• Nie Znaleziono Wyników

The experimental results of the Delft Systematic Yacht Hull Series

N/A
N/A
Protected

Academic year: 2021

Share "The experimental results of the Delft Systematic Yacht Hull Series"

Copied!
95
0
0

Pełen tekst

(1)

824825

TECHNISCHE HOGESCHOOL DELFT

AFDELING DER MARITIEME TECHNIEK

LABORATORIUM VOOR SCHEEPSHYDROMECHANICA

The Experimental Results of the Deift Systematic Yacht Hull Series.

Prof.ir.J.Gerritsma , R.Onnink,

Reportno. : 595

August 1983

Deift University of Technology Ship Hydromechanics Laboratory Mekelweg 2

2628CD DELFT The Netherlands Phone 015 -786882

(2)

Introduction.

In this report the complete experimental results of the

resistance and sideforce measurements of the Delft Systematic Yacht Hull Series are given in tabular form.

The series consists of twenty two hull forms, all of which have been derived by computer graphics from one parent form. This parent form is closely related to the "Standfast 43'I, an Admi-ral Cupper designed by Frans Maas,

The variations concern the length-displacement ratio LWL/V/3,

the prismatic coefficient C, the longitudinal

position of the

centre of buoancy LCB, the length-beam ratio LWL/BWL and the

beam-draught ratio BWL/T.

The subscript c refers to the canoe-body, without keel and rudder.

The first part of series, consisting of nine models has been set up and analysed in cooperation with the Department of

Ocean Engineering of the Massachusetts Institute of Technology (Boston)

The analysis of this part of the series has been published in [1,2,3,4

A description and an analysis of the complete series is given in [5_

Geometry of the Series.

The main dimensions of the hull forms, based on a waterline length of 10 meters are given in Table. 1. The relations be-tween the main form parameters for the twenty two models are depicted in Figure 1.

Table 2 gives the offsets of the parent model (model nr. 1) and the corresponding lines are shown in Figure 2.

(3)

2

The models have been constructed with a waterline length of 1,6 meters, a length overall of 2,1 meters and a free board of 0,184 meters.

For a waterline length of 10 meters this results in a linear scale ratio = 6,25.

3. Experimental set-up.

Resistance and sideforce measurements have been carried out for three heeling angles: 10, 20 and 30 degrees, a range of leeway angles up to 1 = 12 degrees and forward speeds up

to 1.6 m/s, corresponding to Fn = 0.40.

The upright resistance has been measured up to model speeds of 1.8 rn/s corresponding to Fn = 0.45.

The models were free to pitch, heave and roll, but restrained in surge by the towing line of the resistance dynamometer and also restrained in sway and yaw by the two sideforce dynamo-meters, which are balanced in vertical direction, see Figure 4.

For each run the leeway angle was adjusted to obtain the required heeling angle of 10, 20 or 30 degrees. By shifting a weight P (42,29 N) over a distance T (see Figure 5) a range of stabilities could be investigated.

A correction for the vertical component of the sailforce has been applied, see Figure 4.

All models have been tested with the same fin keel and rudder. A NACA 632_015 airfoil section has been used for the finkeel

and a NACA 0012 section for the rudder.

Keel and rudder dimensions are given in Figure 6.

Turbulence stimulators, consisting of carborundum grains with a sand paper grain size 20 and a density of approximately

lo grains/cm2 have been used, see Figure 7.

The upright resistance tests were carried out with a single

anda double sandstrip to enable

an extrapolation of the

measured resistance values to zero sandstrip width.

It has been assumed that the extra resistance due to the sandstrìp varies with the model speed squared and is propor-tional to the strip width.

(4)

range (V = 1.0 - 1.6 m/s) to avoid laminar flow conditions or wave making of the turbulence stimulator.

All test have been carried out in Tank nr. 2 of the Delft Shiphydromechanics Laboratory, which has a wetted cross-sec-tion of

1.22 x 2.75

m.

4. Experimental results.

The measured resistance and sideforces are given in numerical form in the Tables. For each model the main dimensions, as well as the vertical position of the centre of gravity (ZGM) ,

the vertical position of the pivots S (see Figures 5 and 6) and the temperature of the tankwater are given.

The upright model resistance

RT,

as given in the Tables, resul-ted from extrapolation to zero sandstrip width, but these va-lues are not corrected for blockage effects.

For the heeled resistance runs the corresponding upright

resistance R2 is given as a reference. The resistance R2 and the heeled resistance RPHI include the effect of a double width

sandstrip.

The sideforce forward and aft have been

measured at 4 0.5 m

and -0.5 m from PL, where PL is the distance between the midpoint of the pivots and LWL/2 as given for each model.

In the Tables "selected" runs are indicated

by an asterix ()

For these runs a strong correlation exists between the heeling angle and the Froude number Fn. The selected runs represent more or less natural combinations of heeling, leeway and Froude number for the close hauled condition. These combinations are used in routine testing of sailing yachts. The other runs do not represent realistic sailing conditions in all cases, but these may be valuable for analytic purposes.

(5)

s

4

heeling angle positive to port

sideforces positive to starboard shift of weight T positive to port

leeway angle positive to port., see figure 8

5. References.

i J. Gerritsma, G. Moeyes, R. Onnink,

-Test results of a systematic yacht hull series, 5th HISWA Symposium Amsterdam 1977.

D.S. Jenkins,

Analysis of a systematic series of yacht model tests,

M.Sc. Thesis, Department of Ocean Engineering, M.I.T., 1977.

3 J.E. Kerwin, J.N. Newman,

A summary of the H. Irving Pratt Ocean Race Handicapping Project,

Cheasapeake Sailing Yacht Symposium S.N.A.M.E., Annapolis, 1979.

4 J.E. Kerwin,

-A velocity prediction program for ocean racing yachts,

New England Sailing Symposium, New Lodnon, Connecticut, 1976.

5 J. Gerritsma, R. Onnink, A. Versluis,

Geometry, Resistance and Stability of the Delft Systema-tic Yacht Hull Series,

(6)

I

VOLC volume displacement canoe body

VOLT volume displacement with keel and rudder

Sc wetted surface canoe body

LCWL waterline length BCWL waterline breadth

rc draught of the canoe body

TT draught including keel c prismatic coefficient

LCB longitudinal postion centre of buoyancy with LCWL

regard to

2 in percent of LCWL

ZGM vertical position centre of gravity ZSM distance between pivot and waterline TEMP temperature of the tankwater

PL distance between the midpoint of pivots and ordinate 5

VM model speed

PHI heeling angle

RT total upright resistance

R2 total upright resistance with turbulence stimulators RPHI total resistance with heel and leeway

BETA leeway angle

T transverse displacement of weight

FV side-force forward

(7)

6

Table 1.

Main dimensions and derived quantities.

Mode i nr. LWL m BMAX

m

BL

m

T

m

D

m

V

m

S n? . m2 A m2

i

10.04 3.67 3.17 0.79 1.94 9.18 25.4 1.62 21.8 2 10.04 3.21 2.76 0.91 2.06 9.18 23.9 1.62 19.1 ' 3 . 10.06 4.25 3.64 0.68 1.83 9.16 27.6 1.63 25.2 10.06 3.32 2.85 0.72 1.87 7.55 23.0 1.34 19.8 5 10.05 4.24 3.64 0.92 2.07 12.10 29.1 2.13 25.3 6 10.00 3.66 3.17 1.06 2.21 12.24 27.5 2-16 21.9 7 10.06 3.68 3.17 0.64 1.79 7.35 24.1 1.31 21.8 8 10.15 3.54 3.05 0.79 1.94 9.18 25.4 1.57 22.1 9 10.07 3.81 3.28 0.79 1.94 9.18 25.0 1.68 21.5 10 10.00 3.68 3.17 0.79 1.94 9.19 25.6 1.62 22.0 11 10.00 3.68 3.17 0.79 1.94 9.19 25.3 1.62 21.6 12 10.00 3.30 2.85 0.72 1.87 7.52 23.0 1.33 19.8 13 10.00 3.30 2.85 Oi-72 1.87 7.52 22.8 1.33 19.4 14 10.00 3.30 2.85 0.77 1.92 7.52 22.4 1.42 18.7 15 10.00 3.67 3.16 0.86 2.01 9.29 24.9 1.76 20.8 16 10.00 3.68 3.17 1.13 2.28 12.23 27.3 2.32 20.9 17 10.00 3.68 3.17 0.75 1.90 9.17 26.3 1.53 23.0 18 10.00 3.68 3.17 0.75 1.90 9.17 26.0 1.53 22.6 19 10.00 3.68 3.17 0.84 1.99 9.17 24.8 1.73 21.0 20 ic.00 3.68 3.17 0.84 1.99 9.17 24.6 1.73 20.6 21 10.00 3.30 2.85 0.68 1.83 .7.54 23.6 1.26 20.5 22 10.00 4.24 3.66 0.86 2.01 12.26 30.2 2.05 26.3

(8)

4 L C.B -4 B WL 6 5.0 4.8 LWL 1

/4/s

4.6 4.4 4

s

s

ps

s

s

s

s

s

o

I t I I

s

5

s

s

s

o

s

s

e

0.54 0.56 0.58 0.60 Cp

I

0.54 0.56 0.58 0.60 cp 2.8 3.0 3.2 3.4 3.6 L WL

/BwL-_

FIGURE i

FOPJi PAflN'IFTERS OF THE SYSTATIC SJIYTS.

