• Nie Znaleziono Wyników

Detecting anthropogenic footprints in sea level rise

N/A
N/A
Protected

Academic year: 2021

Share "Detecting anthropogenic footprints in sea level rise"

Copied!
12
0
0

Pełen tekst

(1)

Delft University of Technology

Detecting anthropogenic footprints in sea level rise

Dangendorf, S.; Marcos, M.; Muller, A; Zorita, E.; Riva, Riccardo; Berk, K.; Jensen, J DOI

10.1038/ncomms8849

Publication date 2015

Document Version Final published version Published in

Nature Communications

Citation (APA)

Dangendorf, S., Marcos, M., Muller, A., Zorita, E., Riva, R., Berk, K., & Jensen, J. (2015). Detecting anthropogenic footprints in sea level rise. Nature Communications, 6(7849), 1. [10.1038/ncomms8849]. https://doi.org/10.1038/ncomms8849

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

(2)

Supplementary Figure 1 | Estimating natural trends in MSL. a, Visualization of the quantities

relative trend x=Δ/σ, standard deviation σ, and the autocorrelation value (depending on the case: Hurst exponent α or lag-1 autocorrelation c) for a synthetic data set of the length L = 1320 months.

Δ is the total linear long-term change as determined by a common least squares fit (red line). σ is the

standard deviation of the residuals (grey) around the target signal. The Hurst exponent α or lag-1 autocorrelation c describes the memory in the data set. The quantity of interest is the ratio x=Δ/σ. b,

Probability density function of natural trends x=Δ/σ. The integral over the white area below the curve defines the confidence probability Q. The confidence interval is given by –xQ and xQ. If an

observed trend is outside this interval, it is considered to be unnatural.

Relative Quantity x = Δ /σ Δ α , σ, c a Time [-] 100 400 700 1000 MSL [-] -1 0 1 2 3 4 b x [-] -x Q 0 xQ P(x) [-] 0.1 0.2 0.3 0.4 Q

(3)

Supplementary Figure 2 | Performance of the LRM. Shown is a comparison between the ATM

derived via the LRM and the state of the art numerical model HAMSOM. Four selective time series from around the North Sea are shown in a, while the correlation coefficients of all tide gauge locations are shown in b.

Time [yr] ATM [cm] Ijmuiden Cuxhaven Hirtshals Aberdeen HAMSOM LRM 1950 1960 1970 1980 1990 2000 −200 −100 0 100 200 300 400 500 600 r [−] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Latitude [°] Longitude [°] −12 −6 0 6 12 48 52 56 60 64 a b

(4)

Supplementary Figure 3 | Power spectra of MSL time series and its components. Global power

spectra for OBS (black), ATM (blue) and RES (red) from a Fast Fourier Transformation for the tide gauges at a, Vlissingen, b, Hoek van Holland, c, Ijmuiden, d, Den Helder, e, Delfzijl, f, Norderney,

g, Cuxhaven, h, Esbjerg, i, Hirtshals, j, Aberdeen, and k, North Shields. Data gaps have been filled

via linear multiple regressions with neighboring stations.

Power [dB] Period [yr] a 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] b 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] c 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] d 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] e 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] f 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] g 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] h 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] i 0.01 0.1 1 10 100 100 102 104 106 108 Power [dB] Period [yr] j 0.01 0.1 1 10 100 100 102 104 106 108 OBS ATM RES Power [dB] Period [yr] k 0.01 0.1 1 10 100 100 102 104 106 108

(5)

Supplementary Figure 4 | DFA2 of MSL time series and its components. Fluctuations functions derived from a DFA2 for OBS (black), ATM (blue) and RES (red) for the tide gauges at a, Vlissingen, b, Hoek van Holland, c, Ijmuiden, d, Den Helder, e, Delfzijl, f, Norderney, g, Cuxhaven, h, Esbjerg, i, Hirtshals, j, Aberdeen, and k, North Shields. The grey dotted lines mark the time window (13<=s<=423 months) for which the Hurst exponents α were estimated. The black dotted line marks a Hurst exponent α of 0.5, i.e. uncorrelated noise. a s [month] 10 100 1000 F(s) [-] 1 10 100 1000 b s [month] 10 100 1000 F(s) [-] 1 10 100 1000 c s [month] 10 100 1000 F(s) [-] 1 10 100 1000 d s [month] 10 100 1000 F(s) [-] 1 10 100 1000 e s [month] 10 100 1000 F(s) [-] 1 10 100 1000 f s [month] 10 100 1000 F(s) [-] 1 10 100 1000 g s [month] 10 100 1000 F(s) [-] 1 10 100 1000 h s [month] 10 100 1000 F(s) [-] 1 10 100 1000 i s [month] 10 100 1000 F(s) [-] 1 10 100 1000 j s [month] 10 100 1000 F(s) [-] 1 10 100 1000 k OBS ATM RES s [month] 10 100 1000 F(s) [-] 1 10 100 1000

