• Nie Znaleziono Wyników

October30,2020 VytautasD¯ud˙enas NeutrinosintheGrimus–Neufeldmodel

N/A
N/A
Protected

Academic year: 2021

Share "October30,2020 VytautasD¯ud˙enas NeutrinosintheGrimus–Neufeldmodel"

Copied!
33
0
0

Pełen tekst

(1)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Neutrinos in the Grimus–Neufeld model

Vytautas D¯ ud˙enas

Vilniaus Universitetas

In collaboration with Thomas Gajdosik, Darius Jurčiukonis, Simonas Draukšas

This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0013) under grant agreement with the Research Council of Lithuania

(LMTLT)

October 30, 2020

1 / 27

(2)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Outline

1 Introduction to seesaw Dirac, Majorana, Weyl General seesaw

Seesaw with loops

2 Grimus-Neufeld model Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

3 Pole masses Radiative mass

Seesaw mass at one loop Grimus-Lavoura approximation

4 Final remarks

(3)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Motivation

BSM physics already:

neutrinos have mass and mix...

but what is the exact mechanism?

Unknown BSM physics: More scalars?

Being general but minimal:

2HDM + 1 Seesaw neutrino + → Grimus–Neufeld model. Incorporates masses and mixings at one loop.

Seesaw models induce LFV.

3 / 27

(4)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Motivation

BSM physics already:

neutrinos have mass and mix...

but what is the exact mechanism?

Unknown BSM physics: More scalars?

Being general but minimal:

2HDM + 1 Seesaw neutrino + → Grimus–Neufeld model.

Incorporates masses and mixings at one loop.

Seesaw models induce LFV.

(5)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

Dirac or Majorana

Dirac and Majorana spinors in chiral basis ψ =

 e E

 , ϑ =

 ν ν

 , γ µ =

 0 σ µ σ ¯ µ 0



e , ν – LH, E , ν – RH

Majorana has RH = LH ⇒ 2 d.o.f.s instead of 4.

Dirac propagator

hψ ¯ ψ i = i γ µ p µ + m p 2 − m 2 ,

can be decomposed into ∼ σ µ or ∼ ¯ σ µ as chirality preserving and ∼ m as chirality violating terms.

4 / 27

(6)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

Diagramatic representation

Arrow shows the direction of left chirality propagation (see

[Dreiner, Haber, Martin ’10] ):

ξ −−−→ p

µ

ξ

∼ σ µ p µ or − ¯ σ µ p µ ξ = e , E , ν are LH Weyl spinors.

Propagators that ∼ m differ for Dirac and Majorana:

LH (ν) LH (ν)

RH (E) LH (e)

Majorana:

Dirac:

Dirac type connects RH with LH Majorana type connects LH with LH.

Consider propagation from left to right:

RH (LH) antineutrino becomes LH neutrino.

RH electron becomes LH electron

(7)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

Diagramatic representation

Arrow shows the direction of left chirality propagation (see

[Dreiner, Haber, Martin ’10] ):

ξ −−−→ p

µ

ξ

∼ σ µ p µ or − ¯ σ µ p µ ξ = e , E , ν are LH Weyl spinors.

Propagators that ∼ m differ for Dirac and Majorana:

LH (ν) LH (ν)

RH (E) LH (e)

Majorana:

Dirac:

Dirac type connects RH with LH Majorana type connects LH with LH.

Consider propagation from left to right:

RH (LH) antineutrino becomes LH neutrino.

RH electron becomes LH electron

5 / 27

(8)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

propagator types

ξ = e, E , ν ξ

† −−−→ p

µ

ξ

i σ p

p

2

−m

ξ2

or − p

2

i ¯ σ p −m

2ξ

LH (ν) LH (ν)

RH (E) LH (e)

Majorana:

Dirac:

im

ξ

p

2

−m

2ξ

LH (ν ) LH (ν ) LH (e ) RH (E ) Majorana:

Dirac:

im

ξ

p

2

−m

2ξ

(9)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

Seesaw

Why SM neutrinos do not have a mass:

Majorana mass term violates gauge invariance explicitly EWSB generates only Dirac type mass,

which needs independent RH component

Sesaw mechanism:

Introduces independent RH component N . Allows EWSB generated Dirac mass

RH dof is singlet ⇒ Majorana mass M for RH component allowed.

Generates effective ∼ 1/M Majorana masses in EWSB phase: .

.

ν N ν

hHi hHi

7 / 27

(10)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

Seesaw

Why SM neutrinos do not have a mass:

Majorana mass term violates gauge invariance explicitly EWSB generates only Dirac type mass,

which needs independent RH component

Sesaw mechanism:

Introduces independent RH component N . Allows EWSB generated Dirac mass

RH dof is singlet ⇒ Majorana mass M for RH component allowed.