3

o

e

s

I

i

s

O

s

s

s

s

11

(9)

BASfCSHIPFORM MODEL i

TABLE 2

HALF BREADTH

Ord.O

Ord.i

Ord.2

OrcI.3

Ord.4

Ord.5

Ord.6

LIST OF ORDINATES DRAUGHT

Ord.-2

Ord.-i

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.050

.000

.000

.000

.000

.000

.000

.000

.000

.057

.100

.000

.000

.000

.000

.000

.000

.000

.074

.202

.150

.000

.000

.000

.000

.000

.000

.016

.206

.348

.200

.000

.000

.000

.000

.000

.000

.i33

.336

.492

.250

.000

.000

.000

.000

.000

.000

.254

.464

.625

.300

.000

.000

.000

.000

.000

.iii

.373

.585

.746

.350

.000

.000

.000

.000

.000

.226

.487

.699

.855

.400

.000

.000

.000

.000

.013

.338

.597

.803

.954

.450

.000

.000

.000

.000

.i27

.446

.701

.899

1.045

.500

.000

.000

.000

.000

.241

.550

.798

.989

1.129

.550

.000

.000

.000

.000

.349

.650

.890

1.073

1.207

.600

.000

.000

.000

.062

.456

.747

.975

1.150

1.277

.650

.000

.000

.000

.187

.558

.839

1.056

1.222

1.340

.700

.000

.000

.000

.304

.656

.923

1.130

1.286

1.398

.750

.000

.000

.000

.416

.750

1.003

1.197

1.344

1.450

.800

.000

.000

.063

.523

.840

1.076

1.257

1.395

1.496

.850

.000

.000

.208

.626

.922

1.142

1.311

1.441

1.537

.900

.000

.000

.341

.723

.996

1.199

1.358

1.482

1.573

.950

.000

.000

.464

.812

1.061

1.250

1.399

1.517

1.605

1.000

.000

.094

.575

.890

1.116

1.293

1.436

1.549

1.633

1 . 100

.000

.399

.763

1.011

1.204

1.363

1.495

1.600

1.678

1.200

.228

.621

.o90

1.097

1.268

1.414

1.538

1.638

1.712

1.300

.474

.756

.972

1.154

1.312

1.449

1.568

1.664

1.736

1.400

.614

.838

1.026

1.191

1.340

1.472

1.586

1.680

1.750

1 .500

.694

.886

1.057

1.212

1.355

1.484

1.596

1.688

1.757

i .600

.735

.908

1.070

1.221

1.360

1.487

1.597

1.688

1.757

i . 700

.743

.911

1.069

1.218

1.356

1.480

1.589

1.680

1.749

(10)

TABLE 2

.050

.124

.163

.190

.206

1.96

.150

.066

.000

.000

.100

.288

.344

.378

.387

.370

.315

.226

.104

.000

.150

.451

.513

.551

.553

.526

.464

.369

.246

.100

.200

.601

.670

.702

.698

.660

.595

.498

.374

.225

.250

. 735

.804

.832

.824

.780

.710

.613

.488

.337

.300

.

854

. 919

. 945

.933

.887

.813

.713

.590

.437

. 350

.960

1.023

1.045

1.029

.981

.905

.803

.679

.527

.400

1.056

1. 115

1 . 134

1 . 116

1.065

.987

.885

.758

.608

.450

1 . 143

1 . 199

1.215

1 . 195

1.142

1.062

.959

.831

.681

.500

1.223

1.276

1.290

1.268

1.213

1.131

1.027

.898

.748

.550

1.296

i . 346

1 .358

1.334

1.278

1.195

1.089

.959

.809

.600

1.362

1.409

1. 419

1.394

1.337

1.254

1.146

1.016

.865

.650

1.421

1.465

1.474

1.447

1.391

1.307

1.199

1.069

.917

.

700

1.474

1.515

1.523

1.496

1.440

1.356

1.249

1.118

.966

. 750

i .522

1.560

1.567

1 .540

1.485

1.402

1.294

1.164

1.011

.

800

1.564

1.600

1.606

1.580

1.525

1.443

1.336

1.206

1.054

.

850

i .601

1.636

1 .641

1.616

1.562

1.480

1.374

1.245

1.093

.900

1.635

1.667

1.671

1.648

1.594

1.514

1.409

1.281

1.130

.950

1.664

1.695

1.698

1.676

1.624

1.545

1.442

1.314

1.165

1.000

1.690

i .720

1.723

1 . 701

1.651

1.574

1.471

1.344

1.197

1 . 100

1 . 732

1 . 760

1.763

1 . 742

1.695

1.622

1.522

1.398

1.254

1.200

1.763

1 . 790

1 . 794

1 . 774

1.730

1.659

1.563

1.443

1.301

1 . 300

1 . 785

1 . 811

1 . 815

1.796

1.755

1.688

1.595

1.479

1.341

1.400

i .799

1.824

1.829

i . 812

1.772

1.709

1.620

1.507

1.374

1.500

1.805

1 . 831

1.836

1 . 820

1.783

1.722

1.637

1.528

1.400

1.600

1 . 804

1.830

1.836

1 . 821

1.786

1.728

1.647

1.544

1.421

1 . 700

1.797

1.824

i . 831

1 . 817

1.783

1.727

1.651

1.553

1.436

(11)

'.

0

TABLE 2

DRAUGHT

Ord.16

Ord.17

HALF BREADTH

Ord.18

Ord.19

Ord.20

Ord.21

Ord. 22

.000

.000

.000

.000

.000

.000

.000

.000

.050

.000

.000

.000

.000

.000

.000

.000

.100

.000

.000

.000

.000

.000

.000

.000

.150

.000

.000

.000

.000

.000

.000

.000

.200

.062

.000

.000

.000

.000

.000

.000

.250

.169

.000

.000

.000

.000

.000

.000

.300

.265

.081

.000

.000

.000

.000

.000

.350

.354

.167

.000

.000

.000

.000

.000

.400

.435

.245

.033

.000

.000

.000

.000

.450

.508

.317

.105

.000

.000

.000

.000

.500

.575

.383

.172

.000

.000

.000

.000

.550

.635

.444

.233

.000

.000

.000

.000

.600

.692

.501

.290

.059

.000

.000

.000

.650

.745

.553

.343

.115

.000

.000

.000

.700

.794

.602

.393

.166

.000

.000

.000

.750

.840

.648

.439

.214

.000

.000

.000

.800

.882

.691

.483

.260

.013

.000

.000

.850

.922

.732

.525

.303

.062

.000

.000

.900

.960

.771

.565

.344

.107

.000

.000

.950

.995

.807

.603

.383

.148

.000

.000

1.000

1.028

.842

.638

.420

.187

.000

.000

1 . 100

1.088

.905

.704

.489

.261

.020

.000

i .200

1.140

.961

.765

.553

.329

.093

.000

i .300

1.185

1.010

.818

.611

.392

.160

.000

i .400

1.222

1.052

.866

.664

.450

.222

.000

1.500

1.253

1.089

.909

.712

.502

.282

.052.

1.600

1.279

1.120

.946

.756

.552

.336

.111

1 . 700

1.300

1.147

.978

.795

.597

.386

.166

(12)

h2 8T(O (oco GO) D £9ÇO (Or-O CuO) ¿ .' 00001 = OS-0 UO) LSN2I 02 61 91 'MO

IflDIJ

i

1iIIIIUL!UIuIIPJIiIIUP

_

(13)

j'

12

-JJ)

i:ld_r

FIGURE 3

LINES OF SYSTEMATIC SERIES.

4111i:- TÌIÍb

7

NACA NACA

s

0012 6324015

(14)

PARENT MODEL 1

FIGURE 3

LINES OF SYSTEMATIC SERIES (CONTINUED).

