• Nie Znaleziono Wyników

Jackson type inequalities for averaged moduli of smoothness

N/A
N/A
Protected

Academic year: 2021

Share "Jackson type inequalities for averaged moduli of smoothness"

Copied!
15
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXVII (1987)

He l e n a Mu sie l a k (Poznan)

1. In [3], there were given converse type inequalities for averaged moduli of smoothness тк and best one-sided approximation £ „ (/) of the function / by means of trigonometric polynomials in generalized Orlicz spaces E2n generated by a convex «^-function </> depending on a parameter, satisfying some condition ( B J .. Analogous results in case of Orlicz spaces generated by a concave, s-convex ^-function q> independent of the parameter were obtained in [4]. Here we shall give direct type inequalities in both cases, thus generalizing some results of [5], Chapter 8, and of [6]. These results together with those of [3] and [4] enable us to conclude some saturation theorems for Lipschitz classes defined by averaged moduli of smoothness in H2n.

Let us recall that given an s-convex (0 < s ^ 1) ф-function depending on a parameter r, q>(t, u), 27t-periodic with respect to t, the modular

where / is measurable and 2^-periodic, defines the generalized Orlicz space E?2n = {/: gv (Af) < oo for some A > 0} with an s-homogeneous F-norm

Jackson type inequalities for averaged moduli of smoothness

M / ) = .f <р(*> l/(0 lM c 0

Il/||j = i n f '« > 0 : e „ ( i r I/!/ K 1!) ■ If s = 1, we shall write Ц/Ц^ in place of ||/|Ц .

Moreover, for any 2n-periodic f one defines

cok {/, x; Ô) = sup {\Akhf (f)|: t, t + k h e Ik0(x) \ ,

where I^(x) = (x — kô/2, xA-kô/2) for Ô > 0, к = 1, 2, ..., and arbitrary real x. If / i s measurable and bounded, then cok(f, •; <5) is also measurable ([5], p.

28). For such functions / the averaged modulus of smoothness xk of order к

(2)

in Iî2n is defined by

т * (/;< 5 )= .|К (/, -; а д , <5>о

(see also [4]). The usual modulus of smoothness œk of order к in lf2lt is defined by

ojk(f; Ô) = sup \\\Akhf\%\ 0 < h ^ Ô], S > 0. '

Let Я„ be the set of all trigonometric polynomials of degree ^ n, and let for a measurable, bounded, 2^-periodic function f H + ( /) be the class of all PeH„ satisfying the inequality f (x) ^ P(x) in <0, 2л:), and Hn ( /) be the class of all Q e H n satisfying the inequality f (x) ^ <2(x) in <0, 2л>. Then we denote, as usually,

En( f) = inf III/- Щ : T e H n),

£„(/) = in f 111 P-QWV- Р е Я „+ ( / ) ,0б Я ; ( Л ) .

It is easily seen that for any / е Я 2л and arbitrary n there exists a T *eH„

such that En( f ) = \\f— T*||^. Also, for any bounded and arbitrary n, there exist P * e H + ( /) and Q *eH ~ ( /) such that £ „ ( / ) = \\P* — Q*||* (see [3], Proposition 4 and [4], 2.1).

2. In this section we shall investigate the case of convex <p. We shall assume that (p is an iV-function depending on a parameter (see [1]). Let us recall that the function q> satisfies the condition (В rj > 0, if there exist a set A c <0, 2л) of measure zero, a number c > 0 and a family of non-negative, measurable, 2л-

2 n

periodic functions / ( • , h), satisfying the inequality Sv = sup ( f (t, h)dt < oo IM <0 ô

such that for every и ^ 0, t e <0, 2 л )\А and \h\ ^ ц there holds the inequality (p(t — h, и) ^ <p(t, cu)+ f(t, h) (see [3]). It is easily seen that if q> satisfies (Bn), then it satisfies (ВJ for all ц ^ л with the same constant c > 0 and = Sn. If (p satisfies (BJ, then for / е Я 2л there holds the inequality ||/(• + /î)ll<p

^ 2c max (1, S J H /I^ for any h > 0 (see [2], Theorem 1).

Let us still remark that if К : (0, 2л) x (0, 2л) -> R is measurable in (0, 2л) x(0, 2л), K(-, t)eH 2n for almost every t e ( 0, 2л) and ||K(-, t ) ^ is integrable in (0, 2л), then the following Minkowski inequality holds:

(U II j0 (f)|K (-, 01*11» « 2 J 9 (r)||K(-, Oil»*

0 Ô

for every g ^ 0 integrable in (0, 2л).

