• Nie Znaleziono Wyników

Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce Fold Zone (southern Holy Cross Mountains, Central Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce Fold Zone (southern Holy Cross Mountains, Central Poland)"

Copied!
12
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2011, 55 (3): 223–234

Palaeomagnetic age con straints on fold ing and fault ing events in De vo nian car bon ates of the Kielce Fold Zone

(south ern Holy Cross Moun tains, Cen tral Po land)

Rafa³ SZANIAWSKI, Andrzej KONON, Jacek GRABOWSKI and Petr SCHNABL

Szaniawski R., Konon A., Grabowski J. and Schnabl P. (2011) – Palaeomagnetic age con straints on fold ing and fault ing events in De vo - nian car bon ates of the Kielce Fold Zone (south ern Holy Cross Moun tains, Cen tral Po land). Geol. Quart., 55 (3): 223–234. Warszawa.

The re sults of nu mer ous palaeomagnetic stud ies per formed in the last three de cades in De vo nian car bon ates of the Holy Cross Moun tains (HCM) have doc u mented the oc cur rence of sev eral ep i sodes of remagnetisation. This knowl edge was ap plied in this study to de ter mine the tem po ral re la tion ships be tween the ac qui si tion of par tic u lar sec ond ary palaeomagnetic com po nents and the for ma tion of tec tonic struc tures. This made it pos si ble to es ti mate the tim ing of sev eral ep i sodes in the mul ti stage tec tonic evo lu tion of par tic u lar folds and faults. We show that the wes tern most part of the south ern HCM was ro tated clock wise af ter the early Perm ian. De tailed palaeomagnetic anal y sis doc u mented also shape mod i fi ca tions in some map-scale and mi nor folds. This tec tonic over print ing of orig i nally Car bon if er ous folds post dated the early Perm ian. It was fur ther more shown that the N–S trending dextral strike-slip faults stud ied were ac tive be tween the early Perm ian and the Permo/Tri as sic. Our re cent data show also the post-early Perm ian age of brec cia that cov ers the de formed De - vo nian strata.

Rafa³ Szaniawski, In sti tute of Geo phys ics, Pol ish Acad emy of Sci ence, Ks. Janusza 64, PL-01-452 Warszawa, Po land, e-mail:

rafsz@igf.edu.pl; Andrzej Konon, In sti tute of Ge ol ogy, Uni ver sity of War saw, ¯wirki i Wigury 93, PL-02-089 Warszawa, Po land, e-mail: andrzej.konon@uw.edu.pl; Jacek Grabowski, Pol ish Geo log i cal In sti tute – Na tional Re search Institute, Rakowiecka 4, PL-00-975 Warszawa, Po land, e-mail: jacek.grabowski@pgi.gov.pl; Petr Schnabl, In sti tute of Ge ol ogy AS CR v.v.i., Rozvojova 269, 165 00 Praha 6, Czech Re pub lic, e-mail: schnabl@gli.cas.cz (re ceived: De cem ber 23, 2010; ac cepted: Sep tem ber 11, 2011).

Key words: remagnetisations, palaeomagnetic com po nents, fold tests, tec ton ics.

INTRODUCTION

Rec og ni tion of the age of mag netic remanence and its re la - tion to geo log i cal events con sti tutes the prin ci pal is sue in most of palaeomagnetic stud ies. In the early years of the palaeomagnetic method, two pow er ful tech niques were de vel oped to dis tin guish time re la tion ships be tween magnetisation and the for ma tion of folds and con glom er ates: the fold test and con glom er ate test (Gra ham, 1949). Both meth ods were sys tem at i cally im proved and used most com monly for con strain ing the age of magnetisation in re la tion to fold ing and ero sional events. It was rec og nized that sed i men tary rocks were com monly remagnetised ei ther by thermoviscous or by chem i cal pro cesses (e.g., McCabe and El more, 1989) and that ac qui si tion of sec ond - ary magnetisation might hap pen at any stage of rock de for ma tion (e.g., Lewandowski, 1981; McWhinnie et al., 1990; Stamatakos et al., 1996; Enkin et al., 2000; Grabowski et al., 2009). Cor rect age rec og ni tion of a sec ond ary com po nent to gether with un der -

stand ing the com plex and mul ti stage na ture of tec tonic pro cesses con sti tuted the ba sis for nu mer ous palaeomagnetic stud ies con - strain ing the age of de for ma tion events (e.g., Sandberg and But - ler, 1985; Stew art, 1995; Szaniawski et al., 2003; Cederquist et al., 2006; Pueyo et al., 2007).

Our stud ies fo cus on De vo nian car bon ates from the south - ern part of the HCM (SHCM – Kielce Fold Zone) where the age of par tic u lar tec tonic struc tures is fre quently un clear and de bated (synsedimentary and Variscan de for ma tions ver sus a Maastrichtian-Paleocene over print, see Kutek and G³azek, 1972; Lamarche et al., 1999, 2002, 2003). These rocks were cho sen since their mag netic re cord had been rec og nized by pre - vi ous stud ies (Lewandowski, 1981, 1999; Grabowski and Nawrocki, 1996, 2001), re veal ing mostly sec ond ary magnetisations. Three ma jor ep i sodes of remagnetisation in the Kielce Fold Zone were dis tin guished by Zwing (2003) and Szaniawski (2008) from fold tests ap plied to map-scale folds from the en tire area of the SHCM. They re sulted in the early syn-fold ing Visean com po nent B, and post-fold ing com po -

(2)

nents of early Perm ian (com po nent A) and late Perm ian/Early Tri as sic age (com po nent C).

The pres ent pa per shows new re sults of in te grated palaeomagnetic and struc tural stud ies car ried out in the SHCM and their ap pli ca tion to dat ing and to re stor ing the evo lu tion ary stages of both ma jor and mi nor tec tonic struc tures as well as re - lated sed i men tary brec cias.

GEOLOGICAL SETTING

The HCM rep re sent an ex posed frag ment of the Trans-Eu ro - pean Su ture Zone (TESZ) that forms a tran si tion be tween the Pre - cam brian East Eu ro pean Craton (EEC) and Pa leo zoic mo bile belts of Cen tral and West ern Eu rope (Fig. 1). These stud ies have been car ried out in the south ern re gion of the HCM (SHCM) that be - longs to the Ma³opolska Block, that con sti tutes a tectono - stratigraphic terrane de rived from Gond wana and accreted to the EEC in the Cam brian (Be³ka et al., 2000, 2002; Nawrocki, 2000;

Winchester et al., 2002; Nawrocki et al., 2007).

Sed i men ta tion of late Pa leo zoic car bon ates in the SHCM started in the Eifelian and con tin ued dur ing the Mid and Late De vo nian (e.g., Czarnocki, 1919). At that time the car bon ate plat form de vel oped pro gres sively and sub se quently drowned in an extensional tec tonic re gime (see Szulczewski, 1989, 1990; Racki, 1992; Szulczewski et al., 1996). At the be gin ning of early Car bon if er ous times, the ba sin was pro gres sively deep en ing, as re flected by uni form deep-wa ter clayey de po si - tion. This was fol lowed by clayey-sandy sed i ments in the Visean, in dic a tive of gen eral shallowing of the ba sin and rep re - sent ing the youn gest Car bon if er ous de pos its in the area (e.g., Szulczewski, 1995). The rock suc ces sion de scribed is folded and cov ered dis cor dantly by up per Perm ian strata which set an up per time limit on the fold ing.