(6)

Supplementary Figure 5 | Maximum natural and minimum/maximum external trends in LMSL at tide gauges in the North Sea. a, Maximum natural trends (P=95) for Hurst exponents α

estimated with OBS (grey bars), ATM (blue dots), RES (red squares), and the sum of ATM and RES (SUM, black diamonds) over the period 1900-2011. The corresponding minimum external trends, calculated as the difference between the observed and maximum natural trends are shown in

b, respectively. In c the observed trends are shown in its classical expression with their lower and

upper 95% confidence bounds (i.e. the minimum and maximum external contribution, see also

Methods) obtained from OBS (grey) and SUM (black). For comparison also the results for a

classical AR1 model are shown (green). Note that the observed trends still contain vertical land motions, which are responsible for the vast majority of the differences obtained between the different stations.

Vlissingen Hoek van Holland IJmuiden Den Helder Delfzijl Norderney Cuxhaven Esbjerg Hirtshals Aberdeen North Shields

Maximum Natural Trend [mm per yr] 0 0.5 1 1.5 2

Vlissingen Hoek van Holland IJmuiden Den Helder Delfzijl Norderney Cuxhaven Esbjerg Hirtshals Aberdeen North Shields OBS RES ATM SUM AR1 (OBS)

Minimum External Trend [mm per yr] 0 0.5 1 1.5 2

Vlissingen Hoek van Holland IJmuiden Den Helder Delfzijl Norderney Cuxhaven Esbjerg Hirtshals Aberdeen North Shields

Observed Trend [mm per yr]

0 1 2 3 4

a

b

(7)

Supplementary Figure 6 | Hurst exponents α and maximum natural centennial trends in modelled LMSLsyn. a-c, α values as calculated for different components of LMSLsyn, RESsyn,

and OBPsyn over the period from 1899 to 2008. d, Differences between the α values from LMSLsyn and RESsyn. e-g, Maximum natural trends (P=0.95) for LMSLsyn, RESsyn, and OBPsyn fields under the assumption of a short-term (α=0.5) or a long-term correlated (α>0.5)

a 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 α [-] b 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 α [-] c 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 α [-] d 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 α [-] e 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 t [mm per yr] f 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 t [mm per yr] g 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 t [mm per yr] h 120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 t [mm per yr]

(8)

Supplementary Figure 7 | Comparison of different GMSL reconstructions and the GMSL from altimetry. a, Three different reconstructions from CW111 (black), J142 (red), and H153 (blue) in comparison to the true global mean from AVISO SSH4 (green). Also shown is the modelled GMSLsyn curve from this study. The shaded areas show the respective 1σ uncertainties. b, Standard deviations (black squares) from detrended AVISO GMSL, GMSLsyn, CW11, and J14 over the period 1993-2008. Also shown are the correlations between detrended GMSLsyn, CW11, and J14 with detrended AVISO GMSL. The H15 curve is not compared, since it only represents a smoothed signal of the GMSL.

Time [yr] Sea Level [mm] GMSL CW11 GMSL J14 GMSL H15 GMSLsyn GMSL AVISO 1950 1960 1970 1980 1990 2000 2010 −100 −50 0 50 AVISO D15 CW11 J14 1 3 5 Stdv. [mm] −0.1 0.2 0.5 Correlation [−] a b

(9)

Supplementary Figure 8 | Performance of the root sum of squares (RSS) approximation for two independent/dependent t-distributed random variables. Shown is the comparison between

the empirical quantiles of the sum of two t-distributed random variables (black) and quantile approximations using the root sum of squares (RSS, red) as described in equations 9 and 10 of the main document. The squares and dots in the upper curve correspond to the quantiles of independent random variables (equation 9 of the main document), while the circles and dots in the lower curve represent dependent random variables with a correlation of r = 0.5 (equation 10 of the main document). Empirical Quantile Estimated Quantile [RSS] Quantile [-] 0.9 0.92 0.94 0.96 0.98 1 x [-] 1 2 3 4 5

(10)

Supplementary Figure 9 | Correlations between RES and ATM. Shown are the linear

correlations between RES and ATM. These are important for the summation of trend quantiles in equation 10 of the main document. It is clear that there are only a few regions with significant correlations between RES and ATM. Hence, their impact on equation 10 is only of minor importance in most regions.