41iuIlíÍÍ

8 g

lo 11

(15)

14

-j__

NACAI NACA

0012 6324015 PARENT MODEL i

FIGURE 3

LINES OF SYSTEMATIC SERIFS (CONTINUED).

1' 15

_u_uig1jI.irr

1U

iutiiUNW'

16 17

(16)

22

PARENT MODEL i

FIGURE 3 LINES OF SYSTEÌATIC SERIES (CONTINUED).

î

(17)

MOVABLE WEIGHT

WATER LEVEL

F-FIGURE 4

ARRANGEMENT OF THE MODEL

BALANCE ARRANGEMENI

WEIGHT FOR VERTICAL DYNAMOMETER

SIDE FORCE AFT

DYNAMOMETER

SIDE FORCE FORWARD

COMPONENT OF SAILFORCE

(18)
(19)

ord.

o

PL

ord.

j.126m

1.64m

FIGURE 3

FIN KEEL AND RUDDER ARRANGEMENT.

ord. io

OWL

I

Q,5m

(20)

single 10 mm

doube 20 mm

single 20mm

double 40mm

FIGURE 7

ARRANGEMENT OF THE TtJRBULECE SIMULATION

dersity 10 grains/cm2

10 to 15mm

single 15 mm

doub'e 30 mm

(21)
(22)

.03a

.040

.65

1.61

.51

.126

.346

.568

-2.30

'.036

.255

20.1

+.000

UPRIGHT RESISTFNCE

.50

-.

1.30

.M)

1.00

4'.-

1.35

6.10

.70

1.36

1.130 6.913 ,.. .p_

.80

1.78

. -I. 1.145

8.13

.90

2.29

1.50

9.51

1.00

2.91.

1.55

11.38

11105

3.27

1.60

13.56

1.10

3.63

..- *_

1.65

16e16

1.15

4.06

1.70

19.31

1.20

4.51.

1.75

22.86

' ..

1.25

¿397

- -.-

1.80

26.70

VN hT

vti

M/S N ,ft_ .ft_ M/S

(23)

22

-RUN Vh

PHI

t1/s

DEGR. 33

1.000

10

3f4

1.000

10 35

1.000

10

36

1.000

10 37

1.000

:io 38

1.200

10

* 39

1.2(iO

lo

* '40

1.200

10

* 141

1.2(0

10

*

42

1.200

10

1j3

1.1400

10

4(4

1.1400

10 145 1SLOO :io 146

1.1400

10

147

1.400

10

L48

1.1400

10

¿49

l.L400

10

50

51

52

53

5[4 55 56 57 R2 N

RNI

N BETh DEGR. T M EV I F14 N

3.25

L4.1O +6.141

+.035

+10.20

+5.65

3.25

3.19

+2.02

+.1130

+3.66

+.bO

3.25

3.63

+4.56

+.080

+7,tß

+3.23

3.25

14.10

+6.30

+.035

41O.1L1

+5,57

3.25

3.32

+2.07

+.14

+3.ql

+149

14.96 S.O'4

+1.31

+.1140

43.90

+.08

4.98

5.39

+2.95

+.080

+7.72

+2.29

L495

'4.98

5.73

5.07

+14,35

l.3i.

+035

+,1L40

+jQ.ßf,

+3,53

+4.148

+.013 14.98

5.42

+3.1.6

+.080

+7,99

+2.82

7.b7

8.33

+2.23

4.080

+8.82

+1.52

7.67

6.06

'.85

4.1L40 +14.00

'.82

767

8.43

+3.16

+.035

+11.82

+3.25

7.67

7.91

+.b6

4.1140

+14.t12 +.814

7.67

7.8t

+.95

+.140

+14.514

7.67

7.89

+.80

+.j140

+L4.29

7.67

7.95

+.86

+.1140

+4.21

7.6/

8.11

i2.08

.080

+8.58

+1.27

7.67

8.09

+2.19

+.080

+8.51

+1.44

7.67

8.48

+3.09

+,035

+11.&8

+3.36

7.67

7.96

'.81

.l14O +14.t40 +.8L4

7.67

8.26

+1.93

+.080

+93Ø

7.67

7.71

+1.49

.11O

+6.58

+.3Ø

7.67

.1S

+2.52

+1.ß

+2.2t4

7.67

7.96

+1.19

.125

+5.53

+.19

1.L400

lo

1.1400

10

1.1400

10

l.1OO

10

1.1400

10

1.1400

10

1.1400

10

1.14.01.)

10

(24)

RU

vi

h/S

58

1.fOO

59

1.600

0

1.600

()l

1.tiGO 62

1.800

614

1.800

65

l.bOO

6

1.800

7

1.200

68

1.200

b9

1.200

70

1.200

71

1.200

72

1.400

73

i.L400

*

75

1.i400

* 76

1.400

77

1.1400

* 78 1.LiOO 79

1.600

80

1.600

81

1.600

82

1.600

83

l.bOO

84

1.600

PHI

DEGR. R2 N RPFfl 4 BETA DEGR. T M FV 4 N

lo

14.57

1s,1L4

.87

+.120

+53t4

10

14.57

15.25

+1.57

'.080

+8.39

+1.90

10

1'4.57

15.50

+2.1t

+.0L40

+11.27

+35Lj,

10 27.8L1

29.29

'1.59

+.OL

10.17

+L43Q

10

27.84

29.12

+.63

+.120

+Ll35

+1.50

10

27.aq

28.68

+]5

+.080

+7.20

+3.07

lo

27.8L

29.05

+1.09

'.080

+6.86

+3.01

10

27.8t4

28.58

.60

+.120

+4.10

+1.L4t4

20

4.9B

6.Oi

+.t5

'.160

13.9l

4.78

20

.96

5.58

+t.Li6

4.220

10.56

2.29

20

t.98

6.9t4

+7.86

+,jOO

'17.35

+7.68

20

L4.98

6.20

+6.19

+.16O

+14.20

+4.97

20

L49ß

6.10

+6.13

+.160

+47

20

7.67

8.81

+Lj24

+jQ +14.94

+3.04

20

7.67

8.55

+2.9S

+.220

11.3S

+.7b

20

7.67

9.72

+5.514

+.100

+18.71

+5.60

20

7.67

8.98

+4.25

+f)

+15.16

+3.10

20

7.67

8.87

+4.25

+.160

+j5

+3.13

20

7.67

8.8

3.03

4.220

+11.L15 20

14.57

15.76

+2.06

+.220

+9,53

+2.2&

20

114.57

16.82

+4.07

+7,54

+6.17

20

14.57

16.27

+3.04

+.160

413.B1

+3.75

20

14.57

16.11

+3.05

+.160

+135

4.B1

20

14.57

16.69

+4.02

+.100

+17.67

+5.93

¿0

1L4.b7

15.82

+2.06

4.220

+9.80

+1.93

(25)

+L473

+9.25

+7[6

+7.53

+8.&L4

+10.12

+L.8L

i2.1t

+2.22

+6.89

+3.55

+5.69

+5.149

+8.14

+4.21

+4.214

+5.51

+8.25

+2.20

-7.61

4.61

-2.21

-1.87

-5.80

Ò

24

-FA N RUN Th MIS PHI DE:GR. R2 N RPUI N BETh DLGb. T M EV N 85

1.800

20 27,8L4

29.tI&

+1,143

+.220

7.O7

6b

1.Ou

20 27.8L4

30.t43

2.91

'.100

.114.56

67

1.600

20

27.&4

29.99

+2.18

4.160

+10.05

86

1.200

30 149ß

7.9

+10.37

+.220

+18.76

89

1.200

30 14.9S

7.53

+9.8e

+.2L40 +17.1L4 90

i.LOO

30

t3.98

9.22

412..Ob

+1

'21.b6

91

1.200

30

t1.98

6.87

+8.L7

+285

+15.62

92

1.tOO

30

7.67

9.77

+6.20

+.285

1b.B8

93 1.4CC) 30

7.67

97t4

+6.23

+.285

+]c.93

9t$ 1.L400 30

7.t7

11.50

9.O1

+.j

'23.30

95 1.L!O0 30

7.67

10.32

+7.26

+.240

+19.23

96

1.600

30

111.57

17.56

+5.141

+.2t40

+j73[

97

1.0o

30

114.57

17.5L1 +5.t1L4

+.2'40

+17.27

*

98

1.600

30 114.57

18.69

+6.82

+.UQ

21.54

99

1.600

30

14.57

16.93

+4.55

+.285

+14.82

*

100

1.600

30

14.57

17.05

+4.59

+285

+14.91

101

1.600

30

14.57

17.L6

+5.42

+.240

i17.2ß

*

102

1.600

30 111.57

18.58

+6.86

4.160

+21.69

*

103

.793

0

2.03

2.03

4.00

+.000

.09

': 1014

.793

(j

2.03

2.22

+3.40

-.050

+3.26

* 105

.793

0

2.03

3.514

-933

+.1SO

-8.94

*

106

.793

0

2.03

2.91

6.29

+JQt

6.19

*

107

.793

C)