The De vo nian car bon ates stud ied un der went a multi-stage tec tonic evo lu tion. At the be gin ning these rocks were af fected by sig nif i cant synsedimentary de for ma tion in a gen er ally extensional set ting (Szulczewski, 1971, 1989; Racki and Narkiewicz, 2000). A sig nif i cant ep i sode of tec tonic ac tiv ity oc curred in the late Pa leo zoic when the HCM con sti tuted the

fore land of the Variscan Orogen (Po¿aryski et al., 1992;

Dadlez et al., 1994; Szulczewski, 1995; Krzemiñski, 1999;

Jaworowski, 2002; Mazur et al., 2006). In the HCM, the Variscan fold ing started af ter Visean times due to N–S to NNE–SSW-di rected short en ing (e.g., Czarnocki, 1957;

Tomczyk, 1988; Mizerski, 1995; Lamarche et al., 1999, 2002;

Konon, 2006, 2007; Szaniawski, 2008). The late Variscan com pres sion ter mi nated prior to late Perm ian times (Czarnocki, 1919), re sult ing in map-scale folds de fin ing a fold belt com - prised of the Kielce (=SHCM) and £ysogóry fold zones (as de - fined by Konon, 2008).

An other ac tive tec tonic ep i sode oc curred dur ing the Maastrichtian-Paleocene up lift, when the rocks stud ied were af fected by mostly brit tle de for ma tion ac com pa nied by mod i fi - ca tion of shapes of the ear lier formed folds (Jaroszewski, 1972;

Kutek and G³azek, 1972; Lewandowski, 1985; Kutek, 2001;

Krzywiec, 2009). The lat ter de for ma tion was par tic u larly in - tense at the con tact zone of the Pa leo zoic sub stra tum and its Me so zoic cover (G¹gol et al., 1976; G³azek et al., 1981;

Lamarche et al., 2002, 2003).

The map-scale folds in the HCM are dis sected by nu mer ous lon gi tu di nal faults as well as by those strik ing at high or low an - gles to their axes (i.e. trans verse and oblique faults; Czarnocki, 1919, 1957; Samsonowicz, 1934; Konon, 2007). Most faults in both the Kielce and £ysogóry fold zones are char ac ter ized by com bined strike-slip and ei ther nor mal or re verse-slip com po - nents (e.g., Czarnocki, 1957; Jaroszewski, 1972; Mastella and Mizerski, 2002; Konon, 2007).

SCIENTIFIC TARGETS AND SAMPLING STRATEGY

The pres ent study is fo cused on re con struct ing the for ma - tion of se lected tec tonic struc tures us ing palaeomagnetic meth - ods, a task im por tant for un der stand ing the over all tec tonic evo lu tion of the SHCM. Stud ies re ported in this pa per were per formed within map-scale folds near to the south ern and west ern edge of the SHCM where Maastrichtian-Paleocene mod i fi ca tion of fold shapes (e.g., G³azek and Kutek, 1970;

Kowalczewski, 1971; Kutek and G³azek, 1972; Kowalski,

Fig. 1A – tec tonic map of Po land (mod i fied af ter Be³ka et al., 2000); B – geo log i cal map of the Holy Cross Moun tains (af ter Czarnocki, 1938) HCF – Holy Cross Fault, HCM – Holy Cross Moun tains, MGCH – Mid-Ger man Crys tal line High, TESZ – Trans-Eu ro pean Su ture Zone,

TRT – Tepla–Barrandian Terrane, USM – Up per Silesian Mas sif, black rect an gle marks the study area shown in de tail in Fig ure 2

(3)

1975) and re ac ti va tion of faults has been sug gested (e.g., G¹gol et al., 1976; G³azek et al., 1981). Sam pling sites were cho sen along a transect cut ting the west ern part of the SHCM from the area of Niewachlów in the north to that of Rzepka in the south (Figs. 2 and 3). Sam ples were col lected from limbs of map-scale folds, avoid ing lo ca tions close to smaller, lower-or - der folds, from the fol low ing sites: MO3 (Mogi³ki Quarry) and KO1 (Kostom³oty Quarry) from the north ern limb of the Niewachlów Anticline; site SL1 (Œluchowice Quarry) from the south ern limb of the Niewachlów Anticline; DA1 (Dalnia Quarry) and JA1 (Jaworznia Quarry) from the north ern limb of the Dyminy Anticline; SZ1 (Szewce Quarry) from the south ern limb of the Dyminy Anticline; ST1 (Stokówka Quarry) sit u - ated on the north ern limb of the Chêciny Anticline. De tailed anal y ses were per formed close to the south ern edge of the HCM Pa leo zoic core, where three sites were sam pled in the south ern limb of the Chêciny Anticline (SS1 – Sosnówka Hill;

GZ1 and GZ2 – Zamkowa Hill) and two other sites in the south ern limb of the rel a tively small Rzepka Syncline (RZ1 – Rzepka Quarry plus SG1 – Su³tañskie Górki).

Ad di tion ally a num ber of sites were se lected for stud ies of mi nor tec tonic struc tures and of sed i men tary brec cia. In Mogi³ki Quarry two sam pling sites (MO1 and MO2) were sit u - ated at the op po site limbs of a metre-scale chev ron fold (Fig. 4C). The mi nor fold stud ied be longs to the north ern limb of a the map-scale Niewachlów Anticline. Fur ther stud ies were per formed to clar ify the age of N–S trending dextral strike-slip faults from Œluchowice Quarry, whose age and im por tance were com pre hen sively dis cussed else where (Konon, 2007,

2009; Œwidrowska and Lamarche, 2009). For this pur pose, sam ples were taken from two sites (SL2 and SL3), from rock lay ers dragged by a strike-slip fault (Fig. 4A). A palaeomagnetic study of a post-tec tonic brec cia was car ried out in Laskowa Quarry (Fig. 4D). This brec cia is com posed of slightly rounded clasts of De vo nian car bon ates within red fine-grained indurated ma trix. The brec cia rests in a hor i zon tal po si tion and dis cor dantly cov ers de formed and folded De vo - nian strata. For this study five clasts of the brec cia were sam - pled.

LABORATORY METHODS

At a typ i cal sam pling site, six to seven hand sam ples were taken. Sam ples were sub se quently drilled in the lab o ra tory in or der to ob tain spec i mens 24 mm in di am e ter. Most palaeomagnetic ex per i ments were per formed at the Palaeomagnetic Lab o ra tory, In sti tute of Geo phys ics, Pol ish Acad emy of Sci ences. Lab o ra tory mea sure ments started with stud ies on ac qui si tion of iso ther mal remanent magnetisation (IRM) and with the Lowrie test (Lowrie, 1990), us ing a 2G SQUID cryo genic mag ne tom e ter plus a Mag netic Mea sure - ments MM-1 fur nace and pulse mag ne tizer. The same lab o ra - tory equip ment was ap plied in in ves ti ga tions of nat u ral remanent magnetisation (NRM). Col lec tions from two lo cal i - ties (SZ1 and brec cia from Laskowa Quarry) were in ves ti gated in the palaeomagnetic lab o ra to ries of the Pol ish Geo log i cal In - sti tute – Na tional Re search In sti tute in War saw (JR6A mag ne -

Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce Fold Zone... 225

Fig. 2. Geo log i cal map of the west ern part of the Holy Cross Moun tains (af ter Czarnocki, 1938 and Konon, 2007; mod i fied) show ing lo ca tion of palaeomagnetic sam pling sites, ori en ta tions of the A com po nent dec li na tions and po si tion of the cross sec tion X–Y

Ch. A. – Chêciny Anticline, D. A. – Dyminy Anticline, G. S. – Ga³êzice Syncline, K. S. – Kielce Syncline, M.G. S. – Miedziana Góra Syncline, N. A. – Niewachlów Anticline, Ns. A. – Niestachów Antykline, Rz. S. – Rzepka Syncline

(4)

tom e ter and MMTD1 ther mal demagnetizer) and at the In sti tute of Ge ol ogy of the Acad emy of Sci ences of the Czech Re pub lic in Prague (2G cryo genic mag ne tom e ter and MAVACS ther mal demagnetizer sys tem).

