• Nie Znaleziono Wyników

ON THE THERMAL BOUNDARY EFFECT BEHAVIOR IN THE HEXAGONAL-TYPE BIPERIODIC ISOTROPIC DIVIDING WALLS

N/A
N/A
Protected

Academic year: 2021

Share "ON THE THERMAL BOUNDARY EFFECT BEHAVIOR IN THE HEXAGONAL-TYPE BIPERIODIC ISOTROPIC DIVIDING WALLS"

Copied!
11
0
0

Pełen tekst

(1)

ON THE THERMAL BOUNDARY EFFECT BEHAVIOR IN THE HEXAGONAL-TYPE BIPERIODIC ISOTROPIC DIVIDING WALLS

Marta Mazewska

Warsaw University of Life Sciences – SGGW

Abstract. This paper shows the analysis of the temperature boundary effect behavior in the dividing wall made of the conductor with bi-periodic material structure in which every surface parallel to the outside and the inside surface is bi-periodic. Conductor is made of a special case of hexagonal-type material structure. As a tool of modeling there has been chosen the tolerance averaging technique.

Key words: tolerance averaging, heat conduction, biperiodic conductors, boundary effect

INTRODUCTION. CASE DEFINITION

This paper deals situations in which there is necessity to protect the interior of some space from highly oscillating external temperatures. It shows some attempt of using the tolerance averaging technique [WoĨniak and Wierzbicki 2000, WoĨniak (ed.) 2009, 2010, JĊdrysiak 2010] to consider heat conduction in wall consist of biperiodic hexagonal-type material structure (Fig. 1.) that would have properties described below. Issues of mode- ling of hexagonal structures has been already raised in [WoĨniak and Wierzbicki 2000, Nagórko and Wągrowska 2002, Cielecka and JĊdrysiak 2006].

The aim of this paper is to analyze some special kind of behavior observed in consi- dered structures that is called boundary effect behavior. This phenomena consist on sup- pressing the À uctuation amplitudes in very thin selvedge layer of considered conductor.

The boundary effect is described by boundary effect equation.

First, let’s introduce the mentioned hexagonal type structure. In the analyzed case ev- ery cell is divided into three material rhombus parts O O¡, ¡,O¡ with constant thermal properties which in that case are isotropic. Single hexagon will be named as basic cell and denoted by Ȝǻ. Ȝ is a side length of such cell and it is equal to 1.

Corresponding author – Adres do korespondencji: Marta Mazewska, Warsaw University of Life Sciences – SGGW, Department of Civil Engineering, 02-776 Warsaw, 159 Nowoursynowska St., Poland, e-mail: marta_mazewska@sggw.pl

(2)

Ȝǻ is illustrated into Figure 2. Let’s also pay attention to the three vectors t1 = [1, 0, 0]T,

2 [ 0.5, 3/2, 0] , T 3 [ 0.5, 3/2, 0]T

t  t   on Figure 2. These three vectors coincide with shorter diagonals of three rhombus and their introduction is necessary to analyze problems of heat conduction in next paragraphs.

The hexagonal cell is situated in Carthesian orthogonal coordinate system Ox1x2x3 in which the plane Ox1x2 is a biperiodicity plane, axis Ox1 includes the shorter diagonal of a distinguish rhombus with the ¿ rst number and Ox3 = Oz is normal to mentioned bipe- riodicity plane.

The considerations of this paper are limited to special case in which thermal proper- ties of each rhombus are described by heat conductivity tensor:

  

    

  

 >  @7

N N N

. . [ N N N N N

N N N

N

ª º

« » {

« »

« »

¬ ¼

(1) Fig. 1. The conductor with hexagonal-type material structure

Rys. 1. Przewodnik o strukturze heksagonalnej

 Fig. 2. Basic hexagonal cell

Rys. 2. Podstawowa komórka heksagonalna

(3)

and by speci¿ c heat c(·). It has to be emphasize that in considered case the heat conductiv- ity tensor K(·) is proportional to identity matrix and for each of three rhombus we get:

  

     

  

D D

.D N , N D , ,, ,,,

ª º

« »

« »

« »

¬ ¼

(2)

Also matrix Ka = kaI is the 2 x 2 heat conductivity matrix and it is created after remo- ving the third row and third column from Ka.