Generates effective ∼ 1/M Majorana masses in EWSB phase:

.

.

ν N ν

hHi hHi

(11)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Dirac, Majorana, Weyl General seesaw Seesaw with loops

Seesaw with loops: radiative mass?

Radiative mass: mass, generated via loops

Why SM neutrinos do not have radiative mass (one loop):

.

.

ν e

E

W

ν

.

.

ν ν

Z

ν

These diagrams are impossible in the SM

Include particle N, having a Majorana mass (connects LH with LH):

.

.

ν N

H

ν

8 / 27

(12)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

No radiative mass in SM+seesaw

O(5) operator representation from seesaw:

.

ν N ν

hHi hHi

y y

Effective mass term, from integrating out heavy N:

L = 1

√ 2 y νNv + 1

2 MN 2 → v 2 y 2 2M ν ν

y determines the coupling of ν to scalar and the mass term.

⇒ one heavy N leads to one 1/M neutrino mass

⇒ loop corrections contributes to the seesaw mass,

but does not induce more massive neutrino states..

⇒ Needs more then 1 d.o.f at high scale

(13)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

Grimus-Neufeld model

Take another scalar doublet ⇒ 2HDM+ 1 heavy N [G-N ’89] . Can we fit masses?

One neutrino, ν 3 , gets seesawed with hH 1 i(Higgs basis, where hH 1 i = v/ √

2, hH 2 i = 0):

.

.

ν

3

N ν

3

y y

hH

1

i hH

1

i

another, ν 2 , gets mass radiatively with H 2 :

.

.

ν

2

N

H

2

ν

2

d d

10 / 27

(14)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

GN model

ν 1 stays masless at one loop.

2HDM gives us 2 general complex 3-vectors as Yukawa couplings Y ν 1 and Y ν 2 in flavour and the Higgs basis:

L = −Y ν 1

i

` i H 1 N − Y ν 2

i

` i H 2 N + H.c. , i = e, µ, τ

H 1 = G W +

√ 1

2 (v + h + iG Z )

!

, H 2 = H +

√ 1

2 (H + iA)

!

,

(15)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

GN model

4 × 4 mixing matrix, relates flavor basis to mass eigenstate basis:

ν F = U ν ν M = V PMNS U seesaw ν M 3 × 3 block of U ν is approximately Unitary and should correspond PMNS from experiment.

V PMNS is exacly unitary 3 × 3, which we use to pick the basis:

Y ν 1 V PMNS = (0, 0, y ) , Y ν 2 V PMNS = 0, d, d 0 

which is approximate 1 loop mass eigenstate basis (next slide)

12 / 27

(16)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

GN model

Y ν 1 V PMNS = (0, 0, y ) , Y ν 2 V PMNS = 0, d, d 0 

.

.

ν3 N ν3

y y

hH1i hH1i

.

.

ν2 N

H2

ν2

d d

.

.

ν3 N

H2

ν3

d d

Task: take PMNS, ∆m 2 12 , and ∆m 2 13 from experiment and

relate them to d , d 0 , y at one loop.

(17)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

Why bother doing it?

neutrino couplings Y ν 1 and Y ν 2 are fully determined by y , d , d 0 and V PMNS

y , d , d 0 depend on p∆m 2 21 , p∆m 2 31 , Higgs masses and mixings

One can look at processes, where Y ν 1 and Y ν 2 appears:

` → ` 0 γ ,

anomalous magnetic moment H → ` ν

...

Then one can combine these with neutrino data

⇒ they interplay with electron Yukawas

⇒ could also restrict the scalar sector

14 / 27

(18)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Extending SM with seesaw Seesaw+radiative in GN model Neutrino Yukawas and observables

Example for ` → ` 0 γ

.

.

ℓ ν ℓ N ν ℓ

W

γ

Y ν 1

Y ν 1

ℓ′

hH 1 i hH 1 i

.

.

ℓ N

H

γ

Y ν 2

Y ν 2

ℓ′

(19)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

1 Loop

Calculating the effective two point functions, we get corrections:

.

ν

j

ν

i

ij =

.

ν

j

ν

i

iσpΣ ij =

Expanding in loops :

Γ [ ≤1] = Γ [0] + Γ [1] , Γ [0] 33 = −m 3 ≈ − y 2 v 2

2M , Γ [0] 44 = −m 4 ≈ −M Tree and loop effective mass-like two pt functions look like:

Γ [0] = −

0 0 0 0

0 0 0 0

0 0 m 3 0 0 0 0 m 4

, Γ [1] =

0 0 ∗ ∗ 0 ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

16 / 27

(20)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Pole masses

One loop approximation give four pole masses:

µ 1 = 0 µ 3 = m 3 − Γ [1] 33 − m 3 Σ [1] 33 µ 2 = −Γ [1] 22 µ 4 = m 4 − Γ [1] 44 − m 4 Σ [1] 44

µ 2 is radiatively generated mass, µ 3 is corrected light seesaw mass, and heavy µ 4 ∼ M at one loop.