120°W 60°W 0° 60°E 60°E 60°S 30°S 0° 30°N 60°N -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K [-]

(11)

Station Availability Hurst exponent α

LAG1 Autocorrelation c

Observed Trend [mm per yr] and Significance

Natural Trend [mm per yr]

External Trend [mm per yr]

OBS ATM RES OBS ATM RES OBS Case 1* Case 2** Case 1 Case 2 Case 1 Case 2

Vlissingen 1900-2011 0,72 0,52 0,86 0,14 0,01 0,51 2,18 (1,00) (1,00) 0,47 0,57 1,71 1,61 Hoek van Holland 1900-2011 0,71 0,51 0,86 0,17 0,00 0,45 2,24 (1,00) (1,00) 0,50 0,58 1,74 1,65

Ijmuiden 1900-2011 0,73 0,52 0,90 0,16 0,01 0,51 2,04 (1,00) (1,00) 0,61 0,75 1,43 1,29 Den Helder 1900-2011 0,67 0,54 0,89 0,13 0,06 0,45 1,25 (1,00) (0,99) 0,45 0,64 0,79 0,61 Delfzijl 1900-2011 0,62 0,51 0,86 0,13 0,04 0,40 1,55 (1,00) (0,99) 0,42 0,70 1,13 0,85 Norderney 1900-2011 0,61 0,56 0,84 0,15 0,11 0,50 1,84 (1,00) (1,00) 0,43 0,65 1,42 1,20 Cuxhaven 1900-2011 0,60 0,56 0,82 0,16 0,11 0,50 1,76 (1,00) (0,99) 0,46 0,61 1,30 1,16 Esbjerg 1900-2011 0,57 0,56 0,80 0,15 0,11 0,43 0,71 (1,00) (0,81) 0,41 0,60 0,30 0,11 Hirtshals 1900-2011 0,65 0,56 0,86 0,20 0,14 0,37 1,17 (1,00) (0,99) 0,49 0,74 0,68 0,43 Aberdeen 1900-2011 0,73 0,50 0,88 0,21 0,05 0,39 1,79 (1,00) (1,00) 0,47 0,64 1,32 1,15 North Shields 1900-2011 0,88 0,52 0,96 0,35 0,04 0,53 2,29 (1,00) (1,00) 0,89 1,02 1,40 1,27 *Case 1: Integrated Assessment

**Case 2: Separate Assessment

(12)

Supplementary References

1. Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv.

Geophys., 32,585-602 (2011).

2. Jevrejeva, S., Moore, J. C., Grinsted, A. & Woodworth P. L. Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett., 35(8), L08715 (2008).

3. Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X.. Probabilistic reanalysis of twentieth-century sea-level rise. Nature. 517, 481-484 (2015).

4. Ducet, N. & Le Traon, P. Y. A comparison of surface kinetic energy and Reynolds stresses in the Gulf stream and the Kurisho systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 2671-2688 (2001).

Cytaty

Powiązane dokumenty

The score in Table  1 is based on a F-test (Supplementary material) and indicates that, for the CSR and CLS SSB corrections, fitting models 2 and 3 significantly reduces

5 Por. Montserrat- Torrents, Estudios sobre Metodio de Olimpo, Vitoria 1970; A. Vittores, Identidad entre el cuerpo muerto y resuscitado en Origenes según el „De resurrectione”

3 La „scuola antiochena” tende nell’esegesi a privilegiare l’interpretazione letterale, nella teologia a insistere sulla visione monarchiana, nella cristologia

(8 Listopada) 1864 roku o klasztorach Rzymsko-Katolickich te Królestwie Polskiem, s. 77 Te dochody zgodnie z art. 21 ukazu mogły być przeznaczane tylko na następujące cele: „a)

A decrease of the earth magnetic field can cause an increase of charged particles reaching the earth and the oceans. This can cause heating up of the oceans

Instytut Przemysłu Skórzanego w Łodzi jest jednym z wykonawców w projekcie pod nazwą &#34;SHOES MADE in EU: The EuropeanShoemaker&#34; w ramach programu ERASMUS+

Dowodem etycznej postawy pracownika naukowego oraz najwyższych standardów redakcyjnych powinna być jawność informacji o podmiotach przyczyniających się do powstania

[r]