For the purpose of further consideration there is assumed jump discontinuous of  

. ˜ 5 u on interfaces between three rhombus sections which are treated as perfectly bonded [Vutz and Angrist 1970, Sideman and Moalem-Maron 1982].

BOUNDARY EFFECT EQUATION

Boundary effect equation is a part of one of the model equations received using the tolerance averaging technique, cf. [WoĨniak and Wierzbicki 2000, Nagórko 2008, Micha- lak 2010], from the well-known parabolic heat transfer equation:

> @

FT ’  w ˜ . ’  w T E (3)

Symbol b means the heat sources ¿ eld, c is speci¿ c heat ¿ eld and ș is temperature

¿ eld. We also denote ’ {JUDG w for JUDG > { w w  @7, w {> w@7, w { w w  [,

  [

w { w w , w { w w  [. Assuming that:

   

V\V V tttt

Y (4)

where \ are À uctuation amplitudes and6







H 

[ + JN J O

 ¢ ²

Y Z (5)

we get two forms of boundary effect equation:

>    @   ^ ` 

JFJ JN J 

O ¢ ²  ¢vvvv ²w w vvvv  OHw vvvv K vvvv (6)

and

> JFJ JN J 7 @ 

O ¢ ²  ¢Z ²w w Z M(x3 Z (7)

Here and in the sequel symbol ¢˜² stands for integral averaging operation over related representative cell, which in this contribution will be identi¿ ed as 2Ȝ¨. Vector will be

(4)

referred to as a À uctuation vector and its two ¿ rst coordinates are the same asin v. The third coordinate is equal to 0 so it can be skipped and we can use two-coordinate vector v.

The concept of the À uctuation vector has been already used in the tolerance modeling approach, cf. [Kula et al. 2012, Mazewska and Wierzbicki 2012, 2013a, b]. Vector w also has two coordinates and is referred to as a generalized amplitude vector. Exponen- tial coef¿ cient in (5) is treated as a value of the Lapunov exponent operator on matrix



 

 + [ JN J O

 ¢ ² , cf. [Lai-Sang 2013]. The coef¿ cients that appear in both equations (6) and (7) in considered case are described by:

  

  

    

^ ` 









,,, ,, , ,,, ,, ,

, ,, ,,,

N N N N N N R

JN J N N N N JJ R

P P P H

P P P H

     

¢ ²   

2 2 2

2 2 2

K [( ( ( ( ( ( ](1 I

[( ( ( ] (1

H

(8)

ȝ are parameters, that will be described in next paragraph. I is 2 x 2 identity matrix. Coef-

¿ cient M = M(x3) is here a matrix that appears after changing v into w:

 

 

  





H ^ `H +  ^ `



[ [

JN J JN J

[ JN J

O  O

¢ ² ¢ ² 

¢ ²

2H 2H

M( K 4H K (9)

All new symbols used in (8) will be presented below. First we need to focus on the function g(x). We deal with three of this functions. Those functions are some parts of

    

K [ K [ K [ de¿ ned by K [U OJU O[ , for [5 and r = 1, 2, 3. The choice of K [ K [ K [     will be realized as:

    

SHDNV PRXQG

    

SHDNV PRXQG

    

SHDNV PRXQG

> @

> URW URW

> URW URW URW URW @

4 4

4 4 4 4

K [ J [ G J [

K [ J [ G J [

K [ J [ G J [

O P O H O

O P O H O

O P O H O

 

 

 







D D

(10)

where rotQ(x) = Q(x – x0)T + x0, x  R2 means rotation over 2ʌ/3 in R2 with an arbitrary chosen origin of hexagonal cell as a center of rotation and Q is orthogonal matrix of rota- tion over 2ʌ/3 in R2:

 

 

 

 

ª º

 

« »

« »

« »

«  »

¬ ¼

Q (11)

Residual parts HOG JU PRXQG OURW4U [ tends to zero while Ho.