2.03

.28

-3.39

+Q5

-3.42

* 108

1.367

0

7.67

7.15

-1.01

+.Q5()

-3.36

*

109

1.387

0

7.67

5.314

-3.0$

+.]50

-10.57

(26)

Ò

Fj4

VM

Pill

FU RPFII BETA T E'V

fri/S DEGR. N [)EGR. M M N

*

110

1.37

O

7.67

7.15

+1.18

-.050

+1.t41

+1.90

*

111

1.3B7

O

7.67

7.95

-1.96

.100

-6.79

-3.75

(27)

.50

.64

.60

.93

.70

1.27

.80

1.68

.90

2.17

1.00

1.05

3.06

1.10

3t43

1.15

3.80

1.20

14.21

1.25

4.68

MODEL 2 VDLC VOLI

Sc

LCWL BCWJ.. TC TT CP LC ZGM ZSM

IEMi

PL M3 M3 M2 il M M 1 M M DEGh. M

.038

.0140

.1.

1.61

.144 .1146

.363

.569

-2.30

+.029

.252

17.0

+.Ø0O

UPRIGHT RESISTPNCE

1.30

5.21

1.35

5.90

1.t0

6.79

1.L5

7.9L4

1.50

9.L42

1.55

11.L13

1.60

13.89

1.65

16.72

1.70

19.96

1.75

23.52

1.80

27.111

v, hT VM M/S N MIS

(28)

4

RUt4 VM M/S Pill DEGR. R2 N RPH1 M BETA DEGR. T M EV N FA N 3t1 1.000 :10 3.11 3.11 +2.31.

.020

+L1.L11 +1.53 35 1.000 1.0 3.11 3.73 +14,92 -.050 +8.99 +t1.L40 36 1.000 10 3.11 3.12 '.11 +.070 4.73 -.36 * 37 1.200 10 L4714 +.070

+.7

-.65 * 38 1.200 10 Zi.7L

4.92

+1.148 +.020 +4.58 +1.11 * 39 1.200 10 14713 5.20 +3.25 -.050 +9.53 +3.7j 14Q 1.ttOO 10 7.51 7.91 +2.41 -.050 +9. +3.27 41

1.00

lo 7.51 7.62 +1.11 +.020 +L1.93 +.80 t2 1.1400 10 7.51. 7.62 +.35 +.073 .1.15 -.82 58 1.200 20 LI.7L 1.i.97 42.23 +.O8O 47.08 +1.18

145 1.200 20 L474

53

+5.19

-.00

+13.91 +5.34 l6 1.200 20 L1.7I 5.26 +3.5i +.030

+993

+2.55 * q 1.4MO O 7.51 8.18 +2.52 '.030 1O.O3 +1.83 * L18 1.1400 20 1.51 8.71 +3.71 .01O +lq.73 +4.22 * 49 1.400 20 7.51 7.86 +1.48 +.080

+75

.21

* 50 1.1400 20 7.51 8.214 +2.58 +.030 +lO.24 +1.91 55 1.600 20 1L4.8t4 15.60 +1.07 +eObO +3.91

3.59

56 1.600 20 114.814 16.18 +2.66 -.OL1O 1i.93 +7.28 57 1.600 20 14.814 15.11 +1.71 +,030 +7.26 +5,3(j 60 1.200 30 L4,7L +7.66 +.000 +16.21 +5.59 £1 1.200 30 14.7Li 6.05 .6.17 413.83 +3.80 52 1.200 30 Li.714

55

+5.OLI +.100 +11.35 +2.29 53

l.00

30 7.51 8.62 +3.55 +.100 +11.85 +1.01 6q 1.L0o 30 7.51 9.51 +5.60 +.000 +17.07

+39L

65 l.L00 30 7.51 9.21 +LL..69

+qt47

+2.47

(29)

t79Z+ 6tiU+

ELO-

Vt+

tIL

ZZL

O

LEt

PL OL't7-

IZTI-

OSt

9L'-

£L'I

ZZL

O

LR't

LL OR.9- 66'tit-

OOZ+

LE-

tiE9

?ZL

O L9E'I 9L Lo.c- L9'L-

00t+

IQI-

?ZL

O

L9T

SL *

911-

ÇOti-

OO+

L3-

E?L

Z?L

O

LgVI

t'L

90+

9?'-

000+

60-

9'I

9Rt

O E6L

101+

9t'I+

SO-

6Ot'

6t

98'T O F6L 00

LOE+

18?i+

£L0-

S6'E+ ÇT

gi

o 6L 6L 8117- ¿9.9-

00t+

£9S-

PtZ

901

O £6L EL *

£0E-

9ZÇ-

LO 9Yfl-

LZ7

99t

O E6L I z:gi-

£9E-

oco

69v-

oz

oi

o 6L IL

c6-

90Z-

Ç0'+

OLt-

tì6't

981

O E6L OL * a9es+

9Ç11+

0S0+

09E+

LtJOT

t8bI

0E

009T

69 Çti+ 8Ç;ÇJ+

0oI+

tg;+

0Z91

ti0't o:

0091

89

969+

6t'T

000+

¿tti

SOLt

tÌOtJT 0

009T

L9 * N N W

Ha

N N 1O30 A!1 II

n:i

IHdH Z1 IHd W

(30)

VDLC VOLT S C LCWL ECWL IC TI Cl? LCB ZGM ZSM TEMP PL M3 M3 M2 M M M M M t DEGF. M .038 .OL1O .7i 1.61 .56 .109 .32B .565 -2.30 '.106 .253 18.8

.000

UPRIGHT RESISTANCE VM RI VM P4/S M/S M .50 .73 1.30 5.95 .60 1.07 1.35 6.69 .70 1.t47 1.140 7.65 .80 1.92 1.45 6.85 .90 2.Ll6 1.50 10.33 1.00 3.13 1.55 12.16 1.05

3.50

1.10 114.311 1.10 3.95 1.65 16.93 1.15 L4.t42 1.70 19.96 1.20 L4.89 1.75 23.113 1.25 5.36 1.80 27.214

(31)

è

-

30

RUN Vt1

/s

DEGR.PHI R2 N RPiI BETA DEGli. T M FV N FA N 27 1.000 10 3.148 L4.26 +(.O1 +.1LIO +8.92 +t$.23 28 1.000 10 3.L48 Lt.9Lt +7.91 +.090 '11.35 +6.96 29 1.000 10 3.48 3.16 +3.68

.195

+5.B2 .1.36 30 1.(i 00 10 3.46 5Q43 +8.1t +.090 +fl.5 +7.26 * 31 1.200 10 5.L1O 6.L46 +5.65 +.090 +i2.9 +5.18 ': 32 1.200 10 5.140 5.92 +3.93 +.1L40 9.6i 2.L49 * 33 1.200 10 514Q 5.56 +2.1411 +.185 +6.65 57 1.200 10 5.40 5.37 +.00 +.2L8 +2.10 -2.43 314 1.LOO lo 8.35 8.b2 .1.55 .18O '7.51 -.97 35 1.400 10 8.35 8.99 +2.76 .13O '10.94 +1.14 36 1.400 10 8.35 9.69 +4.33 +.070

.1S.8

+8.17 37 1.200 20 5.40 6.7) +7.52 +.280 .15.15 ILl.83 38 1.200 20 5.40 6.11 +5.19 .290 +12.t40 +2.41 39 ì.200 2G 5.40 8.05 +9.74 +.170 +18.30 +8.65 40 1.200 20 5.40 6.08 45.19 +.290 +12.32 +2.37 '11 1.200 20 5.40 t.BO +7.45 +.2t40 15.19 +4.72 * 43 1.1400 20 8.35 9.32 +4.05 +.285 13.a6 -.04 * 44 1.400 20 8.35 10.72 .6.83 +.170 .20.53 +4.92 * '45 1.400 20 8.35 9.9e +5.55 +.230 +17.39 +2.32 * 58 1.400 20 8.35 9.03 +2.92 +.3i0 +11.26 -1.65 L6 i.600 20 15.23 17.4b +3.94 +.220 +17.41 +1.96 147 1.600 20 15.23 18.16 +4.96 '.160 +20.46 +4.85 L48 1.600 20 15.23 16.92 +3.00 +.270 +14.39 -.17 49 1.200 30 5.40 9.28 +12.21 f.280 +18.t46 +7.23 50 1.200 30 5.40 6.16 10.54