The ther mal demagnetisation tech nique was uti lized for in - ves ti ga tions of the NRM com po si tion since this method has turned out to be the most ef fec tive for sep a rat ing the palaeomagnetic com po nents of the rocks stud ied (e.g., Grabowski et al., 2006). Af ter each step of ther mal clean ing, the mag netic sus cep ti bil ity was mon i tored ap ply ing the KLY-3 kappbridge. Sep a ra tion of palaeomagnetic di rec tions was per - formed us ing the prin ci pal com po nent anal y sis method (PCA;

see Kirschvink, 1980) and soft ware by Chadima and Hrouda (2006). Palaeomagnetic site mean di rec tions were cal cu lated as a mean of hand sam ple di rec tions, whereas the di rec tion for ev - ery sam ple was de ter mined as a mean of spec i men di rec tions ob tained by PCA.

PALAEOMAGNETIC RESULTS

The IRM ac qui si tion ex per i ments re veal that the ma jor ity of the rock sam ples in ves ti gated con tain an im por tant con tri bu - tion of low-coercivity mag netic min er als that man i fest them - selves by a rapid in crease of mag net is ation af ter ap ply ing mag - netic fields be low 160 mT (Fig. 5A). Most sam ples were al most com pletely sat u rated in fields over 400 mT in di cat ing neg li gi - ble con tent of high-coercivity min er als. Re sults of Lowrie tests are in agree ment with IRM stud ies since most mag net is ation was car ried by low-coercivity min er als show ing max i mum un - block ing tem per a tures (Tub) of 450–500°C (Fig. 5A). The ob - served low-coercivity mag netic min er als char ac ter ized by mod er ate Tub rep re sent most likely nonstoichiometric mag ne - tite or maghemite. These re sults are gen er ally in line with pre vi - ous re ports show ing com pre hen sive rock mag netic and SEM stud ies (Zwing, 2003; Grabowski et al., 2006). Dif fer ent mag - netic prop er ties were noted only in a few of the rocks stud ied (sites JA1, SL3 and SZ1), which are char ac ter ized by an im por - tant con tent of he ma tite, as dis tin guished by its high coercivity and Tub above 600°C (Fig. 5B). These he ma tite-bear ing rocks are eas ily rec og niz able by their char ac ter is tic red dish shade.

The NRM shows a rel a tively low ini tial in ten sity, rang ing typ i cally be tween 0.1 and 5 mA/m. At those sites where rock anal y ses un cover a lack of he ma tite, the mag netic re cord shows com pa ra ble struc ture. The low est tem per a tures of demagnetisation (up to 255°C) ef fec tively re move soft, com po - nents, di rected along the pres ent-day geo mag netic field di rec - tion of the area. Some of the sites stud ied (GZ1, GZ2, RZ1, SG1), which dis play very low val ues of NRM in ten sity, re veal the oc cur rence of only this soft, com po nent, in ter preted as re - cent viscuous remanent magnetisation (VRM).

Af ter VRM re moval a grad ual mi gra tion of the NRM vec - tor to ward the third quar ter of the hemi sphere is ob served, ac - com pa nied by a small in crease in the remanence in ten sity (Fig. 6A, B). On sub se quent de mag neti sa tion steps, just one com po nent of the char ac ter is tic remanent mag net is ation (ChRM) typ i cally oc curs, be ing rec og nized as the A com po - nent known from pre vi ous stud ies (Zwing, 2003; Szaniawski, 2008). It was dis tin guished by a Tub range of 250–400°C,

re tfa( YX noi tces ssorc la c igo loeG .3 .giFzciwonoliF ;3791 ,grebnekaH ;3791 ,nonoKsetisgnil pmas fo noi ta col gn iwohs )6002 , fo denia tbo se ulav dna citengamoealapstne no pmoc )egn aro( C dna )der( A fo snoi ta nil cni

(5)

Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce fold zone... 227

Fig. 4A–D – close-up views of se lected tec tonic struc tures

A – bird’s-eye view of strike-slip fault stud ied with lo ca tion of site SL2; B, C – sec ond-or der folds from Œluchowice and Mogi³ki quar ries with de tailed lo ca tion of sam pling sites and val ues ob tained of in cli na tion, both pho to graphs B and C are dis played

as mir ror im ages to cor re spond with the cross-sec tion X–Y (Fig. 3); D – brec cia from Laskowa Quarry

Fig. 5. Re sults of stepwise ac qui si tion of IRM (left di a grams) along with ther mal demagnetisation of a com pos ite three axes IRM (Lowrie, 1990 – right di a grams) ob served in the ma jor ity of sam ples stud ied (A – site KO1) and de rived from

red dish car bon ates (B – site SL3)

(6)

Fig. 6. Re sults of ther mal demagnetisation of four rep re sen ta tive spec i mens

A – site KO1; B – site MO3; C – site JA1; D – site SL3; left – ste reo graphic pro jec tion of ther mal demagnetisation path; mid dle – or thogo nal pro jec tion of demagnetisation path (Zijderveld di a gram); right – NRM in ten sity de cay dur ing ther mal demagnetisation

(7)

SW-di rected dec li na tions and shal low in cli na tions (be fore tec - tonic cor rec tion). The com po nent A char ac ter ized by the same Tub was rec og nized also in brec cia stud ied from Laskowa Quarry. In a small num ber of spec i mens from site MO3, be - sides the com po nent A, traces of the an other remanence com - po nent were ob served. The com po nent is char ac ter ized by slightly higher Tub than com po nent A, and nor mal po lar ity that man i fests it self by grad ual mi gra tion of the mag netic vec tor to - wards the NE at tem per a tures above a de mag neti sa tion step of 400°C (Fig. 6B). Un for tu nately, this com po nent was not pos si - ble to sep a rate from com po nent A due to partly over lap ping un - block ing tem per a tures, but its prop er ties cor re spond to the B com po nent af ter the ter mi nol ogy of Zwing (2003) and Szaniawski (2008).

Dif fer ent palaeomagnetic be hav iour was ob served in sites JA1, SZ1 and SL3, char ac ter ized by the pres ence of he ma tite.

Sam ples from sites JA1 and SZ1 re cord a mag net is ation com - po nent char ac ter ized by a max i mum Tub of 620°C, SSW ori - ented dec li na tion and mod er ate neg a tive in cli na tion (Fig. 6C).

These fea tures match with the prop er ties of the re versed po lar - ity com po nent C known from pre vi ous stud ies (Szaniawski, 1997; Zwing, 2003; Szaniawski, 2008). How ever, in site SL3, he ma tite-bear ing rocks re cord a high Tub (max i mally 620°C) com po nent of mixed-po lar ity. Such a com po nent is dom i nantly di rected to the NNE with pos i tive in cli na tion but shows also SSW ori en ta tions and neg a tive in cli na tions (Figs. 6D and 7).

For the pur pose of this pa per, the he ma tite-bear ing and mixed-po lar ity com po nent from site SL3 was named the C’

com po nent (Ta ble 1).