Th e o r e m 1. Let tp be an N -function depending on a parameter, satisfying

(B„) with constants c and Sn. Let f be 2n-periodic, absolutely continuous and such that the derivative f'e L ? 2n. Then there holds the inequality

£ „ ( /) ^ - 7 г с т а х ( 1 , Sn)E „ (f).

( 2 ) n+ 1

(3)

In case of tp independent of the parameter, we have

(3) n+ 1

P ro o f. Let q e H n. x be such that E „ _ i(/') = \\ f '- q \ \ v . By [5], p. 243- 247, there exist Tl n, t 1>n, R l , R 2eH „ _l such that

2n

i f 2

> t liH(t) in <0, 2tu>, - = —

71 J n

0 and

Я 2 (*) < / ( x ) < /?! (x) in <0, 2tu>, 2 n

Rt (x) - R 2(x) = ~ J (TUn( x - t ) - t Un( x - t ) ) \ f ( t ) - q ( t ) \ d t 0

2n

- I \Ti,n(t) — t l n(t)\ \ f ' ( x + t) — q(x + t)\ dt.

Hence, by inequality (1) applied to g(t) = \T1<n{ t ) - t Un{t)\ and K{x, t)

\f '( x + t) — q(x + t)\, we obtain 2n

W R i - R i W ^ l^i,n(0 —n,n(0l \\f'{' + t ) ~ q { ' + t ) \ \ < p dt.

But, by condition (Bn) we have

IIpO + OII* < 2c m ax(1, SJWpW^ for р е П 2к.

Hence, taking p(u) — f'(u ) — q(u), we get 2n

\\R1 - R 2\ \ * < 2 ^ I |Г1.|1( 0 - П .и(0 |2 ст а х (1 ,5 11) ||/ ' - 9 || , Л

= — cm ax (l, Sn) £ „ _ !(/'). 871 n

This implies inequality (2). If (p does not depend on the parameter, then

\\p(' + t)\\v = IIpOILpand we obtain (3).

Co r o l l a r y 1. Let tp be an N -function depending on a parameter,

satisfying (Bn) with constants c and Sn. Let a In-periodic function f posses absolutely continuous derivative f (k~ X) o f order к — 1, k ^ l , such that f (k)e L 2n.

10 — Prace Matematyczne 27.1

(4)

Then

where С = 8л;стах(1, Sn) for (p depending on the parameter, and C = 4n in case of (p independent of the parameter.

P ro o f. If P, Q e H n, Q(x) ^ f{ x ) ^ P(x) for all x, then \\f-Q \\v < \\P - 6IIV- Hence

En{f) = inf II/- T\\v ^ inf W f - Q W ^ inf ||P -G II, = Ё Л Л -

T e H n Q e H n ( / ) Q ^ f ^ P

Thus, applying Theorem 1, we get

Ёп( Л ^ С п - ' Ё „ ( Л , and so by easy induction,

Ë „ ( f ) ^ C k n - kËn( f (k))•

But Ë „ (fik)) ^ \\ f {k)\\v , which gives the corollary.

Th e o r e m 2. Let cp be an N -function depending on a parameter, satisfying

condition (Bn) and such that 1 еТ?2л- Let f be a In-periodic, measurable and bounded function. Then

E„(f) < Cxx {f; 1/w) for « = 1 , 2 , . . . ,

where C = 66(4rc + l)c2 m ax(l, S2). In case of (p independent of the parameter, one may take C — 228.

P ro o f. By [5], p. 249, formulae (8.11H8-13), there exist step functions S„ and Tn such that

/ „ w < / ( * ) < s n{x), 0 ^ Sn{ x ) - I n(x) < col if, x; 3n/n) in <0, 2tt) and

\S'n(x)\ < 2nn~ 1 (Oi {f, x; 4n/n), |/^(x)| < 2nn~ 1 w 1 (/, x; 4n/n)

for all хе(0,2л) which are not points of discontinuity of functions S„ and /„.

Hence

l|S „-/„||v ^ I K ( / , •; 3702)11^ = t i ( / ; 3n/n), USX < 2nn~1xl (/; 4n/n), \\T„\\ ^ 2 w T1 xx (/; 4л/п).