+332

16.29 +5.02

(32)

I)

RUN vM MIS PHI DEGR. Rl N RPUI t4 BETh DEGR. T M EV N 50 1.200 30 5.L1O 9.90 13.O6 +.2146 419.91 +B.6L 51 1.400 30 8.35 12.O'4 +9.29 +.280 +20.52 +3.13 52 1.4OO 30 8.35 11.09 +8.08 4.33

+ß]9

+1.2L4 53 1.LOO 30 8.35 13.96 11.76 +.190 +2Li.87 .6.90 * SLÍ 1.600 30 15.214 21.14 +9.28 +.190 +2L4.93 +5,79 * SS 1.600 30 15.213 19.58 +7.Lth '.260 2O.93

3.52

* 56 1.600 30 15.2e 18.5L1 +6.09 +.330

17.39

+1.20 59 .793 0 2.07 2.15 -1.71 +.025 -1.31 -1.20 )( t)0 .793 0 2.07 ¿.28 -3.67

+,5Q

-3Q7

-2.60 )t 61 .793 0 2.07 2.58 -5.63 .075 -4.6O

-.12

62 .793 0 2.07 2.91 -7.17 +.j00 -5.75 -5.Lb ;( 63 .793 0 2.07 3.3]. -b.77 +.125 -7.Qt4 -7.22 64 .793 0 2.07 2.07 .00 '.000 4.28 -.21 75 .79,3 0 2.07 2.26 +2.12 -.025 +2.0U

+97

76 .793 0 2.07 2.39 +3.14e -.050 43.33 +2.1t4 77 .793 0 2.07 2.6L .5.29 -.075 +L4,7f

+353

78 .793 0 2.07 2.21 +1.26 -.012 +1.37 +.L45 65 1.367 0 8.00 8.00 4.00 +.000 +.82 -.15 * 66 1.387 0 8.00 8.12 -1.23 4.050

-2.6

-2.61 * 67

1.37

0 8.00 8.ti9 -2.5() -6.t49 -5.03 * 68 1..87 O 6.00 8.91 -3.68 +.150 -9.91 -1.56 * 69 1.387 0 6.00 9.7d

-1393

.200 -13.t4t4

-Q,L3

* 70 1.367 0 8.00 10.13 -5.90 +.250 -16.13 -13.00 71 1.387 0 8.00 8.27 +1.11 -.050 +L.46 +1.46 72 1.367 0 8.00 8.59 +2.29 -.100 .7.97 +3.71

(33)

32

-RUN Vti

PHI

R2 RPUÏ BETh T FV

MIS DEGF. N N

DECk.

M N N

73

1.387

0

8.00

8.9

+3.56

-.150

+11.56

+6.29

714

1.387

0

8.00

9.t6

+L.5L&

-.200

+114.147

+8.8t4

(34)

.50

.o

.70

.80

.90

1.00

1.05

1.10

1.15

1.20

1.25

UPRIGHT FSISThNCE

VOLC VOLT SC LCWL bCWL TC

IT

CP LCB ZGM ZS TEME PL

M3 M3 M2 t ti M M fi DEGF. M

.031

.03L.

59

1.61

.46

.115

.334

.564

-2.30

+.054

.256

21.5

+.Øj

-

1.30

¿4,94

9L$ _(.-

1.35

5.58

1.30

1.40

5.38

1.67

1.45

7.3t4

w w

2.13

1.50

6.61

-p- ,fr.

2.66

...

1.55

10.13

2.99

.-*$_ J.

1.60

12.00

3.32

1.65

14.18

3.70

-*- .'.

1.70

15.70

14.10

1.75

19.53

-. ..-

1.80

22.63

Vti RT M/S N vp. RT M/S ...

(35)

Ò

-

34

-RUN Vh

PHI

R2 RPUI

BElA

T FV FA

M/S DEGR. N 1 DEGR. M N N

56

1.000

10

2.99

3.3t

+4Ø

+.020

+6.48

+2.10

57

1.000

10

2.99

3.20

+2.66

+.055

+14.29 56

1.000

10

2.9

3.149 +L47

4.000

+7.86

+3.16

59

1.000

10

2.99

3.34

+3.75

+.030

+6.00

+1.70

* 60

1.200

10

L.55

L4,79

+2.36

+.030

+6.75

* 61.

1.200

10

1455

5.00

+3.55

-.005

9.I1

+2.42

*

2

1.200

10

45S

L.82

+2.65

+.025

+7.29

+1.21

* 63

1.200

10

4.55

11.64

+1.48

.055

+Ll.b9

64

1.'400

10

7.00

7.16

+1.24

+.050

+5.36

-.84

65

1.400

10

7.00

1.25

+1.76

+025

+7.96

+.1t4

66

1.400

10

7.00

7.37

+2.46

4.000

+9.61

+1.08

£7

1.200

20

13.55

5.40

+5.21

+.0S0

+11.79

+2.64

68

1.200

20

'4.55

(4.94

+3.47

+.100

+8.58

+.70

69

1.200

20

4.55

5.61

+6.25

+.O1Q

+14.11

+4.24

* 70

1.400

20

7.00

8.34

+4.62

.O1O

+2.29

* 71

1.400

20

7.00

7.99

+3.70

+.050

+12.97

+77

*

72

1.400

¿0

7.00

7.2

+2.40

+.100

+9.b7

-.99

73

1.600

20

12.80

13.65

+1.81

+.100

'.03

74

1.600

20

12.80

14.03

+i;.58

+,5Q

+11.59

+i.ia

75

1.600

20

12.80

114.52

+3.60

'.000

+L.3Çi

+35Q

7

1.200

30

4.55

6.72

+8.31

+.O60

'14.71

+3.99

77

1.200

30

4.55

e.O8

+.99

+]

+12.48

+1.93

78

1.200

30

4.55

7.L19

+9.86

+.015

+16.72

+5.70

79

1.200

30

4.55

5.Bd

+6.30

'.130

411.t5

1.09

80

1.400

30

7.00

8.69

+4.73

'.130

+12.80

-1.11

(36)

£ÇÇ+

E8tt

OSI.-

TSE+

OÇL

89S9 O

LÜET

6 RZ'E+

It9#

OOt'-

EZ

cOL

99

O

L3ET

86 9TuT+

9Ib+

0S0-

011+

c9

899

O

L9E1

L6

£96-

97-fl:-

00Z+

Itj-

06L

9'9 O

L8V1

96

Ç'L-

S10t-

OcI'

tiü'-

OL

899

O

L8Et

6 ti9't- Ç8'9-

OOt+

E-

11L

99

O

L8Et

1i6

Lc'-

11E-

0S0+

ZIt-

199

999

O

L8Et

6 ?79- Oti.+ 000'+

OO+

999

99*9 L1FJT 6 zo.+

6+

OtO-

99+

LT

t9I

O E6L 901 91iti+ OE.9+

O0T-

tjÇ94-

TÇZ

18t

O 6L Ot LI

£0+

SLO-

91Ç+

z:

t01

O C6L hOt

9LL+

61'E+

0SO-

S7E+

861

iT

O E6L £01 * 09.+

IOI+

sz:o-

1L1+

t to'i o 6L oi:+

çot+

zto-

ti6'

L8E

191

O T6L' 101

08-

cg.- zto.+ cg'-

£9I

t8'T O E6L t6 7t7Ç- 99.S-

OOV+

tc3'9-

h9Z

T91

O E6L' 06 *

6R-

Ztiti- LO'+ 66ti-

6Z

18t

O 6L 69 * z9.z-

L1E-

O0+

1cE-

CZ

I11

O E6L 89 *

6't-

LET-

SZO'+ f391-

S9t

181

O 6L' L9 * q?;.-

6t+

000

00'+

11

1R1

O E6L 98

6+

1911+

oz:t+ RL'E+ QLtiT

09Z1

0

0091

S9 z9.z+

Sfit+

090+

Ç6ti+ ti?Çt

08?1

O

009t

ti9 Oq*h+

L6L1+

000+

66S+

9912

08?:1 O

0091

8

*

QSE+

L061+

000+

oe+

o0L

00L

O OOtiT 8

811+

LG'ST

9O+

'9+

L6

00L

0E OOtìT 18 N N W }JX O N N '10 30 S /! L4 : IL38 IHdi Z}i lUd A

0

O

(37)

O

-

36

-RUN Vf'1

PHI

R2

FPt1I

BETA T E'V EA.