DISCUSSION

The ma jor ity of the sites ana lysed re cord the A com po nent, oth er wise known as the most com mon one in the west ern part

of the SHCM (Zwing, 2003; Grabowski et al., 2006). In some of the rocks ana lysed the he ma tite-bear ing C com po nent were also rec og nized. Both com po nents are well-known from pre vi - ous stud ies, where a fold test per formed within first-or der, map-scale folds from the cen tral part of the SHCM to gether with palaeolatitude dat ing that doc u mented the post-fold ing na - ture of both the early Perm ian (A) and Permo/Tri as sic (C) over - prints (Szaniawski, 2008). Com po nent A was sim i larly dated by Grabowski et al. (2006) as 272–261 Ma as well as by Szaniawski (2008) as ca. 278 Ma (late early Perm ian). An ac - qui si tion of com po nent A might have been syn chro nous with metasomatic al ter ations of Perm ian volcanics from the Kraków area (dated as 268.7 ±3.4 Ma – see Nawrocki et al., 2008), lo - cated ca. 100 km south of the SHCM. Palaeoinclinations of com po nent C are con cor dant with Early Tri as sic (Lower to Mid dle Buntsandstein) palaeoinclinations from the HCM (Nawrocki et al., 2003), thus com po nent C might be dated as ca. 250 Ma. How ever, ac cord ing to Szaniawski (2008) the er - ror of age es ti ma tion of com po nent C is larger, be ing from ca.

270 to 230 Ma (late Perm ian to Mid dle Tri as sic). It is re mark - able that late Variscan remagnetisations in the SHCM are, as a rule, youn ger than sim i lar phe nom ena in the Moravo–Silesian Zone or Ardennes, where the last remagnetisation phase oc - curred around 290 Ma (Molina-Garza and Zijderveld, 1996;

Márton et al., 2000; Szaniawski et al., 2003; Zegers et al., 2003; Grabowski et al., 2008).

TECTONIC ROTATIONS

Dec li na tion val ues and palaeopoles of the A com po nent ob - tained in this study are ro tated ~20° clock wise (Fig. 2) rel a tive to both the early Perm ian seg ment of the ap par ent po lar wan der path (APWP) as well as rel a tive to A-com po nent di rec tions de - rived from the cen tral and east ern parts of the SHCM (Szaniawski, 2008). Our new re sults con firm that the ob served clock wise ro ta tion is lim ited to the wes tern most parts of the SHCM (Lewandowski, 1981, 1999; Grabowski and Nawrocki, 1996, 2001; Zwing, 2003), be ing pos si bly re lated to lo cal block ro ta tion (as pro posed by Zwing, 2003) and re sult ing prob a bly from in tense strike-slip fault ing de scribed by Konon (2007).

Al ter na tively we pro pose that palaeomagnetic ro ta tions might be linked with a bend ing of the orig i nal fold axes caused by a later tec tonic com pres sion act ing at a low an gle to them. The lat ter hy poth e sis is sup ported by an ob ser va tion that the trend of some map-scale folds from the wes tern most part of the SHCM is also de vi ated clock wise re gard ing the re gional tec tonic trend (e.g., Chêciny Anticline west of Chêciny, see Fig. 2).

The age of this hy po thet i cal ro ta tion can be es ti mated pre - cisely since two sites stud ied (JA1 and SZ1) re cord the C com po - nent. This com po nent is well-known from pre vi ous stud ies as orig i nated from Permo-Tri as sic me te oric fluid mi gra tion (Szaniawski, 1997, 2008; Zwing, 2003). The di rec tions ob tained for the C com po nent from the JA1 and SZ1 sites (Ta ble 1) are sim i lar to those re ported from more in ter nal parts of the SHCM (218/-38 af ter Zwing, 2003 and 220/-33 af ter Szaniawski, 2008).

Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce Fold Zone... 229

Fig. 7. Ste reo graphic pro jec tion show ing ori en ta tions of he ma tite-bear ing com po nent C’ from spec i mens of site SL3

(8)

This im plies that the ro ta tion dis cussed oc curred be tween the ac - qui si tion times of the A and C com po nents.

EVOLUTION OF FOLD STRUCTURES

Re sults from sam pling sites sit u ated along the west ern part of the SHCM are shown in Fig ure 3. The val ues of in cli na tion for the A and C com po nents are suit able for trac ing mod i fi ca - tions of fold ge om e try since both dec li na tions are roughly per - pen dic u lar to the fold axes. In cli na tions of the early Perm ian A com po nent com pared to the ref er ence value of –15° (post-fold - ing in cli na tion from the cen tral part of the SHCM, af ter Szaniawski, 2008) show sig nif i cant re ac ti va tion of the south - ern limbs of the Niewachlów and Chêciny anticlines. In turn, the re sults from the north ern limbs of these anticlines im ply a lack of or only very small tilt ing af ter the ac qui si tion of the A com po nent. It is also worth not ing that the doc u mented mod i fi - ca tion of fold ge om e try con cerns only the south ern limbs of the folds stud ied (Fig. 8). There fore, it is pos tu lated that the clas si - cal fold test and cal cu la tion of the mean di rec tion based on sym met ri cal un fold ing of both limbs of a fold is point less in this spe cific case. It is also sug gested here that a se lec tive re ori - en ta tion of the A com po nent can be at trib uted to lo cal block tilt ing re lated to fold-par al lel faults sep a rat ing the north ern and south ern limbs of ma jor anticlines (Fig. 3).

Site Tec tonic po si tion Dir/dip Cm D/I k a95 N/n

DA1 Dalnia Quarry – north ern limb of Dyminy Anticline 12/30 A 216/4 71 11 4/8

JA1 Jaworznia Quarry – north ern limb of Dyminy Anticline 43/35 C 207/-38 41 14 4/10

GZ1 Zamkowa Mt. – south ern limb of Chêciny Anticline 193/71

GZ2 Zamkowa Mt. – south ern limb of Chêciny Anticline 202/76

KO1 Kostom³oty Quarry – north ern limb of the first-or der Niewachlów

Anticline, apart from sec ond-or der de for ma tions 12/30 A 221/-15 119 4 12/17 MO1 Mogi³ki Quarry – metre-scale fold (north ern limb of anticline) sit u ated

within the north ern limb of the first-or der Niewachlów Anticline 19/76 A 233/-23 186 6 5/9 MO2 Mogi³ki Quarry – metre-scale fold (south ern limb of anticline) sit u ated

within the north ern limb of the first-or der Niewachlów Anticline 192/45 A 227/6 199 5 5/8 MO3 Mogi³ki Quarry – north ern limb of the first-or der Niewachlów Anticline,

apart from sec ond-or der de for ma tions 22/54 A 231/-18 74 8 6/11

RZ1 Rzepka Quarry – south ern limb of Rzepka Syncline,

apart from sec ond-or der de for ma tions 20/15

SG1 Su³tañskie Górki – south ern limb of Rzepka Syncline,

apart from sec ond-or der de for ma tions 18/12

SS1 Sosnówka Hill – over turned south ern limb of Chêciny Anticline,

apart from sec ond-or der de for ma tions 199/101 A 219/25 37 11 6/16

ST1 Stokówka Hill – north ern limb of Chêciny Anticline,

apart from sec ond-or der de for ma tions 30/80 A 214/-18 41 11 6/12

SL1 Œluchowice Quarry – ver ti cal, south ern limb of the first-or der Niewachlów