(5)

This residuals, together with six parameters ȝ1, ȝ2, ȝ3, d1, d2, d3 should result a re- quirement that related continuity conditions imposed the tolerance heat À ux vector should be satis¿ ed.

Under introduced functions h1(x), h2(x), h3(x) continuity condition (for the normal component of the tolerance heat À ux) takes place if the following two equations are satis-

¿ ed. First refers to parameters ȝ1, ȝ2, ȝ3:







 

 

 

,,, ,, ,,, ,

, ,,, ,, ,

,,, ,, ,, ,

N N N N

N N N N

N N N N

P P P

ª   º ª º ª º

« » « » « »

«   » « » « »

«   » « » « »¬ ¼

« » « »

¬ ¼ ¬ ¼

(12)

and the second to parameters d1, d2, d3:





 

 







,, ,,,

, ,,,

, ,,

N N G '

N N G '

N N G '

ª º ª º ª º

« » « » « »

« » « » « »

« » « » « »¬ ¼

« » « »

¬ ¼ ¬ ¼

(13) Fig. 3. Function gpeaks

Rys. 3. Funkcja gpeaks

(6)

where:

           



 

           



 

 

^ `

 

^ `

 

^

, ,, ,,,

,, , ,, ,,,

, ,, ,,,

,,, ,, ,,, ,

' R N N N

N N N N

' R N N N

N N N N

' R

H P P P P P P

P P

H P P P P P P

P P

H P

     

  

     

  

 (1

(1

(1           

 

`



, ,, ,,,

, ,,, , ,,

N N N

N N N N

P P P P P

P P

    

  

Solution to equation (12) is not unique and can be written in the form:







, ,,

,,, ,,

, ,,

, ,,,

N N

N N

N N N N P ]

P ]

P ]

­ 

° 

°° 

°®

° 

°°

°¯

(14)

in which ] 5. As the İ goes to 0, the part marked as R H satisfy condition R H  and hence it can be ignored in expressions (13) as well as in (8).

ILLUSTRATIVE PROBLEM

Boundary effect problem for considered issue is related to the stationary case of boun- dary effect equation (7) which in such case takes form:

 JN J 7 

O ¢ ²w w Z MZ (15)

together with boundary conditions:

 



 





^  ` Z Z

/

/

] [ ] [ /

ª º

« »

¬ ¼

Z Z

Z Z

Z Z

(16)

We will use solution to the similar simpler problem formulated and investigated in WoĨniak et al. [2002] which can be rewritten in the form:

(7)

(17)

In above K O /and



0 N

F which in considered case is equivalent to



^ ` N F K

Boundary conditions can be also rewritten for temperatures ș and u as it is shown in above Figure 4. The connection between constant temperatures șoutside and șinside and averaged temperatures uoutside and uinside is called micro-macro hypothesis which is well known and frequently used in tolerance averaging technique.

To show some solution of boundary effect equation (15) there have been assumed some values of N N, ,,N,,,:

3

3

0

0

1 1

1 2

1 21

2

1 1

1 21

2

e e

e

e e

e e

e e

L

L x

x

F F

F K K

O

F K F

K

F K F

O

F K F

K



§ ·

¨ ¸

¨  ¸ 

¨ ¸

¨  ¸

¨ ¹

©

§ ·

¨ ¸

 ¨¨¨¨©   ¸¸¸¹







w w

w w

w

1

1 1

1

1

 Fig. 4. Hexagonally periodic dividing wall

Rys. 4. Przegroda o periodycznej strukturze heksagonalnej

(8)

(18)

There have been calculated proper values of parameters ȝr and dr:

 

 

 

 

 

 

G G G P

P P

­  ­ 

° °

° Ÿ °

® ®

° °

° °

¯ ¯

(19)

Under introduced values of parameters in (19) continuity condition (for the normal component of the tolerance heat À ux) is satis¿ ed. Since we have assumed that averaged values of gmouds (x1, x2) over the area of whole representative cell are close to zero, to calculate the value of coef¿ cient (k33) there should be taken only function gpeaks (x1, x2).

For gpeaks(x1, x2) we have ¢JSHDNV SHDNVJ ² ¢ ² JJ  For proposed kI, kII, kIII we get Ȥ = 14.25. Moreover, Ȝ = 0.02 m or 0.1 m and width of wall L = 0.3 m and hence Ș = 0.07 or Ș = 0.33, respectively.

