• Nie Znaleziono Wyników

Problematic Keplerian rotation

N/A
N/A
Protected

Academic year: 2021

Share "Problematic Keplerian rotation"

Copied!
71
0
0

Pełen tekst

(1)

Problematic Keplerian rotation

Andrzej Odrzywołek

Zakład Teorii Względności i Astrofizyki

11.12.2019, 10:15, D-2-02

(2)

The simple research plan

1 extract data from numerical GR simulation of binary neutron star merger

2 calculate rotation law j pΩq inside apparently stationary, low-mass toroid emerging after Kerr black hole formation

3 compare with analytical formula derived assuming circular orbits in Boyer-Lindquist or other „standard” coordinates (so-called Relativistic Keplerian Rotation Law )

4 fill slots (or whatever your motivation is) Any questions? Only one:

What took you so long? (18 months so far . . . )

(3)

1. BNS simulation and data extraction

Data used from: Roberto De Pietri, Alessandra Feo, F. Maione, F. L¨offler, Modeling equal and unequal mass binary neutron star mergers using public codes, Physical Review D, Volume 93, Issue 6, id.064047.

1 XY and XZ slices of full 3D data

2 400 evolution snapshots covering from late NS-NS inspiral to toroid stabilization

3 Carpet-HDF5 BSSN fixed mesh-refinemet (6 levels) files for:

slicing: α (1+log), βX, βY, βZ (Γ-driver ?) [ADM-base]

space metric: gXX, gXY, gYY, gXZ, gZZ, gYZ [ADM-base]

moving fluid: VX, VY, VZ, ρ [HYDRO-base]

4 G “ c “ 1 Md [CU] units - Cactus Units

(4)
(5)

T-XYZ coordinates?

Assuming above, we could simply transform to „polar coords” on XY plane:

X “ R cos ϕ, Y “ R sin ϕ where R is „radius” and ϕ „angle”.

(6)

Angular velocity and momentum

Lorentz factor:

W “ 1

a1 ´ gijViVj, Ut” U0 “ W α

4-velocity:

Uϕ“ W p´Y VX`X VYq, Uϕ “ WX pVY ´ βY{αq ´ Y pVX ´ βX{αq X2` Y2

Ω and j :

Ω “ Uϕ

Ut, j “ UϕUt.

Data was painfully extracted using ScatterPlot and built-in Carpet-HDF5 reader in LLNL Visit.

(7)

Relativistic Kepler’s law

1 Newton (3rd Kepler law):

1

j “ pΩ{pGmq2q13

2 Schwarzschild:

1

j “ pΩ{pGmq2q13 ´ 3Ω{c2

3 Kerr:

j “ `a ` ξ3˘ `a2´ 2aξ ` ξ4˘

ξ3p2a ` ξ3´ 3ξq , ξ “ p1{Ω ´ aq1{3, pm “ 1q

(8)

Expected j pΩq

(9)

Expected j pΩq

(10)

Expected j pΩq

(11)

Raw j pΩq data from simulation

(12)

Raw j pΩq data from simulation

(13)

Raw j pΩq data from simulation

(14)

Initial stage of apparent „success”

1 above analysis was done „instantly” by A.O. & P.M in June 2018

2 initial impression:

during inspiral: Newtonian rotation law from orbiting neutron stars visible

during merger: completely random movements

after collapse to the black hole: instant formation of U-shaped j pΩq curve, as expected for low mass (6.2 ˆ 10´5Mdq toroid

3 TODO: find fitting parameters m, a of the formula

(15)

It does not match . . .

More detailed analysis revealed irreducible differences between j pΩq from numerical simulation and analytical formula.

(16)

1 Q: is the most dense part of toroid is relevant (ρ cut) ? A: yes, but at least ρ ă 0.5ρmax must be rejected.

2 Q: is only some part of toroid relevant (above/below ISCO/minimum, R cut)?

A: unclear selection criteria, reduces j pΩq to slope/single point

3 Q: meridional circulation?

A: no, boundary condition VZ “ 0 at equator prevent it

4 Q: Is toroid non-stationary (vortex/shock/spiral arm - like)?

A: Looks stable for many orbits, but slowly loose mass.