MIS DEGH. N N4 DEGR. M N N

(38)

.050

.052

.7Ls

1.61

.58

.099

.365

.5714

-2.L40

-'.101

.260

19.5

+.000

UPRIGHT RESISTANCE VM HT M/S

.50

.80

.t:O

1.11

.70

1.L19

.80

1.93

.90

2.49

1.00

3.15

1.05

3.57

1.10

14.02

1.15

14.53

1.20

5.03

1.25

5.67

VM

RI

M/S M

1.30

6.30

1.35

7.13

1.40

8.31

1.145 9.714

1.50

11.76

1.55

114.07

1.60

17.18

1.65

20.75

1.70

¿5.20

1.75

30.01

1.80

35.76

(39)

Ò

Ò

-

38

-RUN VM MIS

PHI

DECR. R2 N

kPUI

I BET1 DEGR. T M EV N N

loo

1.000

10

3.75

L1.25

4.5t

.O8O

l8.L6

+2.145

101

1.000

10

3.15

14.75

+6.37

+.035

+11.L45

+4.5e

102

1.000

10

3.75

3.89

+2.35

+.120

+5.114 +.L43

103

1.000

10

3.75

3.136

'2.10

+.125

'[1.72

.23

1OL

1.000

10

3.75

14.18

+3.13

+Qß

+2.014 -r

1.200

10

5.09

.32

+2.81

+.075

+9.02

+1.b3

*

106

1.200

10

5.89

6.514

+3.95

+.035

+12.01

+3.146

*

107

1.200

10

5.89

6.05

+1.63

+.115

+6.23

+.L43

loo

1.200

10

5.89

6.0t4

1.69

'.115

+6.i7

)

109

1.200

10

5.89

6.21

+2.98

.075

+9.38

+2.00

110

1.1400

10

9.14b

9.86

+1.80

+.070

+9.99

+1.16

111

1.L100

10

9.48

9.67

+1.03

+.110

+7.02

-.11

11.2

1.1100

10 9.148

10.20

+2.714

+.030

+12.B7

+2.66

88

1.200

20

5.89

7.36

+6.77

'.120

+17.614 +14.81

89

1.200

20

5.89

7.91

+7.92

+.080

+20.OL

+6.65

90

1.200

20

5.89

6.L5

+14.141

+.200

+12.65

+1.76

91

1.200

20

5.89

6.94

+6.02

'.150

+16.10

+3.75

)I( 92 1.1400 20 9.L36

10.Li9

+3.83

+.150

+16.63

+1.69

)I( 93 1.L100 20

9.48

11.32

+5.53

+.070

+22.07

+4.78

* 914

1.1400

20

9.48

10.214

+2.75

+.200

+13.38

* *

95

1.L00

20

9.448

10.66

+14.15

+.140

+17.62

+2.15

96

1.600

20

16.71

20.10

+2.58

+.1140

+15.51

+3.22

97

1.600

20

18.11

20.81

+3.81

.065

+0.60

+6.06

98

1.600

20

18.71

19.19

1.69

+.200

+11.85

+1.50

99

1.600

20

18.71

20.05

+2.74

4.1.30

+16.26

+3.59

(40)

s

RUN VM

PHI

R2 RPHI BETA T FV

M/S OECE. N

DEGf.

M N N 7E4

1.200

30

5.d9

7.5

8.11

+.280

17.23

'2.76

75

1.200

30

5.89

8.38

+9.61

+.220

2O.Oq

'(1.88

76

1.200

30

5.89

10.58

+12.50

'.110

+25.6(1

+9L39

77

1.200

30

5.89

8.12

+10.07

4.200

+21.1L1

'5.68

78

1.200

30

5.89

7.tl1

+7.68

+.290

16.67

+2.31

79 1.1400 30

9.q8

10.84

+5.19

+.290

+17.81

-.88

80 1.1400 30 9.L18 12.1L4

+7.68

9.190

'23.57

+2.51

81 1.t400 30 9.148 13.L19 +9.147

+.100

+28.27

+5.56

82 1.UOO 30 9.(18

10.93

+5.51

+.280

+18.59

-.45

83

1.400

30

9.48

13.t45

+9.46

+.100

28.2t$

+5.47

8LI 1.1100 30

9.48

12.13

+7.64

+,j90

+23.60

+2.51

*

85

1.600

30

18.11

22.69

+6.82

+.100

+26.27

+6.67

:I( ¿36

1.600

30

18.71

21.36

+5.39

4.190

21.3O

+4.06

*

87

1.600

30

18.71

20.36

+3.95

+.270

+16.69

+2.10

113

.793

0

2.30

2.30

+.00

+.00

'.23

+.00

*

114

.793

0

2.30

2.32

-.5(4

'.012

-.40

-.37

* 115

.793

C

2.30

2.32

-1.43

+.025

-1.35

-.95

*

116

.793

0

2.30

2.42

-2.92

+Q50

-2.99

-1.94

*

117

.793

0

2.30

2.&5

-4.49

'.075

-(1.67

-3.13

118

.793

0

2.30

2.B7

-5.73

+.j00

-6.1.2

-4.33

11.9

.793

0

2.30

3.32

-7.47

'.125

-7.12

-5.77

120

.793

0

2.30

3.EI1.

-8.94

'.150

-9.07

-7.06

121

.793

0

2.30

1.35

-10.31.

+,175

-10.514

-8.41

133

.793

0

2.30

2.30

'.86

-.012

+1.24

134

.793

0

2.30

2.33

+1.69

-.025

+2.14

+1.05

(41)

40

R1J!4 VM MiS PHI DEGF. R2 N RP-1Ï N BETA DECR. T M FV N FF4 N

135

.793

0

2.30

2.12

+3.12

-.050

3.6B

+1.98

136

.793

0

2.30

2.63

+4.69

-.075

+5t5

+3.2Lj

137

.793

0

2.30

2.9L4

+6.13

-.100

+6.93

+4L3

122

1.387

0

9.10

9.10

+.00

+,t42 123

1.367

0

9.10

9.23

-.99

+.050

-3.2b

-1.57

12L

1.387

0

9.10

9.28

-2.06

4.100

-7.22

-3.55

LS

1.387

0

9.10

9.69

-3.15

+j5

-11.26

-5.73

126

1.387

0

9.10

10.17

-14.00

+.200

-1L4.27

-75L$

127

1.337

O

9.10

1O.7B

-5.10

.250

-18.58

-10.14

*

128

1.387

0

9.10

9.15

4.92

.050

+.3i

129

1.387

0

9.10

9.38

+2.02

-.100

+8.33

+3.8z

*

130

1.387

0

9.10

9.12

+2.92

-.150

+11.60

+5.46

*

131

1.381

0

9.10

10.23

+3.97

-.200

+5.3]

.1.81

*

132

1.387

0

9.10

10.62

4.89

-.250

+18.72

+9.62

(42)

.050 .053 .70 1.60 .51 .17C .389 .568 -2.140 +.025 .255 18.6

.000

UPRIGHT RESISTANCE VM M/S N VM M/S kT N

.50

.77

1.30

6.27

.60

1.1.0 1.35 7.12 .70 1.149 .- .*-1.140

6.25

.bO

1.97

1.145 9.78

.90

2.55

1.50

11.85

1.00 3.27 1.55 14.142 1.05 3.66 : 1.60 17.78 1.10 4.114

1.65

21.82

1.15 14.61. 1.70 26.37

1.20

5.10

1.75 31.76 1.25 5.66 .. 1.80 37.147

(43)

42

-RUN VM PHI R2 RPHI BETA T EV EA

rus DEGR. N N DEGR. M N N

&

51 1.000 10 3.62 3.17 +2.91

.050

+7.014

2.27

52. 1.000 10 3.62. LI.OS +t.21 +.020 +9.35 +3.32 53 1.000 10 3.62 3.&1 41.25 +.105 43.02 514 1.000 10 3.62 L4.29 +13.78 +.000 ilO.91 +Li.OQ * SS 1.200 10 5.60 5.t32 2.O1 +.050 +7,L5 .1.76 56 1.200 10 5.60 5.12 .6L8 +.105 +3.75 ;( si

i.00

lo 5.60 6.12 +3.21 +.000 +]j.1. +3.3 * 58 1.200 10 5.60 5.81 +1.74 46.61 +1.t46 * 59 1.200 10

5.O

5.69 '.73 '.105 +3.71 61 1.'OO 10 8.95 9.38 +2.25 +.000 f11.148 +3.28 60 1.1400 10 8.95 9.16 +1.t3 '.050 +7.50 +1.81 62 1.1400 10 6.95 9.03 +.514 +.1O5 +3.12 '.1.9 63 1.1400 10 8.95 9.13 +1.20 +.060 +6.7e +1.32 6t3 1.200 20 5.60 a.t5 +14.65 +.11Q +1U.35 .3.65 65 1.200 20 5.60 .99 +5.85 +.060 +17.&2 +5.23 66 1.200 20 5.60 6.05 +3.07