There have been also assumed values of boundary conditions (16):



 

  / 

ª º ª º

« » « »

¬ ¼ ¬ ¼

Z Z (20)

Both boundary vectors w0 and wL satisfy condition w1 = w2 and hence the graphs for w1 and w2 coincide.

The quotient F K is treated as certain measure of the intensity of boundary effect  behavior. The below graphs illustrate the interrelation between intensity of boundary ef- fect behavior F K and nondimentional microstructure parameter Ș for three arbitrary 

¿ xed values of Ȥ and mean conductivity parameter Ȥ for three arbitrary ¿ xed values of Ș.

FINAL REMARKS

The interpretation of solution showed on Figure 5 is related with results presented on Figure 6 and Figure 7. The intensity of boundary effect grows with increase of mean conductivity parameter Ȥ and decrease of nondimensional microstructure parameter Ș.

Boundary effect is stronger for smaller cell and larger width of wall.







 : P.

 : P.

 : P.

, ,

,, ,,

,,, ,,,

N N

N N

N N

˜

˜

˜

(9)

Three lines presented on Figure 5 shows that:

1. The most important for boundary effect intensity is small dimension of cell Ȝ and small value of quotient Ȝ/L.

2. It is better to reduce the dimension of cell than to increase the value of Ȥ which can be received by improvement of thermal properties of wall in the third direction (parallel to axis Oz). Examples on Figure 5 shows that stronger boundary effect appears for three times smaller cell than for three times higher value Ȥ (compare dashed and dot-dashed lines).

3. The wall should have weaker thermal properties in the surface of biperiodicity and better in the third direction (parallel to axis Oz).

4. For suf¿ ciently large dimension of cell boundary effect intensity is small or even completely disappears (compare dashed and continuous lines).



Fig. 5. Solution to boundary effect issue

Rys. 5. Rozwiązanie zagadnienia efektu brzegowego



Fig. 6. The interrelation between intensity of boundary effect behavior and nondimensional mic- rostructure parameter

Rys. 6. ZaleĪnoĞü miĊdzy efektem brzegowym a bezwymiarowym parametrem mikrostruktury

(10)

This paper considers heat conductivity for some special case of hexagonal-type mate- rial structure in which the single hexagonal cell consists of three constituents with rhom- bus cross-section. Constituents have different but isotropic material structure. A new shape function proposed in the framework assures that tolerance heat À ux vector has continuous crossing normal to the surfaces between constituents of hexagonal cell. The most important results received in this paper concern boundary effect problem solution for described hexagonal-type dividing wall.

REFERENCES

Cielecka I., JĊdrysiak J., 2006. A non-asymptotic model of dynamics of honeycomb lattice-type plates. J. Sound and Vibration 296, 130–149.

Jedrysiak J., 2010. Termomechanika laminatów, páyt i powáok o funkcyjnej gradacji wáasnoĞci.

Lodz Technical University Press, Lodz.

Kula D., Mazewska M., Wierzbicki E., 2012. Some remarks on the tolerance averaging of heat con- duction In chessboard palisade-type periodic composites. Scienti¿ c Review, Engineering and Enviromental Sciences 21 (3), 57, 131–140.

Lai-Sang Young, 2013. Mathematical theory of Lyapunov exponents. Journal of Physics A: Math- ematical and Theoretical 46, 254001.

Mazewska M., Wierzbicki E., 2013a. Modelowanie tolerancyjne przewodnictwa ciepáa w kompo- zytach o strukturze dwukierunkowo-periodycznej. Acta Scientiarum Polonorum, Archi- tectura 12 (1), 3–17.

Mazewska M., Wierzbicki E., 2013b. On the thermal boundary effect behavior in the hexagonal- type biperiodic dividing wall. Meccanica (in the course of publication).

Michalak B., 2010. Termomechanika ciaá z pewną niejednorodną mikrostrukturą: technika toleran- cyjnej aproksymacji. Lodz Technical University Press, Lodz.