Anticline, apart from sec ond-or der de for ma tions 180/90 A 210/17 47 7 11/16 SL2 Œluchowice Quarry – lay ers dragged by strike-slip fault – sit u ated within

the south ern, ver ti cal limb of the first-or der Niewachlów Anticline 42/87 A 250/-6 13 19 6/9 SL3 Œluchowice Quarry – red lay ers dragged by strike-slip fault – sit u ated

within the south ern, ver ti cal limb of the first-or der Niewachlów Anticline 13/89 A C’

222/29 19/33

90 24

10 14

4/12 6/11

SZ1 Szewce Quarry – south ern limb of Dyminy Anticline 203/23 C 213/-28 65 9 5/9

Dir/dip – tec tonic ori en ta tion of strata, Cm – sym bol of the com po nent, D/I – declination and in cli na tion of site mean be fore tec tonic cor rec tion, k,a95 – sta - tis ti cal pa ram e ters of site mean (sam ple level), N/n – num ber of sam ples/spec i mens used in cal cu la tions

T a b l e 1 Sum mary of palaeomagnetic re sults ob tained in this study

Fig. 8. Re la tion ship of mea sured palaeomagnetic in cli na tion of the A com po nent (ver ti cal axis) to the dip of the strata (hor i zon tal axis)

Site mean val ues are shown with their a95 er ror; grey bar il lus trates ref er ence in cli na tion with its a95 limit of er ror af ter Szaniawski (2008)

(9)

Re sults from rocks re cord ing the C com po nent have a spe - cial im por tance since they po ten tially clar ify whether the ob - served shape mod i fi ca tion of folds orig i nated in late Variscan or Maastrichtian-Palaeo cene time. Un for tu nately, in this study the C com po nent was de ter mined only in two sites from the Dyminy Anticline (JA1 and SZ1) where there are no re sults for the A com po nent (Fig. 3). In cli na tion val ues of the C com po - nent in both sites are slightly dif fer ent and may have fit ted the model of tec tonic over print ing that oc curred later than the ac - qui si tion of com po nent C (Permo/Tri as sic). How ever since the val ues of a95 er ror are quite large, it is not cer tain whether the di rec tions of com po nent C for both JA1 and SZ1 sites (Ta - ble 1) are re ally sta tis ti cally dif fer ent.

Fur ther con clu sion could be reached from the anal y sis of small-scale tec tonic struc tures. The re sults of fold tests per - formed at the Œluchowice (Zwing, 2003) and Kostom³oty (Lewandowski, 1981) quar ries im ply that metre-scale sec - ond-or der folds formed be fore the ac qui si tion of the A com po - nent. On the other hand, pre vi ous data (Grabowski and Nawrocki, 2001) and the re sults of the pres ent study (Fig. 4C) show that the ge om e try of metre-scale chev ron folds in the nearby Mogi³ki Quarry was sig nif i cantly re built af ter the re - mag net isa tion phase A. It is worth not ing that the palaeoinclinations of com po nent A from site MO3 from Mogi³ki Quarry, sit u ated within uni formly dip ping strata of the north ern limb of the large Niewachlów Anticline, dif fer nei ther from those from Kostom³oty nor from the ref er ence palaeoinclination (Figs. 3 and 4C). This im plies that, al though the north ern limb of the first-or der Niewachlów Anticline in Mogilki, as a whole, had not been tilted af ter the ac qui si tion of the A com po nent, the sec ond-or der folds from Mogi³ki Quarry sit u ated within this limb, were sub jected to re ac ti va tion which post dated the com po nent A.

The en tire dataset re veals that the main pro file of the Niewachlów Anticline to gether with mi nor folds from Œluchowice and Kostom³oty were formed be fore the ac qui si tion of the A com po nent, whereas af ter this event the south ern limb of the Niewachlów Anticline was ad di tion ally tilted and metre-scale folds from Mogi³ki were mod er ately mod i fied. The lat ter phe -

nom e non is most pos si bly re lated to the lo cally in tense dextral strike-slip fault ing in the area of Mogi³ki Quarry (Konon, 2006).

RELATIVE AGE OF THE DEXTRAL STRIKE-SLIP FAULTING EVENT

New and im por tant out comes fol low also from study of strike-slip faults from Œluchowice Quarry. Both faults stud ied rep re sent a post-fold ing dextral strike-slip fault ing event de - scribed by Konon (2007). In sites SL2 and SL3, both lo cated in zones of fault drag, the di rec tions of the A com po nent dif fer from the re sults ob tained in other parts of the quarry (site SL1).

The mag ni tude of this de vi a tion is pro por tional to the in ten sity of fault drag of the sed i men tary lay ers, be ing thus the most dis - tinc tive in site SL2 (Ta ble 1 and Fig. 4A). This shows that the ac tiv ity of faults post dated the ac qui si tion of the A com po nent.

Fur ther con clu sions fol low from the anal y sis of site SL3, where part of dragged rock lay ers are dis tin guished by a red - dish col our. Such a char ac ter is tic red den ing of car bon ates has been de scribed be fore (Szaniawski, 1997; Zwing, 2003;

Szaniawski, 2008) as a re sult of he ma tite pig ment min er ali sa - tion dur ing the Permo-Tri as sic re mag net isa tion ep i sode C.

Field ob ser va tions re vealed that the red pig men ta tion post dated the fault stud ied, and im plied that the fault con sti tuted the path for min er ali sa tion flu ids. Red dish col our car bon ates re cord the C’ com po nent char ac ter ized by the same Tub spec tra as the C com po nent. Fur ther more, the ori en ta tion of the mixed po lar ity C’ com po nent cor re sponds with the ori en ta tion of the C com - po nent within a95 lim its of er ror (cf. Szaniawski, 2008). There - fore, it is sug gested here that the C’ com po nent was re corded af ter the de for ma tion and orig i nated from the same Permo-Tri - as sic remagnetisation pro cess as the C com po nent.

Our ob ser va tions sug gest that the faults stud ied were ac tive be tween the ac qui si tion of com po nents A (early Perm ian) and C (Perm ian/Tri as sic). It fol lows, too, that par tial tilt ing of the south ern limb of the Niewachlów Anticline (de scribed in chap - ter “Evo lu tion of fold structures” as post dat ing com po nent A) oc curred most likely be fore the remagnetisation event C/C’

(Perm ian/Tri as sic).

Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce Fold Zone... 231

Fig. 9. Ste reo graphic pro jec tion show ing di rec tions of the A com po nent de rived from in di vid ual clasts of Laskowa brec cia

(10)

RELATIVE AGE OF BRECCIA FROM LASKOWA QUARRY

The di rec tions of the A com po nent in the brec cia show good clus ter ing within sep a rate clasts but dif fer be tween in di - vid ual clasts of the brec cia (Fig. 9). These di rec tions dif fer also from those re ported from in situ rocks (Grabowski and Nawrocki, 1996) and, hence, the for ma tion of the brec cia is in - ferred to have post dated the ac qui si tion of the A com po nent.

These re sults cor re spond with pre vi ous data doc u ment ing that the age of an other brec cia from Wietrznia Quarry is also youn - ger then the A com po nent (Szaniawski and Lewandowski, 2009). The re sults of palaeomagnetic dat ing of both brec cias are in line with in ter pre ta tions as sum ing a Perm ian age for in - tense ero sion and karstification that fol lowed the main stages of late Car bon if er ous de for ma tion and up lift (e.g., Szulczewski, 1995; Ur ban and Rzonca, 2009).

CONCLUSIONS

The re sults pre sented to gether with the out comes of pre vi - ous stud ies en able us to for mu late im por tant con clu sions con - cern ing the age of a num ber of tec tonic events in re la tion to well-dated remagnetisation phases in the SHCM.