Since satisfy the assumptions of Theorem 1, we have

87Г 8 л

En(Sn) < 77^-7 c max (1, S„)£„(S;) ^ ^7-7с т а х (1, 5Я)||5;||^

/2+ 1 /2 + 1

^ 16cm ax(l, iSJi! (/; 4n/n).

(5)

Similarly,

Ë„(I„) ^ 16cm ax( 1, 4n/n).

Now, we shall prove the inequality

(4) En ( /) ^ Ên(Sn) + ||S„ - I X + En(/„).

Let h be a bounded, 27r-periodic, measurable function. Let P(h)eH// (h), Q{h)eH~ (h) be such that

Ê„(h) = \\P(h)-Q(h)\\v . Then

P (f)(x) < P(S„)(x), Q (f)(x) > Q(I„)(x) and

(2(S„)(x) < f ( x ) ^ I n(x) ^ P(/„)(x) for all x.

Hence .

P(f)(x)-QU)(x) ^ P(Sn)(x)-Q(Inm

^ (P (Sn) (x) - Q (Sn) (x)) + (Sn (x) - I n (X)) + (P(In) (X) - Q (/„) (x)).

Thus,

£ * (/) ^ W P i S J - Q i s ^ + WSn-inh + W P i U - Q i i n X

= Ên(Sn) + \\Sn- l X + Èn(In)-

Applying (4) and the previous inequalities, we obtain E „ (f) < (32cm ax(l, S J + l ) i i (f; 4n/n).

But we have

T it/; 4n/n) ^ 2c m ax(1, Sn) (4л + 1)xt (/; 1/n) . (see [3], Theorem 1 (4)). Hence

E „ (f) ^ C M /; 1/n) with the desired constant C.

If q> is independent of the parameter, then

Ën(Sn) ^ 8t! (/; 4n/n), Ё„(1п) ^ 8тх (/; 4тг/п), and so

En( f ) < 16ц (/; 4п/п) + т1 (/; 3n/n) ^ 228^ (/; 1/n).

Let us still remark that Theorem 2 is, up to the constant, a

(6)

generalization of [5], Theorem 8.2. Now, applying the method from [5], p.

46-48, we shall prove the following

Le m m a 1. Let <p be an N-function depending on the parameter\nd let

f e И2п, where к is a positive integer, 0 < h ^ 2n/к. Let

fk,h(x) + . . .

hГ ( - h ) ~ k

0J

I —f ( x + h + ■■■ +*к) + ( ^ / •••

о

- + ( - i)kC i ) 4 t \ + . . -+ tk

dt j ... dtk

(cf. [5], p. 47, 2.8). Then

(i) If ( x ) - f kth(x)\ ^ ojk(f, x; 2h), (ü) \\f-fk,h\\<p ^ 2mk(/; h),

(iii) fk,h has an absolutely continuous derivative fk kh~ 1] and / $ еТ?2п with ll/a il, ^ 2(2k)k h-'cor(f; h) for r = 1 ,2 , ..., k.

P ro o f, (i) is shown in [5], p. 47. In order to prove (ii), we first remark that applying the Minkowski inequality (1) with interval (0, 2n) replaced by (0, 2n)k c= R k, we obtain

и/-/* j „ « p - ‘ Î- ■ ■ î и?,,+...+,t„i/wi

dt,... dh\i

о 0

« 2 r ‘ J . . J | l 4 1 + ...+Illrt/ ( - ) M r , .... dtk s: 2mk(f\ h).

0 0

In order to show (iii) it is sufficient to apply formula [5], 2.9, p. 47, Minkowski inequality (1) with <0, 2n}k~r c= R k ~ r and estimation as in [5], p.

47 and 48, obtaining

h h

ll/S l ( - /) ) -k d h f ( X + t 1 + • • • + f i c - r )

+ 1 / \/c— 1 ^[k-Dhjkf ( * +к - 1

(t 1 + • • • + f i c - r ) +

•' + ( - 1^ ( k k_ l) kr Ah/kf(KX + tl + ' rj j ^ l ■■■dtk-

h h

<2 A -‘ j . . . j | p ; / ( x + t1+ . . . + f lt. r)||.

0 0

(7)

... +

^ 2h~r

^ f [ x + - ~ ' - ' k + t k~ r-

+ ...