Nagórko W., 2008. Wybrane metody modelowania páyt niejednorodnych. Publications of Warsaw University of Life Sciences – SGGW, Warsaw.

Nagórko W., Wągrowska M., 2002. A contribution to model ling of composite solids. J. Theor.

Appl. Mech. 40, 149–158.

Fig. 7. The interrelation between intensity of boundary effect behavior and mean conductivity pa- rameter

Rys. 7. ZaleĪnoĞü miĊdzy efektem brzegowym a parametrem przewodnictwa cieplnego

(11)

Sideman S., Moalem-Maron D., 1982. Direct Contact Condensation, Advances in Heat Transfer.

Academic Press, New York.

Vutz N., Angrist S.W., 1970. Thermal Contact Resistance of Anisotropic Materials. J. Heat Trans- fer 92 (1), 17–20.

Wierzbicki E., WoĨniak Cz., 2000. On the dynamic behaviour of honeycomb based composite solids. Acta Mechanica 141, 161–172.

WoĨniak Cz., Wierzbicki E., 2000. Averaging techniques in thermomechanics of composite solids.

CzĊstochowa University of Technology Press, CzĊstochowa.

WoĨniak Cz. (ed.), 2009. Thermomechanics of microheterogeneous solids and structures. Toler- ance averaging approach. Lodz Technical University Press, Lodz.

WoĨniak Cz. (ed.), 2010. Developments in Mathematical Modeling and Analysis of Microstruc- tured Media. Silesian Technical University Press, Gliwice.

WoĨniak M., Wierzbicki E., WoĨniak Cz., 2002. A macroscopic model of the diffusion and heat transfer processes in a periodically micro-strati¿ ed solid layer. Acta Mechanica 157, 175–185.

ZJAWISKO EFEKTU BRZEGOWEGO W DWUKIERUNKOWO PERIODYCZNEJ PRZEGRODZIE O IZOTROPOWEJ STRUKTURZE HEKSAGONALNEJ

Streszczenie. W niniejszej pracy przeanalizowano zjawisko temperaturowego efektu brze- gowego w przegrodzie wykonanej z przewodnika o dwukierunkowo periodycznej struk- turze materialnej, w której kaĪda powierzchnia równolegáa do wewnĊtrznej i zewnĊtrznej powierzchni jest páaszczyzną periodycznoĞci. Przewodnik wykonany jest ze szczególnego rodzaju struktury heksagonalnej. Jako narzĊdzie badaĔ wykorzystano technikĊ tolerancyj- nego uĞredniania.

Sáowa kluczowe: uĞrednianie tolerancyjne, przewodnictwo ciepáa, przewodniki dwukie- runkowo periodyczne, efekt brzegowy

Accepted for print – Zaakceptowano do druku: 20.12.2013

Cytaty

Powiązane dokumenty

Такое отношение выражается по следующим признакам: ● по отношению к предмету как орудию, с помощью которого совер- шается действие или

W wielu wspólnotach autonomicznych Hiszpanii powstały rządowe instytucje od- powiedzialne za rozwój turystyki na obszarach wiejskich (Consejerías de Turismo y Agricultura)

Owej łączności indianista doszukiwał się zarówno w fakcie pojawiania się w tym okresie sporej liczby przekładów i studiów, jak i w kontynuow aniu myśli

Wed³ug prawa bu³garskiego, azyl w postaci statusu uchodŸcy jest gwarantowany cudzoziemcom bêd¹cym ofiarami osobistych przekonañ lub dzia³alnoœci w obronie uznanych

Despite the model is general, we focus first on contact between a plastically deformable body with a sinusoidal surface and a rigid or an elastic platen in Chapter 3. The

Odmiennie przedstawiała się stratygrafia w pół- nocnej partii wykopu, gdzie częściowo pod nowożytną warstwą niwelacyjną, a częściowo tuż pod hu- musem odsłonięto

Since the subject of this paper is a certain periodic material structures we shall restrict ourselves to the tolerance model equations obtained by

Volgens hen kristal- liseren alle gashydraten in een van de twee kubische strukturen I en II, waarin de gastmolekulen zich bevinden in holten die gevormd worden door een netwerk van