The most of the 2pt functions need to be defined in the renormalization scheme, except for Γ [1] 22

there is no counterterm available, since tree level mass is zero.

(21)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Radiative mass

The result for Γ [1] 22 :

.

.

ν2 N

H2

ν2

d d

.

.

ν2 m3, m4 h, H, A

ν2 d× (..) d× (..)

or:

µ 2 = −Γ 22 = − d 2

32π 2 (m 3 + m 4 ) ×

× m 2 3 h

B 0 0, m 3 2 , m 2 A  − s β 2 −α B 0 0, m 2 3 , m 2 H  − c β 2 −α B 0 0, m 2 3 , m 2 h  i

− m 2 4

h

B 0 0, m 2 4 , m 2 A  − s β 2 −α B 0 0, m 2 4 , m H 2  − c β 2 −α B 0 0, m 2 4 , m 2 h  i

! .

Finite and gauge invariant without the need of any UV

subtraction.

18 / 27

(22)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Radiative mass

One loop approximation gives one of the pole mass relation:

Γ 22 ≡ d 2 Γ ˜ 22 ⇒ d 2 = −m 2 /˜ Γ 22

The functional dependency:

d 2 = f (m h , m A , m H , α − β ,m 2 , m 3 , m 4 )

⇒ relates m h , m A , c α −β to neutrino parameters

note: relation breaks down, when m A = m H and c α −β = 0 For simplicity, assuming NH:

m 2 = q

∆m 2 21 , m 3 = q

∆m 31 2

⇒ we related d with q

∆m 21 2

Let us go on an use the other mass.

(23)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Corrections for seesaw mass

The one loop seesaw mass:

µ 3 = m 3 − Γ [1] 33 − m 3 Σ [1] 33

loop functions are not finite ⇒ needs renormalization scheme.

In the OS, we can fix a relation to hold at one loop y = p

∆m 13 · m 4 /2v

Determine counterterms, check gauge invariance...

d 0 then should be determined from other renormalization condition...

⇒ in general, need to renormalize the full model

20 / 27

(24)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Some other options?

We work on renormalizing GN model in OS (CMS) scheme use FeynArts, FormCalc

We try to use FlexibleSUSY:

FS calculates pole masses from couplings Does not use OS

Need relations between FS inputs and masses we have d from ∆m 12 2 already

we can have MS mass m 3 related to y

then we can parametrize mass shift with d 0 or..

try to use Grimus-Lavoura approximation for both masses First check - we should get the same masses as output from the input of y , d , d 0 and V PMNS

also ongoing research to implement in FS...

(25)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Some other options?

We work on renormalizing GN model in OS (CMS) scheme use FeynArts, FormCalc

We try to use FlexibleSUSY:

FS calculates pole masses from couplings Does not use OS

Need relations between FS inputs and masses we have d from ∆m 12 2 already

we can have MS mass m 3 related to y

then we can parametrize mass shift with d 0 or..

try to use Grimus-Lavoura approximation for both masses First check - we should get the same masses as output from the input of y , d , d 0 and V PMNS

also ongoing research to implement in FS...

21 / 27

(26)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Some other options?

We work on renormalizing GN model in OS (CMS) scheme use FeynArts, FormCalc

We try to use FlexibleSUSY:

FS calculates pole masses from couplings Does not use OS

Need relations between FS inputs and masses we have d from ∆m 12 2 already

we can have MS mass m 3 related to y

then we can parametrize mass shift with d 0 or..

try to use Grimus-Lavoura approximation for both masses First check - we should get the same masses as output from the input of y , d , d 0 and V PMNS

also ongoing research to implement in FS...

(27)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Grimus-Lavoura approximation

Inspecting the similarity

.

.

ν

3

N ν

3

y y

hH

1

i hH

1

i .

.

ν

2

N

H

2

ν

2

d d

Seesaw and loop are treated as the same order [Grimus, Lavoura ’02]

⇒ There are no tree level masses for light neutrinos

⇒ there are no possible counterterms for UV subtraction of effective light mass matrix at one loop

⇒ loop corrections to light neutrino masses must be gauge invariant and finite

22 / 27

(28)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Grimus-Lavoura approximation

Modify loop ordering in perturbative calculations from:

Γ [0] = −

0 0 0 0

0 0 0 0

0 0 m 3 0 0 0 0 m 4

, Γ [1] =

0 0 ∗ ∗

0 ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

(29)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Grimus-Lavoura approximation

Modify loop ordering in perturbative calculations to:

Γ [0] = −

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 m 4

, Γ [1] =

0 0 0 ∗

0 ∗ ∗ ∗

0 ∗ −m 3 + ∗ ∗

∗ ∗ ∗ ∗

where we set:

m 3 ≈ y 2 v 2

2M = O (1 loop) Pole masses:

µ 2 µ 3 = Γ [1] 22 Γ [1] 33 −  Γ [1] 23

 2

µ 2 + µ 3 = −Γ [1] 22 − Γ [1] 33

Γ [1] 22 ∼ d 2 , Γ [1] 23 ∼ dd 0 (..) + yd 0 (..) , Γ [1] 33 ∼ y 2 (..) + d 0  2

(...)

