K 12C2C3( ^ ) A s X (v+1

for 0 < <5 ^ 4 к / 2 т.

Now, let n be an arbitrary positive integer and let 2 m~ 1 ^ n < 2m; then тк ( / ; 2тс/и) ^ тк( / ; 4 n / 2 m)

i 2m -1 - l

« 1 2 C J C,(4tik)‘>-iS; X (.+ 1|‘- £ >( Л + С , £ г, Ш

2 V = 0

< 12C3 C3(4itfcf Jg"X (v + I f 1 ЕЛ Л + С, £„(/)•

r r

v= 0

It is easily calculated that

£ . ( Л < с * Т х (V+ i f - ‘ £ vm .

" v = 0

where

Thus,

C4

m ax(l, 2fcs) if Acs < 1,

1 if ks = 1,

ks if ks > 1.

4 \ f ; 2n

« 12C2 C3 (4 n * f 4

”x

(V + i f - 1 ЁЛЛ + C, c 4 4

" x

(V + i f - 1 ЁАЛ

n

v = 0

n

v = 0

= % " Z ( v + if- ‘ £,a) П

у

о

for w = 1, 2, 3 , . where C5 is a positive constant depending on Ic and on s.

Let us remark that Theorem 2.2 in the special case of (p(u) = |u|p, 0 < p

< 1, gives Theorem 4.1 of [6].

(8)

References

[1] H. M u s ie la k , On the т-modulus o f smoothness in generalized Orlicz spaces, Comment.

Math. 25 (1986).

[2] —, On some Nikolskii and Oswald-type inequalities, J. Approx. Theory (in print).

[3] J. M u s ie la k , Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, 1983.

[4 ] P. O s w a ld , Some inequalities for trigonometric polynomials in L p-metric, 0 < p < 1, Izv.

Vys. Uc. Zav. No. 7 (1976), 65-75 (in Russian).

[5] Bl. S e n d o v , V. A. P o p o v , Averaged moduli o f smoothness, Sofia 1983 (in Bulgarian).

[6] R. T a b e r sk i, On modified integral moduli of smoothness and one-sided approximation o f

periodic functions, Funct. Approx. 10 (1980), 147-156.

Cytaty

Powiązane dokumenty

Though perhaps not in such a great generality as treated in this paper, spaces of measurable functions (usually scalar-valued) “based on a family of measures”

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIII (1983) ROCZNIKI POLSKIEGO TOWARZYSTWA MATE MATYCZNEGOF. Séria I: PRACE MATEMATYCZNE

Let / be a complex-valued function, defined and measurable on the... This contradicts the

The paper deals with the theory of Orlicz spaces of functions with values in separable, linear topological spaces... Separability of Orlicz

Then for every positive integer к there exists a positive constant c(k) such that for every 2n-periodic, measurable

In the present paper we shall extend these results to the case of a class of generalized Orlicz spaces with norm not necessarily translation invariant... We

ANNALES SOCIETAT1S MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

A strongly exposing property (SE) is introduced as an appropriate assumption on the space R). An appropriate assumption on this space appears to be a strongly