àti ... Л*-,

« г ( / ; /l) + ( j ) ( ^ z j ) ® r f / ; - j ~ h ) + •

• + (fc*

^ 2 (2kf h~ 2 cor(f\ h).

Lemma 2. Let tp be an N -function depending on a parameter, satisfying condition (B K) and such that \ e E 2n. Let f be a 2n-periodic, measurable and bounded function and let gn(x) = cok(f, x; m/n), where m ^ 1. Then

E„{gn) ^ Czk(/; 2m/n) for n = 1 , 2 , . . . , where C is given in Theorem 2.

P ro o f. Let g(x) = cok( f x; h), h > 0. Then, estimating as in [5], p. 251, we obtain

Hence

a*! (g, a; <5) ^ cok(f, x; h + ô/k) for Ô > 0.

Ti (»*(/, •; h )\3) ^ zk(f; h + ô/k) ^ zk(f; h + 0).

Taking here h = 3 = m/n we obtain

*1 (0„; l/и) ^ Tj (бг„; m/n) ^ zk( f ; 2m/n).

Thus, applying Theorem 2, we get

En(gn) < C ii (#„; 1/w) ^ Czk{f; 2m/n).

Lemma 3. I f tp is a convex (p-function and f g, oteL?2n, |/(x ) g(x)| ^ ot(x) for all x , then

£ „ ( /) ^ Ën(g) + 2Ën(x) + 2\\ot\\<p.

P ro o f. Keeping the notation from the proof of Theorem 2, we obtain

£ „ ( / ) < £„(gf)4-2||P(oc)||(?), and the desired result follows form the inequality 0 < P (a )(x )-a (x ) ^ P (a)(x )-()(a)(x ) for all x.

Theorem 3. Let q> be an N -function depending on a parameter, satisfying condition (Bn) and such that \ е П 2п. Then for every positive integer к there exists a positive constant c(k) such that for every 2n-periodic, measurable and

(8)

Ë»(f) ^ c{k)zk{ f ; 4/n).

P ro o f. We take functions / M from Lemma 1 with h = i/n. Applying Lemma 3 and property (i) from Lemma 1, we obtain

£ „ (/) « Ën(fl n ^ ) + 2Ë„{o)k(f, -, 2 n - ‘)) + 2 |H ( / , ■; 2n~l)\\v . By Lemma 2 with m = 2,

È„(o)k{ f •; 2n ~ 1) ) ^ Cxk(f; 4/n), whence

(5) Ën( f) ^ Èn(fktH- i ) + 2C4 {f; 4/n) + 2xk(f; 2/n).

bounded function f there holds the inequality

Applying Corollary 1 and Lemma 1, (iii), we obtain

£ „ (/M - i) ^ Ck n~k \\fkin-i\\q> < 2(2Ck)k cofc(/; \/n) ^ 2 (2Ck)k xk (/; 2/n).

Substituting this inequality into (5), we obtain the desired result with c(k)

= 2{(2Ck)k + C + \).

Theorem 3 together with [3], Theorem 3, give easily the following result, generalizing [5], Corollary 8.3, p. 257:

Theorem 4. Let <p be an N -function depending on a parameter, satisfying condition (Bn) and such that 1 e Tf2 and let f be a 2n-periodic, measurable and bounded function. Then

(a) if 0 < a < k, then the condition xk(f; <5) = 0(<5a) as 3 —> 0 is equivalent to the condition En( f) = 0(«~a) as n-* oo,

(b) if a = k, then xk(f; (5) = 0 (3 k) implies Ên( f) = 0 (n ~ k) as n —> oo, and E„{f) = 0 ( n ~ k) as n —>oо implies xk(f; <5) = 0 (3 k |log<5|) as <5-> 0,

(c) if a > k, then xk(f; Ô) = 0 (3 a) as Ô -* 0 implies Ê„(f) = 0 ( n ~a) as n

—>oo, and Ën( f ) = 0 (n ~ a) as n —> oo implies xk(f; 3) = 0{ôk) as 3 —> 0.