1. The new data con firm pre vi ous re ports of ~20o clock wise ro tated early Perm ian palaeomagnetic dec li na tions from the wes tern most part of the SHCM, most prob a bly due to late Variscan tectonism.

2. The palaeomagnetic anal y sis of map-scale folds at the wes tern most transect of the SHCM im plies a post-early Perm - ian tilt ing of their south ern limbs. The post-early Perm ian fold shape mod i fi ca tions were found also in a mi nor fold at Mogiłki,

how ever, most other meso-folds did not change their ge om e try af ter the early Perm ian remagnetisation.

3. Palaeomagnetic re sults show that the dextral N–S trending strike-slip faults, com mon in the west ern SHCM, were ac tive af ter the early Perm ian and most prob a bly prior to the Maastrichtian-Paleocene over print

4. Sed i men tary brec cia from Laskowa Quarry, rest ing un - con form ably on top of tilted De vo nian rocks, is of post-early Perm ian age.

Our re sults sup ple ment cur rent knowl edge about the lo cal struc tural evo lu tion of the SHCM. In late Paleozoic time, the area stud ied was sit u ated in the fore land of the main Variscan orogenic belt, so the Variscan de for ma tions in the HCM can be de fined as of intraplate-type. How ever, the de for ma tions of the up per Paleozoic rocks were rel a tively in tense, which makes prob a ble a hy poth e sis of par tial re ac ti va tion of some more an - cient struc tures in the base ment (e.g., faults de vel oped dur ing amal gam ation of the Małopolska Block with the EEC in the Cam brian). Late Pa leo zoic de for ma tion of the SHCM com - prised sev eral tec tonic ep i sodes and dur ing their lat est stages some of the folds be came mod i fied and dextral strike-slip fault - ing was ac tive.

Ac knowl edge ments. This work was fi nan cially sup ported by a re search grant of the Pol ish Min is try of Sci ence and Higher Ed u ca tion (N307037 31/2527, pro ject no.

51.2401.0608.31.0 of the Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute) and pro ject of the Grant Agency of the Czech Re pub lic (Grant No.GACR P210-10-2351). We are grate ful to M. Narkiewicz for field guid ance to the brec cia out - crop in the Laskowa Quarry. W. Zuchiewicz and anon y mous re viewer are thanked for care ful and con struc tive re views, H. Norberciak is thanked for tech ni cal as sis tance.

REFERENCES

BEŁKA Z., AHRENDT H., FRANKE W. and WEMMER K. (2000) – The Baltica-Gond wana su ture in cen tral Eu rope: ev i dence from K-Ar ages of de tri tal mus co vites and biogeographical data. In: Orogenic Pro - cesses: Quan ti fi ca tion and Mod el ling in the Variscan Belt of Cen tral Eu rope (eds. W. Franke, V. Haak, O. Oncken and D. Tan ner). Geol.

Soc., Lon don, Spec. Publ., 179: 87–102.

BEŁKA Z., VALVERDE-VAQUERO P., DORR W., AHRENDT H., WEMMER K., FRANKE W. and SCHAFFER J. (2002) – Ac cre tion of first Gond wana-de rived ter ranes at the mar gin of Baltica. In:

Palaeozoic Amal gam ation of Cen tral Eu rope (eds. J. A. Winchester, T.

C. Pha raoh and J. Ver ni ers). Geol. Soc., Lon don, Spec. Publ., 201:

19–36.

CEDERQUIST D. P., van der VOO R. and van der PLUIJM B. A. (2006) – Syn-fold ing remagnetization of Cambro-Or do vi cian car bon ates from the Penn syl va nia Sa lient post dates oroclinal ro ta tion. Tectonophysics, 422: 41–54.

CHADIMA M. and HROUDA F. (2006) – Remasoft 3.0 a user-friendly palaeomagnetic data browser and an a lyzer. Travaux Géophys., 27:

20–21.

CZARNOCKI J. (1919) – Stratygrafia i tektonika Gór Świętokrzyskich.

Stratygrafia i tektonika staropaleozoicznych utworów Gór Świętokrzyskich (Kambr, sylur i dewon dolny). Pr. Tow. Nauk.

Warszawskiego, 28.

CZARNOCKI J. (1938) – Ogólna mapa geologiczna Polski 1:000 000.

Arkusz 4, Kielce. Państw. Inst. Geol., Warszawa.

CZARNOCKI J. (1957) – Tec ton ics of the Święty Krzyż Moun tains. Stra - tig ra phy and tec ton ics of the Święty Krzyż Moun tains (in Pol ish with Eng lish sum mary). Pr. Inst. Geol., 18.

DADLEZ R., KOWALCZEWSKI Z. and ZNOSKO J. (1994) – Some key prob lems of the pre-Perm ian tec ton ics of Po land. Geol. Quart., 38 (2):

169–190.

ENKIN R. J., OSADETZ K. G., BEKER J. and KISILEVSKY G. (2000) – Orogenic remagnetizations in the Front Ranges and Inner Foot hills of the south ern Ca na dian Cor dil lera: chem i cal har bin ger and ther mal hand maiden of Cordilleran de for ma tions. Geol. Soc. Am., Bull., 112 (6): 929–942.

FILONOWICZ P. (1973) – Szczegółowa mapa geologiczna Polski w skali 1:50 000 wraz z objaśnieniami. Arkusz Kielce. Wyd. Geol., Warszawa.

GĄGOL J., GŁAZEK J., JURKIEWICZ H., KOWALSKI W. and ROMANEK A. (1976) – Tektonika, wykształcenie i surowce mineralne starszego mezozoiku oraz jego stosunek do podłoża waryscyjskiego. In: Przewodnik 48 Zjazdu Pol. Tow. Geol. (ed. W.

Pożaryski): 228–254.

GŁAZEK J., KARWOWSKI Ł., RACKI G. and WRZOŁEK T. (1981) – The early De vo nian con ti nen tal/ma rine suc ces sion at Chęciny in the Holy Cross Mts, and its palaeogeographic and tec tonic sig nif i cance.

Acta Geol. Pol., 31 (3–4): 233–250.

(11)

GRABOWSKI J., BÁBEK O., NAWROCKI J. and TOMEK È. (2008) – New palaeomagnetic data from the Palaeozoic car bon ates of the Moravo–Silesian Zone (Czech Re pub lic): ev i dence for a tim ing and or i gin of the late Variscan remagnetizations. Geol. Quart., 52 (4):

321–334.

GRABOWSKI J., MICHALÍK J., SZANIAWSKI R. and GROTEK I.

(2009) – Synthrusting remagnetization of the Krížna nappe: high res o - lu tion palaeo- and rock mag netic study in the Strážovce sec tion, Strážovské vrchy Mts, Cen tral West Carpathians (Slovakia). Acta Geol. Pol., 59 (2): 137–155.

GRABOWSKI J., NARKIEWICZ M. and SOBIEÑ K. (2006) – Ther mal con trols on the remagnetization of De vo nian car bon ate rocks in the Kielce re gion (Holly Cross Mts.) (in Pol ish with Eng lish sum mary).

Prz. Geol., 54 (10): 895–905.

GRABOWSKI J. and NAWROCKI J. (1996) – Mul ti ple remagnetizations in the De vo nian car bon ates in the north west ern part of the Kielce re - gion (Holy Cross Mts., south ern part). Geol. Quart., 40 (1): 47–64.