.170

+10.15 +1.83 * 67 1.L400 20 8.95 9.57 .2.05 +.170 +10.57 1.3& * b9 i.LOO 20 8.95 10.48 +t4.07 +.O5c +18.97 +14.85 * 70 1.1400 ¿0 8.95 10.12 +3.10 '.100 +15.70 +3.148 * 71 1.1400 20 8.95 9.57 +1.94 +.170 +10.50 +1.36 73 1.600 20 18.69 19.95 +2.30 +.120 +11.59 +6.88 714 1.600 20 18.69 20.38 +3.014 +..050 +16.53 +8.50 75 1.600 20 18.69 19.36 .1.143 '.170 +8.L18 45.30 80

1.O0

30 5.60 6.92 +6.03 '.260 +15.5t4 +2.78 81 1.200 30 5.60 7.514

+774

'.190 +19.B2 +5.02

(44)

1i9Z-

19R

O

LRET

L6 t9' O

LE'T

96

t99

O LQFJI S6 bt O F6L' 90t iI O F6L' SOT t;T'Z O E6L tiOt tyî O E6L OT T' o E6L Ot * litZ O 6L ti6 titZ O 6L fltZ O E6L

hTZ

O 6L 16 * ?it O E6L 06 tiVZ O E6L' 6R o 6L titZ O £6L LIJ

tt

O E6L 99

6991

0E

OOVT

6L

6991

O

0091

8L 69'81

o

009't LL *

6991

0E 009't 9L

568

OE OOtit S

S68

0E OOtit 1i9 56'9 O OOli't EU

09S

0E

0O?t

ZU N 'H)3G S/W ZèJ lUd WA NÛH

66-

99+

ELt+

99+

S6'T+ O.T+ LS'6-

L7L-

Etc-

LO-

LZ'Z- 8tiT- t19-

EI-

Ot.+ StiÇ+

6?8+

ç.S+ tJtJ9+

qo.

8SF+

REÇ+

SS'L+ N 'n

I

98

Lc1-

ooi+

tiqg-

Ç9E-

OSO'+

ZL-

t9 0E'-

000+

00+

19ÇJ £EOIi-

Ost-

6PL+

LE

E0L+

00V-

cZS+

69'Z TE:.ç+ SLO'-

96+

Çt?Z 6L'E+

Oco-

EL+

961+

c:o.- 6tit+ 6T

Ç9t-

Oçz.+

6R1t-

9Z'Ç ¿z:-t-

OO?+

F96-

60'ti

610T-

OÇT'+ T1'L-

??'

6L9-

00t+

9c5-

L9

£tS-

SLO+

T6-

EtiZ

T6E-

050+

LL'?-

9?Z

Tt'T- cz:o+ c't-

LTZ

5L-

¿10+

95-

tiTZ

61-

000+

OO+

tiï'Z fl6Et+

09.+

titiE+ 65'OZ

18ZZ+

Ott+

6tiS+ £O"Z?

L6Et+

os:+

RrE+

6E.O:

S'LT+

00+

t,Zti+

E11?

9TL1+

OÇZ+

9Eh+

690T

LSOZ+

06V+

IJEÇf i:it 6SIiZ+ 3fl:+

oc

ti6It

66EZ

on:+

RE6+

E9cì N W 'JJ3G N A i L4J IFdH

(45)

s

e

RUN VM

PHI

fri/s DEGR. 98

1.3[7

o 99

1.387

0

loo

1.367

0

:ioi

1.387

0

107

1.387

0

108

1.387

0

109

1.387

0

44

-R2

IPUI

BETA T EV F/\ N .4 DEGR. M N N

8.61

9.15

-2.S2

'.150

-12.143

-4.30

13.61

9.61

-3L$14

4.200

-16.50

-5.79

8.61

10.23

-'4.31

+.250

-20.36

-7.31

8.bi

10.54

-1493

'.300

-22.51

-8.58

8.61

8.54

4.80

-.050

+3.39

+2.06

8.61.

8.68

1.S7

-.100

+6.85

+3,5L

8.61

9.1.1

2.51

-.150

1O.3O

5.11

(46)

VM

ti/s

.50

, .

sou

.70

.80

.90

:1.00

1.05

1.10

1.15

1.20

1.25

.030

.033

.62

1.bl

.51

.102

.322

.562

-2.30

+.067

.252

19.14

+.000

UPRIGHT RESISThNCE

RT rs

.71

r% :z : -S..' .... VM MIS

1.30

I r 5.214r

1.35

1.140 6.514

1.76

1.145 7.147

2.26

;

1.50

b.63

2.83

;:::

1.55

10.014

3.16

;

1.60

11.75

3.148

;:;

1.65

13.81

3.83

1.70

1.13

14.22

1.75

18.75

¡4.71

1.80

21.61

(47)

O

-

46 -RUU VM PHI h/S DIGR. 59 1.000 :io 60 1.000 10 61 1.000 10 62 1.000 10 * 63 1.200 10 * 6L4 1.200 10 * 66 1.200 10 67 1.1400 10 68 1.tiOO lo 69 1.400 10 70 1.200 20 71 1.200 20 72 1.200 20 * 73 1.1400 20 * 75 1.1400 20 ,( 76 1.400 20 )I( 77 1.L100 20 78 1.600 20 19

1.60U

20 81 1.600 20 b4 1.200 30 83 1.200 30 84 1.200 30 85 1.200 30

86

1.1400

30

FV FF N N E2 RPHI BETA T N DEGR. M 3.16 .2O +6.66 +.O15 3.16 3.67 +14.88 +.050 3.16 3.29 +2.99

+O9O

3.16 3.3t3 .3.1.7

.055

L.71

L53

+2.21 +.085 LJ.71 5.19

+3.4Li

.050 14.71

s.9

+14.77 +.O1O 7.19 8.08 +3.50 +.000 7.19 7.146 1.21 +.090 7.19 7.714 +2.2L1. +.045 L.71 5.51

+487

+.]30 LI.71 7.11 '8.7b +.020 4.71 t.21 +6.89 +.07S 7.19 8.10 +4.90 +.075 7.19 9.141 +6.41 +.020 7.19 8.09 +3.43 +.130 7.19 9,147 46.22 +.020 1.2.61 15.OS 44.62 +.O

12.61

14.147

+3.70

+.065

12.61 13.91 +2.68 +.120 '4.71 7.20 49.32 +.130 L1.71

77f

+10.31 ".100 14.71 9.13 "12.52 ".030 4.71 8.13 '10.87 ".080

7.19

11.02

+9.21

.060

+15.46 +2.23 18.L46 +14L44 +11.63 +.15 +18.57 +14,53 +17.t42 14.90

+]q.73

+2.80

11.25 ".70

+1.19

+3.71 +15.50 +4.96 +18.55 +7.91 16.tZ4 +5.68

+18.96

+3.45

49.71 +5.40 +7.56 +3.36 +5.05 +j,514

5.22

+1.b9 +5.50 4.92 +7.99 +2.36 +4.2O +12.q2 +3,37

+53

-.21 +9.25 +1.52 +10.51 +2.02 +37.t4L4 +7.21 +1tl.36 +14.46

(48)

Ò

N +1.05 +6.50 +6.48 +3.99 +1.52 +.13 -.39 -2.04 -3.146 -Ll.96 -8.02 +,73 +j,L4 +2.35 4.31 -1.61 -3.63 -5.75 -8.37 -10.41 -.62 +1.2b +2.32 +L4.19

i

RU VM M/S PHi

DGb.

R2 N HPtII NJ BETh

DGR.