3. In this section we shall consider the case of s-convex (^-functions, 0

< s ^ 1, limiting ourselves to (p independent of the parameter. Let /„ be a Ire- periodic step function with discontinuities at Xj = nj/n, j = 0, ± 1 , ± 2 , ..., i.e.,

2 n - 1

Ц х ) = у0+ X ( y j - y j- 1

j= 1 0 X j ( x ) for x e <0, 2re>,

where 9y is 2re-periodic and

0y(x) = j j for 0 ^ x < y, for у ^ x < 2re;

obviously, ln(x) = y j for X E ( x j , x j+ l), j = 0, 1, ..., 2 n — 1. The method

(9)

applied here follows the same lines as in [6] (case (p{u) = |u|s). We shall define for ÿ = (y0, yi, y2n- i) the pseudomodular

e l<pn]( y ) = Z < p ( \ y j - y j - i \ )

j= 1

and the respective s-homogeneous F-pseudonorm ilÿllS,"1 = inf {м > 0: $ }{7/ulls) < !}•

We shall also assume that cp satisfies the condition (A2) for all и > 0, and apply the function ф(и) = sup[(p(uv)/(p(v)f Let us remark that from s-

v > О

convexity of the ^-function tp follows strict monotonicity of cp and, supposing (A2), also s-convexity and strict monotonicity of ф. Let cp_x and ф ^ г be the inverse functions to (p and ф, respectively.

Lemma 4. Let cp be a concave, s-convex tp-function without parameter, 0

< s ^ 1, satisfying the condition (A2). Then

M n ) ^

CAs)

Ф~Лс2А) n)ll)C[n]

where C1 (s) and C2(s) are positive constants independent of n and y.

P ro o f. The idea of the proof is the same as in [6]. We write

K m(v) 1 /sin j n v A r

am \ sin it; ) where a„ sin^nw 42r

sin^w dw

for m —{n — \)r + \, n, r are positive integers; then K m is a non-negative trigonometric polynomial of degree < m. Let

u mu m i я

Я

f ( z ) K m{ x - z ) d z ,

ъ

— Я

x eR ;

then Um'[ f ] e H m_ l (see [6]). Let us write

/s in in (x —у + я /2 п )\2(г_1) /sin-|rc(x — у — я/2и)\2(г-1) y,m \u s in i( x — у + Tt/2n)J \n s in i( x — у — n/2n)J

^ п ^ п ( х + я/2п )\2(г_1) /sin^n(x —я/2п) \ 2(r_1)

\n s in i( x + n/2n)J \rcsini(x — n/2n) J U i [0,](x) = Uml9A(x) + ASy>m(x),

U~ [0 J(x ) = Um [9y] (x) — A S 2n_ ym (2k — x).

R. Taberski [6] proved that t/ + [0У] е Я + _ , (ву) and U~ [ 0 J e x (0y) for

(10)

sufficiently large A = A(r), depending on r. Hence

Ëm- i ( 9 y) < III/; W - U - [0 J||„ = M (S ,>mO + S2, - , . m(2*--))||,.

We choose

Then

3e(*) =

sin^n(x + a) \ 2(r X) n s in |(x + a) J

f , l/s in in x \ 2(r_1)l , „ f , |/s in i n x \ 2(r" 1)| ,

^ (ej- 2J н и э д r x+2J*{Un3ï) r x-

0 K/n

Hence, taking r > 1 + l/2s, we have for an arbitrary и > 0:

4 5 0 ^21* ( i ) dx+2 M 4 ) '

' M ix ^ ~ ф П

0 n/n

n \U 1 Is

with a constant Cv > 0. Hence Pall* <

1 where C' = 1/CS

Г - l ( C > )

Hence the best one-sided approximation of 0y in 1%n, Em- 1 (0у)ф ^ Н З Д ^ {j/ s^ l (Cs n)

with some fy eR , for m = (n— l ) r + 1, for sufficiently large integer r. Now, let us choose an arbitrary n and taking r fixed as above, let us choose an integer q for which qr ^ n < (q + l)r. Then

Еп(@у)ф ^ Eqr(0у)ф ^ SAS 8 A s

for 0 < y e 271,

^ - . ( c ^ + i ) ) Г - Л с »

where C" = C’Jr. There exist trigonometric polynomials Pyn e H„ (ву) and Qy,ne H ~ (9 y) such that

E H( 6 y \ , = \ \ Р у , п ~ й у , п \ \ ф -

Hence, since 0 < Ру>п — ву ^ Py,„ — Qy,„, we have

(6) Similarly, (7)

\\Py,n- e y\ \ i ^ \ \ p y,n- Q yj \ i < SAS Г - Л с ; п )

\\0y-QyJ\i <

8 A s Г - Л с ; п )

(11)

Writing (as in [6])

V

= i { \ y j - y j - i \ + y j - y j - i }

and

V

= i { \ y j - y j - i \ - y j + y j - i } ,

we may express l„(x) in the form

2n—1 2n—1

/„(*) = У0+ Z Z 4Г M X) for XGK.