GRABOWSKI J. and NAWROCKI J. (2001) – Palaeomagnetism of some De vo nian car bon ates from the Holy Cross Mts. (Cen tral Po land): large pre-Perm ian ro ta tions or strain mod i fied palaeomagnetic di rec tions?

Geol. Quart., 45 (2): 165–178.

GRAHAM J. W. (1949) – The sta bil ity and sig nif i cance of mag ne tism in sed i men tary rocks. J. Geoph. Res., 54: 131–167.

HAKENBERG M. (1973) – Szczegó³owa mapa geologiczna Polski w skali 1: 50 000 wraz z objaœnieniami. Arkusz Chêciny. Wyd. Geol., Warszawa.

JAROSZEWSKI W. (1972) – Mesoscopic struc tural cri te ria of tec ton ics of non-orogenic ar eas: an ex am ple from trhe north-east ern Mesozoic mar gin of the Œwiêtokrzyskie Moun tains (in Pol ish with Eng lish sum - mary). Stud. Geol. Pol., 38.

JAWOROWSKI K. (2002) – Geotectonic sig nif i cance of Car bon if er ous de pos its NW of the Holy Cross Mts. (cen tral Po land). Geol. Quart., 46 (3): 267–280.

KIRSCHVINK J. L. (1980) – The least square line and plane and the anal y - sis of palaeomagnetic data. Geoph. J. Royal Astronom. Soc., 62:

699–718.

KONON A. (2006) – Buckle fold ing in the Kielce Unit, Holy Cross Moun - tains, cen tral Po land. Acta Geol. Pol., 56 (4): 375–405.

KONON A. (2007) – Strike-slip fault ing in the Kielce Unit, Holy Cross Moun tains, cen tral Po land. Acta Geol. Pol., 57 (4): 415–441.

KONON A. (2008) – Tec tonic sub di vi sion of Po land: Holy Cross Moun - tains and ad ja cent ar eas (in Pol ish with Eng lish sum mary). Prz. Geol., 56 (10): 921–926.

KONON A. (2009) – Dis cus sion on: strike-slip fault ing in the Kielce Unit, Holy Cross Moun tains, cen tral Po land. Re ply on Œwidrowska and Lamarche. Acta Geol. Pol., 59 (1): 123–135.

KOWALCZEWSKI Z. (1971) – G³ówne rysy tektoniki Gór Œwiêtokrzyskich. Przew. 43 Zjazdu Pol. Tow. Geol.: 10–19.

KOWALSKI W. R. (1975) – Tec ton ics of the west ern end of Chêciny anticline and sur round ing struc tures of Me so zoic mar gins of the Holy Cross Mts. Rocz. Pol. Tow. Geol., 45: 45–61.

KRZEMIÑSKI L. (1999) – Anorogenic Car bon if er ous sand stones from the north west ern bor der of the Holy Cross Moun tains, Cen tral Po land (in Pol ish with Eng lish sum mary). Prz. Geol., 47 (11): 978–986.

KRZYWIEC P. (2009) – De vo nian-Cre ta ceous re peated sub si dence and up lift along the Teisseyre-Tornquist zone in SE Po land – in sight from seis mic data in ter pre ta tion. Tectonophysics, 475 (4): 142–159.

KUTEK J. (2001) – The Pol ish Permo-Me so zoic Rift Ba sin. In:

Peri-Tethyan Rift/Wrench Bas ins and Pas sive Mar gins (eds. P. A.

Ziegler, W. Cavazza, A. H. P. Rob ert son and S. Crasquin-Soleau).

Peri-Tethys Mem., 6, Mém. Mus. Nat. Histoire Naturelle, 186:

213–236. Paris.

KUTEK J. and G£AZEK J. (1972) – The Holy Cross area, Cen tral Po land, in the Al pine cy cle. Acta Geol. Pol., 22: 603–653.

LAMARCHE J., BERGERAT F., LEWANDOWSKI M., MANSY J. L., ŒWIDROWSKA J. and WIECZOREK J. (2002) – Variscan to Al pine heterogenous palaeo-stress field above a ma jor Palaeozoic su ture in the Carpathian fore land (south east ern Po land). Tectonophysics, 357:

55–80.

LAMARCHE J., LEWANDOWSKI M., MANSY J. L. and SZULCZEWSKI M. (2003) – Par ti tion ing pre-, syn- and

post-Variscan de for ma tion in the Holy Cross Moun tains, east ern Variscan fore land. In: Trac ing Tec tonic De for ma tion Us ing the Sed i - men tary Re cord (eds. T. McCann and A. Saintot). Geol. Soc., Lon don, Spec. Publ., 208: 159–184.

LAMARCHE J., MANSY J. L., BERGERAT F., AVERBUCH O., HAKENBERG M., LEWANDOWSKI M., STUPNICKA E., ŒWIDROWSKA J., WAJSPRYCH B. and WIECZOREK J. (1999) – Variscan tec ton ics in the Holy Cross Moun tains (Po land) and the role of struc tural in her i tance dur ing Al pine tec ton ics. Tectonophysics, 313:

171–186.

LEWANDOWSKI M. (1981) – Post-fold ing char ac ter is tic remanent mag - ne ti za tion of the Up per De vo nian Kostom³oty Beds in the Holy Cross Mts. Acta Geol Pol., 31 (3–4): 265–272.

LEWANDOWSKI M. (1985) – On tec ton ics of the Holy Cross Mts in the light of palaeomagnetic stud ies. Publ. Inst. Geoph. Pol. Acad. Sc., A-16 (175): 131–150.

LEWANDOWSKI M. (1999) – Palaeomagnetic study of frac ture fills in the Holy Cross Moun tains of Cen tral Po land and its ap pli ca tion in dat ing tec tonic pro cesses. Geoph. J. Internat., 317: 783–792.

LOWRIE W. (1990) – Iden ti fi ca tion of fer ro mag netic min er als in a rock by coercivity and un block ing tem per a ture prop er ties. Geoph. Res. Lett., 17: 159–162.

MÁRTON E., MANSY J.-L., AVERBUCH O. and CSONTOS L. (2000) – The Variscan belt of North ern France–South ern Bel gium: geodynamic im pli ca tions of new paleomagnetic data. Tectonophysics, 324: 57–80.

MASTELLA L. and MIZERSKI W. (2002) – Geo log i cal set ting of the

£ysogóry Unit (Holy Cross Moun tains, Cen tral Po land) based on anal - y sis of the ra dar im ages (in Pol ish with Eng lish sum mary). Prz. Geol., 50 (9): 767–772.

MAZUR S., ALEKSANDROWSKI P., KRYZA R. and OBERC-DZIEDZIC T. (2006) – The Variscan Orogen in Po land. Geol.

Quart., 50 (1): 89–118.

McCABE C. and ELMORE R.D. (1989) – The oc cur rence and or i gin of late Pa leo zoic remagnetization in the sed i men tary rocks of North Am.

Rev. Geoph., 27: 471–494.

McWHINNIE S. T., van der PLUIJM B. A. and van der VOO R. (1990) – Remagnetizations and thrust ing in the Idaho–Wy o ming Overthrust Belt. J. Geoph. Res., 95 (B4): 4551–4559.

MIZERSKI W. (1995) – Geotectonic evo lu tion of the Holy Cross Mts in Cen tral Eu rope. Biul. Pañstw. Inst. Geol., 372.

MOLINA-GARZA R. S. and ZIJDERVELD J. D. A. (1996) – Paleomagnetism of Pa leo zoic strata, Brabant and Ardennes Mas sifs, Bel gium: im pli ca tions of prefolding and postfolding Late Car bon if er - ous sec ond ary magnetizations for the Eu ro pean ap par ent po lar wan - der. J. Geoph. Res., 101 (B7): 15 799–15 818.