However, Vr{Vϕ ! 1.

5 Q: other rotation law (κ ‰ 3)?

A: Yes, near horizon κ » 2.

6 Q: poor resolution/quality of GR simulation?

A: Better model from L. Rezzola behaves similarly.

7 Q: is this data processing issue?

A: no, cross checked VisIt/SimTools, results identical.

(17)

More questions

1 outcome is likely Kerr metric, but in what kind of coordinates?

2 is Kepler law j pΩq invariant (geometric object with transformation law)?

3 P.M. shows in „cylindrical” coords, both j and Ω must be corrected by a factor:

c gtt gt1t1

where gtt is in coords where analytical form j pΩq has been derived, and gt1t1 from numerics.

4 matching is improved, but still not satisfactory

5 is rotation of initial neutron stars relevant?

6 is coordinate system determined in simulation and how?

7 does it „remember” initial distortion caused by inspiraling neutron stars?

8 how 4 different definitions of angular momentum are related to each other? which one is the best for data analysis?

(18)

Kozłowski, Jaroszyński & Abramowicz 1978

(19)

Kozłowski, Jaroszyński & Abramowicz 1978

(20)

Kozłowski, Jaroszyński & Abramowicz 1978

(21)

Kozłowski, Jaroszyński & Abramowicz 1978

(22)

Example for Schwarzschild metric

4 newtonowsko równoważne definicje j

1

j “ Rc2Ω “

?mR

2

j “ UϕUt

?mR 1

b 1 ´3mR

3

j “ Uϕ

?mR 1

1 ´3mR

4

l “ ´Uϕ

Ut

?mR 1

1 ´2mR

(23)

How to use numerically evolved coords?

In numerics both metric and coords are evolved!

In textbook coordinates:

Ω “ Uϕ Ut In arbitrary coordinates:

Ω “ ηµUµ ηνξν ´ ξµUµ ηνην ξµUµ ξνην´ ηµUµ ξνξν

where η is (asymptotically) timelike, ξ spacelike Killing vector.

(24)

Example: Schwarzschild metric in skew coords

¨

˚

˚

˚

˚

˚

˝

2M

R ´ 1 0 0 0

0 R

3´2Mpy2`z2q

R2pR´2Mq

2Mxy R2pR´2Mq

2Mxz R2pR´2Mq

0 R2pR´2Mq2Mxy

R3´2Mpx2`z2q

R2pR´2Mq

2Myz R2pR´2Mq

0 R2pR´2Mq2Mxz

2Myz R2pR´2Mq

R3´2Mpx2`y2q

R2pR´2Mq

˛

With linear transformation of xy -coords:

ˆ x1 y1

˙

ˆ λ11 λ12

λ21 λ22

˙ ˆ x y

˙

(25)

Kepler law j pΩq after skew transform of Schwarzschild

metric.

(26)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(27)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(28)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(29)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(30)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(31)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(32)

Conclusions: What to do now?

it looks like Kozłowski, Jaroszyński & Abramowicz provided valid procedure for extraction of j pΩq in general coords is this the only valid procedure?

how to obtain (or at least verify) Killing vectors from numerical metric?

any volunteers to verify KJA (1978) formulas for Kerr metric in skew coords by direct calculation? (not orthogonal Killing vectors, non-zero shifts)

is above applicable also for heavy toroids (non-Kerr spacetime)?

is above related to j pΩq misfit problem at all?

deeper understanding of dynamical slicing side-effects in numerical GR is mandatory to proper interpretation of the results (so far we were happy as long as it did not crash)

(33)

EXTRA SLIDES

(34)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(35)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(36)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(37)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(38)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(39)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(40)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(41)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(42)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(43)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(44)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(45)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(46)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(47)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(48)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(49)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(50)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(51)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(52)

Zderzenie/zlanie się gwiazd neutronowych: gęstość

(53)

Zderzenie/zlanie się gwiazd neutronowych: α

(54)

Zderzenie/zlanie się gwiazd neutronowych: β

(55)

Zderzenia gwiazd neutronowych (kilonova)

Masy gwiazd neutronowych:

M1 “ M2 “ 1.6 Md

Czarna dziura:

M “ 2.83 Md, a » 0.44 Masa toroidu:

MT

6.2 ˆ 10´5 Md

(56)

Zderzenia gwiazd neutronowych (kilonova)

Masy gwiazd neutronowych:

M1 “ M2 “ 1.6 Md

Czarna dziura:

M “ 2.83 Md, a » 0.44 Masa toroidu:

MT

6.2 ˆ 10´5 Md

(57)

Zderzenia gwiazd neutronowych (kilonova)

Masy gwiazd neutronowych:

M1 “ M2 “ 1.6 Md

Czarna dziura:

M “ 2.83 Md, a » 0.44 Masa toroidu:

MT

6.2 ˆ 10´5 Md

(58)

Zderzenia gwiazd neutronowych (kilonova)

Masy gwiazd neutronowych:

M1 “ M2 “ 1.6 Md

Czarna dziura:

M “ 2.83 Md, a » 0.44 Masa toroidu:

MT

6.2 ˆ 10´5 Md

(59)

Zderzenia gwiazd neutronowych (kilonova)

Masy gwiazd neutronowych:

M1 “ M2 “ 1.6 Md

Czarna dziura:

M “ 2.83 Md, a » 0.44 Masa toroidu:

MT

6.2 ˆ 10´5 Md

(60)

Zderzenia gwiazd neutronowych (kilonova)

Masy gwiazd neutronowych:

M1 “ M2 “ 1.6 Md

Czarna dziura:

M “ 2.83 Md, a » 0.44 Masa toroidu:

MT

6.2 ˆ 10´5 Md

(61)

Zderzenia gwiazd neutronowych (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

(62)

Zderzenia gwiazd neutronowych (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

(63)

Zderzenia gwiazd neutronowych (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

(64)

Zderzenia gwiazd neutronowych (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

(65)

Zderzenia gwiazd neutronowych (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

(66)

Initial conditions

w teorii newtona układ podwójny jest „stacjonarny”

w OTW z powodu emisji fal grawitacyjnych parametry orbity zmieniają się

powyższy efekt można „skasować” napromieniowując układ falami grawitacyjnymi

Synchronizacja spin-orbita

1 typowo w astrofizyce ciasne układy podwójne są zsynchronizowane

2 przykłady: Ziemia-Księżyc (synchroniczny obrót), Pluton-Charon (pełna synchronizacja)

3 maksymalna częstość rotacji gwiazd neutronowych do 1 kHZ

4 maksymalna częstość orbitalna 2 kHz

(67)

GW 170817 & GRB 170817A

1 częstość wzrasta od 32 Hz do 2048 Hz w ciągu 60 s

2 3000 pełnych orbit

(68)

GW 170817 & GRB 170817A

1 częstość wzrasta od 32 Hz do 2048 Hz w ciągu 60 s

(69)

Density/radial cuts

(70)

Meridional circulation

(71)

Non-stationary flow

Cytaty

Powiązane dokumenty

2 General-relativistic rotation: Self-gravitating fluid tori in motion around black holes, Janusz Karkowski, Wojciech Kulczycki, Patryk Mach, Edward Malec, Andrzej Odrzywołek,

The road-segments are considered to be in good condition if they have a condition value of 1 while a value of 0 represents bad condition. As the paper

Jej  pomysłodawcą i wytwórcą był John Hefty, który w 1980  roku w Lewisburg, w Pensylwanii, założył firmę Create-

Since 2011, the group of young people from the age of 15 to 29 who are in NEET status has been the highest priority in the EU youth employment policy and was referred to in many of

Solid Edge® software for Wiring Design enables the creation of fully functional and manufactur- able designs in a seamless mechanical computer-aided design (MCAD) and

A few days later, on June 28, 1902, “The Holy Cross Roman Catholic Church Society of Salamanca, New York”, purchased the deed to the land that at that time was occupied by the

Streszczenie: przedmiotem artykułu jest ukazanie zadań wobec rodziny stawianych kobie- tom aktywnym zawodowo przez redakcję poznańskiego czasopisma „gazeta dla kobiet”, które

Ex- plosive mixtures of dust and air may form during transport (e.g. in bucket elevators) and during the storage of raw mate- rials such as cereals, sugar and flour. An explosion