J= 1 J=1

We take also (see [6]) trigonometric polynomials

2n— 1 2 n - l

Р„М = Уо +

I

Л + ^ , л М - S *j- Q ,j,.(x), P„eH* (/„),

j =

1

j =

1

2n-l 2/1-1

ô,,(x) = yo + Z V 6 x ,,n W - Z p Xj.n(x), QHe H „ ( 0 -

j =

1 1=1

Applying the fact that cp is subadditive and the definition of ф, we obtain for arbitrary rjn > 0 and и > 0:

2 n

P „ ~ l 2/1— 1

I J

i n ( P x l . A x ) ~ e X j ( x ) ) ^ d x

(

0

2n

"h Z ^ Qxj,n (-^))^ dx

0

< Z ч > ( ^ У * Ы Р хрп - о х) )

2/i— 1

• Z

ф

|^l/s

j Q ^ i ^ n W x j Q x j , n

))•

By inequalities (6) and (7) we have

\\>ln(PXj, n - 0 Xjm < 1 and -\\rin(Ox r QXjJ \ i ^ 1 for

(8) Hence

rjn = Ф- Л С » 81;M

^ fan (*%•.« - 0X) ) ^ 1 and Q+ fa„ (0Xj - QXjJ ) < 1

(12)

Thus, for цп given by (8) we have

where y = (y0, yu ..., y 2 n - i ) - Similarly,

for all и > 0 and tjn given by (8). By s-convexity of <p, we have

for every и > 0. Hence

R e m a rk 1. If (p(u) = \u\p, 0 < p ^ 1, then cp_ x (и) = t (w) = u1/p and taking s = p, we obtain ij/L l (C2(s)n) = C2(p)n, and Lemma 4 yields the lemma from [6] given in B2n, 0 < p < 1.

Theorem 5. Let (p be a concave, s-convex (p-function without parameter, 0

< s ^ 1, satisfying the condition (A2), and let f be a In-periodic, bounded and measurable function. Then there holds the inequality

Cj(s) and C2(s) being the constants from Lemma 4.

P ro o f. Taking as in [6] the 2rc-periodic step functions

g„(x) = inf {/(и): Xj ^ и ^ xj+ l}, Gn{x) = sup [/(и): Xj ^ u ^ x J+l) for x e ( Xj , xj+1), j = 0 , ± 1 , ..., we have gn{x) < / ( x ) ^ G „ ( x ) . By inequality (4), we have

E„ ( /) < E„ (G„)+ ||G. - gX + E„ Ы By Lemma 4,

(13)

where

9n = ( в п ( хо ) , U n i xi), g n ( x 2 n - i ) ) , Gn = (G„(x0), •••, G J x ^ ! ) ) . But

sup {\f(u)-f(v)\: u, v e (X j, xj + l)}

< sup \ \ f ( u ) - f ( v ) \ : u, v e < x - x l5 x + x ^ ]

= w l { f , x - , 2 x l) for x e < x j , x j+1>.

Hence, we have for u > 0:

xj+1

0* ( J ' I ) <P y^T/s (/• ^ 2*l> = <?* ^ ^ ---

Since u > 0 is arbitrary, this implies

\\Gn- g n\L ^ Urn, (/, •; 2 х 1 ) | | ц) = x x(/; 2 X i ) .

Hence

£ „ (/) ^ M / ; 2xt)+ Ci(s)

Vs- 1 ( G 2 (s) nт Ж 1]+ ш л

But xj + l —Xj — n/n, and so

I < p { ^ s u p \ \ f { w ) - f ( v ) \ : D ,w e<xj . 1, x j+ 1>}

* j + i

n 2n_1 / 1 \

= 2^ I \ 4> ( y /ï ® i (/. xh 2*i) J dx Xj~ 1

n „

^ 271 !