T M FV N 87 1.4OO 30 7.19 10.02 i7.34 +.j30 +15.59 88 1.1400 30 7.19 12.77 +11.U2 -.025 +23.12 * 89 1.600 30 12.61 10.62 +9.09 -.025 22.86 * 90 1.600 30 12.61 17.16 +7.45 +.Q5O +16.38 * 91 1.600 30 12.61 16.07 +5.71j +,j33 +14.72 92 .793 0 1.90 1.90 +.000 +,014 93 .793 0 1.90 1.92 -.99 4.012 -.83 * 9. .793 0 1.90 1.97 -1.90 +.025 -1.76 * 95 .793 0 1.90 2.14 -3.75 +.O5 -3.30 * 96 .79 ( 1.90 2.145 -5.66 4.075 -(4.95 97 .793 0 1.90 2.614 -7.117 '.100 -6.L46 98 .793 0 1.90 3.81 -10.67 +.15O -9.11 109 .793 0 1.90 1.93

1.03

-.012 +.99 110 .793 0 1.90 1.95 +1.72 -.025 +1.6L * 111 .793 0 1.90 2.10 +3.61 -.050 +3.29 99 1.387 0 7.09 1.09 +.00 +.tJ0 +.19 *.. 100 1.387 0 7.09 7.16 -1.36 +.05O -(4.23 101 1.387 0 7.09 7.148 -2.614 +.100 -7.9L * 102 1.387 0 7.09 7.78 -3.6q +,j5o -11.02 * 103 1.387 0 7.09 8.Lil -4.96 +.200 -1LI.8L4 1014 1.387 0 7.09 9.00 -5.85

+.20

-17.52 * 105 1.367 0 7.09 7.09 -.69

.025

-2.15 106 1.387 0 7.09 7.09 +.57 -.025 fL.OS 1C7 1.387 0 7.09 7.37 +1.28 -.050 +3,97 108 1.387 0 7.09 7.L11 +2.51 -.100 +7.36

(49)

ODEL b

VDLC VOLT SC LCWL E%CWL TC TT CP LCB ZGM ZStb TEMP PL

M3 M3 M2 t M M ti M M DECH. M

.038

QtQ

,5

1.b2

139

.12f

.3t16

.5B5

-2.L40

.0L49

.2(15

22.5

-.038

VM RT M/S N

UPRIGHT FSISTAÑCE

-r VM RT MIS OD

.50

.72

1.30

5.714

.60

1.03

-..

1.35

6.40

'

.70

1.41

... ... 1.140

7.19

.bO

1.84

--b 1.145

8.21

.90

2.34

1.50

9.49

1.00

2.95

-,-

1.55

11.10

:i.os

3.32

1.60

13.03

1.10

37t4

1.65

15.33

1.15

4.22

. .'

1.70

16.00

1.20

4.72

1.75

21.09

1.25

5.20

.

1.80

214.47

(50)

4

?'LU 'tVot+

OEZ+

z6'o?:+

QL9+

E?:S o: oo?:.I: 8L Oi.R+ Tc3?:?'+

061+

E9tI+

Çti'6

£ZS

0E OOZ't ¿L titti+

LELT4

OO+

OLì+

6IL

EZ 0E

OOT

9L

OE+

8Lt+

0LZ:.+

Ot6f

60L

E?' O

OO?t

SL

ot,.+

90'Zt+

oZz+

Tç+

9tT

ti6ET O

0091

EL 9?:.tJ+

99Ç+

0L1+

SEE+

9?ÇI

fi6ET O

009T

ZL oç.z+

8Ot+

O+

15?+

6tiT ti6'Et O

0091

OL ttLS+

90'61

O?V+

tp1fl+

0091

h6'ET OZ

009t

69

69Z#

69t*

OLt 6t1ti+ £t'' 6P'L O? 00fl1 59

9Lh+

81'07+

OI

L9'S+

6L6

613'L 07

OOtt

ti9 *

4

56'+

EZE1+

0ZZ+

67E+

199

68L

O

OO'T

E9

SEZ+

6611*

ozz:.+

9Lti

E9'S

EZ5

0Z

OO?t

Z9 90*5+

OL9t

OSV+

tL9+

L99

EZÇ

O?

OOt

19

OSE+

Ot,t+

061+

tÇ+

tJ9

'Ç OZ

0071

09 6ti9+

099t+

on:+

0L'L

OZL

EZS

O

OO'1

tiL ?E'E+

E6't

OtiO+ 90.E+ 69'9

6L

Ot OOFi't LS 69'T+ 1ti6+

090+

LO+

6E9

69L

01 OO$;1 95

91+

055+

0E1+

ZO't'-

919

68'L 01

00h1

SS oz:'n+

60?ti

OtiO.+ 6Eti+

695

EZ:Ç 01 OOZ'I 85

99+

L15+

OEI'+

09t+

OtiS EZ'S 01

OO1

tic Lti.?:+

L69

08O+

OVE+

99S

E?5

01

0O?1

ES ztt,+ 01?:t4- OtiO'+

t1h+

b65

£Z5

01

OOZt

S

otc+

Zh.Tt+ OtiO'+

$9+

LEtJ

IEE

oi: 000't tÇ

901+

98ti+

OEt

E9

UIiE

tEE

Ot

000t

Oc

(51)

50

-IWN VM MIS

PHI

DEGR. EU N

fPHÏ

N BETh DECR. T M EV M FM N 79

1.tL0o

30

7.89

11.66

+8.91.

4.190

+2t1.B1

+5.51

80

1.LO0

30

7.89

10.05

+L7

+.300

18.85

+1.76

81 1.L400 30

7.59

10.B1

+7.77

+.2L0

i21.9L

+3.76

* 62

1.600

30

13.914

16.8'4

+6.07

+.2140

+20.28

+5.46

*

83

1.600

30

13.94

16.05

+t4.98

4.300

+16.93

+3.68

*-

sti

1.600

30

13.9t4

17.53

+6.96

4.190

+23.39

+7.02

-J 85

.793

0

2.02

2.02

.00

+.000

.Oj

86

.793

0

2.02

2.06

+1.55

-.020

'1.81

'.97

* 99

.793

0

2.02

2.08

-1.82

+.025

-1.96

-1.0Li

*

102

.793

0

2.02

2.18

-3.01

+.050

-3.62

-2.18

*

100

.793

0

2.02

2.38

-4.67

+075

-5.03

-3.21

*

103

.793

0

2.02

2.69

-6.22

+.100

-6.68

-14.62

loi_

.793

0

2.02

3.09

-7.68

+.125

-8.014

-5.9L4

87

.793

0

2.02

3.7Li

-9.58

4.150

-9.56

-7.38

90

1.387

0

7.68

7.68

+QQ +Q

-(47

91

1.387

0

7.68

7.12

+50

-.020

+1.55

+1.16

J

* 92

1.387

0

7.68

7.76

-.53

+.025

-2.08

-.L48

* 93

1.387

0

7.68

7.82

.9

'.050

-3.85

-1.48

* 9t

1.387

0

7.6b

7.8a

-1.58

+.075

-5.80

-2.62

95

1.387

0

78ß

8.00

-2.06

.1O0

-8.19

-3.95

96

1.387

0

7.68

8.L9

-3,()

'.150

-

11.08

-5.85

* 97

1.387

0

7.bß

8.71

-11.01

4.200

- 15.07

-8.35

98

1.387

0

7.68

9,39

-14.93

+.250

- 18.68

-10.75

(52)

VM

p1/s

N

.50

..o

.70

.80

.90

:i.00

1.05

1.10

1.15

1.20

1.25

.038

.OLO .614

1.ti

.52

.126

.346

.5146

-2.20

+.053

.25Li

23.5

-.035

UPRIGHT RESISTANCE VM

RI

M/S

.69

1.30

5.32

.99

-.-

1.35

6.01

-.

-s--1.35

.5--s--

1.30

6.94

1.76

1.L5

8.19

2.25

.5- .5.

1.50

9.80

2.82

..-_5_

1.55

11.83

3.15

1.60

1L.21

3.50

1.65

17.01

3.88

1.70

20.21

¡4.29

1.75

23.88

L477

*5. .. -5__5-

1.80

28.07

Cytaty

Powiązane dokumenty

Clement, E.P. Resistance tests of a systematic series of planing hull forms, Trans. Resistance tests of a systematic series of planing hull forms with 25° deadrise angle,

, "The Prediction of Yacht Per- formance From Tank Tests," Paper Read in Southampton at a Meeting of the Southern Joint Branch of The Royal Institution o f Naval Archi-

'Based on the assumption that speed and ThF should be propOrtional to each other, unes have been drawn through the points with the' aid of the least squares fit. The root mean square

Clement and Blount based their method on results of tests carried out at the David Taylor Model Basin with a series o f five models with actual planing hull forms with varying

In 1977 the results of model experiments with 9 systematic variations of sailing yacht hull forms were published [5].. The measurements included the determination of the

Grigoropoulos, G,J„ Damala, D,P„ 2011, Dynamic performance of the NTUA double- chine series hull forms in random waves.. In: Proceedings of 11th International Conference on Fast

Door alle op deze wijze systematisch gevarieerde modellen op exact dezelfde manier, met dezelfde meetopstelling, met dezelfde meet- en verwerkingsmethode door dezelfde sleeptank

● Analysis of calm-water resistance tests of a systematic series of 14 high-speed round-bilge displacement hull forms and the subsequent development of the regression equation.. ●