24 / 27

(30)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Grimus-Lavoura approximation

Modify loop ordering in perturbative calculations to:

Γ [0] = −

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 m 4

, Γ [1] =

0 0 0 ∗

0 ∗ ∗ ∗

0 ∗ −m 3 + ∗ ∗

∗ ∗ ∗ ∗

 where we set:

m 3 ≈ y 2 v 2

2M = O (1 loop) Pole masses:

µ 2 µ 3 = Γ [1] 22 Γ [1] 33 −  Γ [1] 23

 2

µ 2 + µ 3 = −Γ [1] 22 − Γ [1] 33

Γ [1] 22 ∼ d 2 , Γ [1] 23 ∼ dd 0 (..) + yd 0 (..) , Γ [1] 33 ∼ y 2 (..) + d 0  2

(...)

(31)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Pole masses

µ 2 µ 3 = Γ [1] 22 Γ [1] 33 −  Γ [1] 23

 2

µ 2 + µ 3 = −Γ [1] 22 − Γ [1] 33

Γ [1] 22 ∼ d 2 , Γ [1] 23 ∼ dd 0 (..) + yd 0 (..) , Γ [1] 33 ∼ y 2 (..) + d 0  2

(...) 2pt funtions i σ pΣ do not enter at this order.

No need for counterterms - finite and gauge invariant on themselves [Grimus, Lavoura ’02]

the gauge dependent parts are multiplied by m 3 , but zeroth order m 3 is set to zero.

Relates d , d 0 and y to ∆m 21 2 and ∆m 2 31 .

The mixing terms are included in the approximation.

25 / 27

(32)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Radiative mass Seesaw mass at one loop Grimus-Lavoura approximation

Some progress and open questions

We managed to make FS working with GN model Some initial checks are being done:

GL approximated PMNS and masses seems to be reasonably reproduced with FS

the checks are not finalized yet..

Difficulties:

Hierarchy problem:

in MS Higgs mass correction ∼ M seesaw

⇒ it limits (roughly) M seesaw < 10 4(5) GeV from perturbativity huge numerical cancellations

⇒ need functions with many digits precision

(33)

Introduction to seesaw Grimus-Neufeld model Pole masses Final remarks

Summary

GN - a model that can incorporate the measured neutrino data 2HDM +1N – only 1 heavy scale

enough to have 2 mass differences and mixings at one loop Relatively small number of parameters in neutrino Yukawas.

(V PMNS , y , d , d 0 , M seesaw )

Relates neutrino sector with scalar sector.

Contribute to LFV observables.

Future goal: restrict parameters of scalar and Yukawa sector, including the neutrino data and the observables such as a µ , µ → eγ, etc.

27 / 27

Cytaty

Powiązane dokumenty

Public buildings, even subw ay stations, w ere shaped like k in g ’s palaces, rather than B auhaus-like factories... H ow ever, this policy co rresponded directly to

Někte­ ří členové ZLPC jsou rovněž členy Związku Literatów Polskich (Svazu polských literátů) nebo Stowarzyszenia Pisarzy Polskich (Spolku polských

Trud­ no związać ten fragment z odautorską tezą, że „Służby administracyjno-policyjne interesować się zaczęły kościołami i związkami religijnymi już nie tylko pod

Z tej gru py na w yróżnienie zasługuje stra­ tegia uaktualniania inform acji turystycznych o m iejscow ości, strategia reklam owania się gm iny w zakresie różnych

osada kultury łużyckiej (V okres epoki brązu — wczesny okres lateński).. Ratownicze badania wykopaliskowe na trasie gazociągu tranzytowego Rosja-Niemcy, prze­ prowadzone

W jednej z kronik padły słowa, które – moim zdaniem – wiele mówią o Sienkiewiczowskim warsz- tacie: „Tak w utworach literackich jak i artystycznych jedną by tylko wskazówkę

Tak więc można twierdzić, że osadnictwo średniowieczne koncen­ trowało się głównie w rejonie Bartnej Strony A (na wschód od obecnej ul. Mickiewicza), ale tylko

Ta konstrukcja, tj. uznanie wymienionej podstawy, a co za tym idzie i charakteru prawnonaturalnego tych praw, ma swoje odzwierciedlenie rów- niez˙ w porz ˛ adkach normatywnych