2n— 1 *j+l/* / j

( TTT^^l ( / ’ 4 x l) )dx xj~ 1

^ JI V •; 4*i) ) < ^/ ( 4 / ^ 1 (/> ’i 4xi) )’\ W whence

1 \ , 1 _rnl / 0n

l/s for all и > 0. Hence

1

,1/s

[n]

< ll<^i if, •; 4*i)ll„ = Ji (/; 4 x j,

(14)

and so

Similarly,

Il9.lt”1 Ht, (/; 4x,) $ 2ht, (/; 2x,).

Il6.lt"1 « 2 n t,(/; 2x,).

Thus,

Èn( f К / 4C 1(s)n \ . _ , V + * U ( C 2(s)n

R e m a r k 2. In case of (p(u) = |u|s, 0 < s ^ 1, wè obtain 4C i(s)n _ C,(s)

Г - Л с2(*)п) Cz(s)’

whence Theorem 5 gives Theorem 1 of [6]. Let us still remark that in the general case, boundedness of

1 4Ci(s)n

Ф - i ( C 2 ( s ) n )

is equivalent to boundedness of -\j/(K n 1/s) with some К > 0, and this in turn n

is equivalent to the following condition: there exist positive constant К and C such that the inequality (p(Knl/su) ^ Crup(u) holds for every и > 0.

Theorem 5 together with [4], Theorem 2.2 give easily the following result:

Th e o r e m 6. Let cp be a concave, strongly s-convex (p-function without

parameter, satisfying the condition (d 2), 0 < s ^ 1, and let f be a 2n-periodic, measurable and bounded function. Then

(a) i/0 < a < s, then En( f) = 0 ( n ~ a) as n —*• oo implies i j ( /; <5) = 0 (S a) as Ô —> 0, and (/; <5) = 0 (ô a) as Ô -* 0 implies

£ „ (/) = o :+

Ф -1( c 2 (s) n) as n-+ оо ,

(b) if a = s, then En( f) = 0 (n s) as n-> oo implies (/; S) = 0((5s|log<5|) as Ô -* 0 and t i (/; <5) = 0(<5S) as Ô -* 0 implies

En{f) = o ( n ~ s + - П( г (л v) as n-* oo, V Ф- i (C2(s)n)J

(c) if a > s, then En( f ) = О (п~л) as n -> oo implies (/; <5) = 0(<$s) as Ô - 0 .

(15)

References

[1] H. H u d z ik , A. K a m in s k a , Equivalence o f the Orlicz and Luxemburg norms in generalized Orlicz spaces LM(T), Functiones et Approx. 9 (1980), 29-37.

[2] H. M u s ie la k , On some inequalities in spaces of integrable functions, Proc. Intern. Confer, on Constructive Theory of Functions, Sofia 1984, 629-633.

[3] —, On the x-modulus o f smoothness in generalized Orlicz spaces, Comment. Math. 25 (1985), 285-293.

[4] — , Converse type inequalities for averaged moduli o f smoothness in Orlicz spaces generated by concave functions, ibidem 26 (1986) (to appear).

[5] Bl. S e n d o v , V. A. P o p o v , Averaged moduli o f smoothness (in Bulgarian), Sofia 1983.

[6] R. T a b e r s k i, One-sided trigonometric approximation in metrics of the Fréchet spaces LP (0

< p < 1), Math. Nachr. 123 (1985), 36-46.

Cytaty

Powiązane dokumenty

The first step of our proof is a general “scattered” reduction of the theorem to the same statement but now only for metric spaces M which are both nowhere locally compact

Let us now recall the notion of α-proper forcing for a countable ordinal α saying that, given an ∈-chain of length α of countable elementary sum- bodels of some large enough structure

the minor ar s, one needs a nontrivial estimate for exponential sums over.. primes in arithmeti progressions to every individual and large

To estimate the second moment we use the method of Balasubramanian–Ramachandra which is useful to observe the dependence on q and τ (see the proof of Lemma 2 0 of [1]), and use

We treat the contribution of these divisors in this section, leaving the treatment for the remaining divisors, which are of the form m ∗ t with ω(t) &gt; K, for the final section..

On approximation of analytic functions and generalized orders.. by Adam

Which pairs of Banach algebras A and B have the property that every unital invertibility pre- serving linear map from A to B is a Jordan homomorphism.. In this article, all

The natural method to prove this is to use the integral represen- tation of ultraspherical polynomials given by the Dirichlet–Mehler formula, see [7, 10.9, 32], (whose (2.2) itself