NAWROCKI J. (2000) – Late Si lu rian paleomagnetic pole from the Holy Cross Moun tains: con straints for the post-Cal edo nian tec tonic ac tiv ity of the Trans-Eu ro pean Su ture Zone. Earth Planet. Sc. Lett., 179 (2):

325–334.

NAWROCKI J., DUNLAP J., PÉCSKAY Z., KRZEMIÑSKI L.,

¯YLIÑSKA A., FANNING M., KOZ£OWSKI K., SALWA S., SZCZEPANIK Z. and TRELA W. (2007) – Late Neoproterozoic to Early Palaeozoic palaeo ge ogra phy of the Holy Cross Moun tains (Cen - tral Eu rope): an in te grated ap proach. J. Geol. Soc., 164 (2): 405–423.

NAWROCKI J., FANNING M., LEWANDOWSKA A., POLECHOÑSKA O. and WERNER T. (2008) – Palaeomagnetism and the age of the Cra - cow vol ca nic rocks (S Po land). Geoph. J. Internat., 174 (2): 475–488.

NAWROCKI J., KULETA M. and ZBROJA S. (2003) – Buntsandstein magnetostratigraphy from the north ern part of the Holy Cross Moun - tains. Geol. Quart., 47 (3): 253–260.

PO¯ARYSKI W., GROCHOLSKI A., TOMCZYK H., KARNKOWSKI P.

and MORYC W. (1992) – Tec tonic maps of Po land dur ing the Variscan time (in Pol ish with Eng lish sum mary). Prz. Geol., 40 : 643–651.

PUEYO E. L., MAURITSCH H. J., GAWLICK H.-J., SCHOLGER R. and FRISCH W. (2007) – New ev i dence for block and thrust sheet ro ta - tions in the cen tral north ern Cal car e ous Alps de duced from two per va - sive remagnetization events. Tec ton ics, 26: ID TC5011.

RACKI G. (1992) – Evo lu tion of the bank to reef com plex in the De vo nian of the Holy Cross Moun tains. Acta Palaeont. Pol., 37 (2–4): 87–182.

RACKI G. and NARKIEWICZ M. (2000) – Tec tonic ver sus eustatic con - trols of sed i men tary de vel op ment of the De vo nian in the Holy Cross Palaeomagnetic age constraints on folding and faulting events in Devonian carbonates of the Kielce Fold Zone... 233

(12)

Mts., Cen tral Po land (in Pol ish with Eng lish sum mary). Prz. Geol., 48 (1): 65–76.

SAMSONOWICZ J. (1934) – Ex pli ca tion de la feuille Opatów. Carte 404 Géologique Générale de la Pologne au 100 000. Varsovie.

SANDBERG S. A. and BUTLER R. F. (1985) – Paleomagnetic fold test ev i dence for Lara mide age of monoclinal fold ing, Salt River Can yon, Ar i zona. Earth Planet. Sc. Lett., 73: 140–146.

STAMATAKOS J., HIRT A. M. and LOWRIE W. (1996) – The age and tim ing of fold ing in the Cen tral Ap pa la chians from paleomagnetic re - sults. Geol. Soc. Am. Bull., 108: 815–829.

STEWART S. (1995) – Paleomagnetic anal y sis of fold ki ne mat ics and im - pli ca tions for geo log i cal mod els of the Cantabrian/Asturian arc, north Spain. J. Geoph. Res., 100 (B10): 20079–20094.

SZANIAWSKI R. (1997) – Paleomagnetyzm a diageneza dolomitów dewoñskich z regionu kieleckiego Gór Œwiêtokrzyskich. MSc The sis.

Fac ulty of Ge ol ogy, Uni ver sity of War saw.

SZANIAWSKI R. (2008) – Late Pa leo zoic geodynamics of the Ma³opolska Mas sif in the light of new paleomagnetic data for the south ern Holy Cross Moun tains. Acta Geol. Pol., 58 (1): 1–12.

SZANIAWSKI R. and LEWANDOWSKI M. (2009) – Palaeomagnetic age con straints in di cate post-Variscan or i gin of mas sive brec cia in Wietrznia Quarry (Holy Cross Moun tains, Cen tral Po land). Geol.

Quart., 53 (3): 357–362.

SZANIAWSKI R., LEWANDOWSKI M., MANSY J.-L., AVERBUCH O.

and LACQUEMENT F. (2003) – Syn-fold ing remagnetization events in the French-Bel gium Variscan thrust front as mark ers of the fold-and-thrust belt ki ne mat ics. Bull. Soc. Geol. France. 174 (5):

511–523.

SZULCZEWSKI M. (1971) – Up per De vo nian cono donts, stra tig ra phy and fa cial de vel op ment in the Holy Cross Mts. Acta Geol. Pol., 21 (1):

1–128.

SZULCZEWSKI M. (1989) – Œwiatowe i regionalne zdarzenia w zapisie stratygraficznym pogranicza franu z famenem Gór Œwiêtokrzyskich (in Pol ish with Eng lish sum mary). Prz. Geol., 37 (11): 551–557.

SZULCZEWSKI M. (1990) – Œwiatowe i regionalne zdarzenia w zapisie stratygraficznym pogranicza franu i famenu Gór Œwiêtokrzyskich – odpowiedŸ (in Pol ish with Eng lish sum mary). Prz. Geol., 38 (7–8):

330–334.

SZULCZEWSKI M. (1995) – Depositional evo lu tion of the Holy Cross Mts. (Po land) in the De vo nian and Car bon if er ous – a re view. Geol.

Quart., 39 (4): 471–488.

SZULCZEWSKI M., BE£KA Z. and SKOMPSKI S. (1996) – The drown - ing of a car bon ate plat form: an ex am ple from the De vo nian-Car bon if - er ous of the south west ern Holy Cross Moun tains, Po land. Sed i ment.

Geol., 106 (1–2): 21–49.

ŒWIDROWSKA J. and LAMARCHE J. (2009) – Dis cus sion on:

Strike-slip fault ing in the Kielce Unit, Holy Cross Moun tains, cen tral Po land by A. Konon. Acta Geol. Pol., 59 (1): 123–135.

TOMCZYK H. (1988) – Re gion ³ysogórski a platforma wschodnioeuropejska w cyklu kaledoñsko-waryscyjskim (in Pol ish with Eng lish sum mary). Prz. Geol., 36 (1): 9–17.

URBAN J. and RZONCA B. (2009) – Karst sys tems an a lyzed us ing bore - hole logs – De vo nian car bon ates of the Swietokrzyskie (Holy Cross) Moun tains, cen tral Po land. Geo mor phol ogy, 112: 27–47.

WINCHESTER J., PHARAOH C. and VERNIERS J . (2002) – Pa leo zoic amal gam ation of Cen tral Eu rope: new re sults from re cent geo log i cal and geo phys i cal in ves ti ga tions. Tectonophysics, 360: 5–21.

ZEGERS T. E., DEKKERS M. J. and BAILLY S. (2003) – Late Car bon if er - ous to Perm ian remagnetization of De vo nian lime stones in the Ardennes: role of tem per a ture, flu ids, and de for ma tion. J. Geoph.

Res., 108 (B7): EPM 5 1–5 19.

ZWING A. (2003) – Causes and mech a nisms of re mag net isa tion Palaeozoic sed i men tary rocks: a multidisciplinary ap proach. PhD the - sis, LMU Munchen, http://edoc.ub.uni-muenchen.de/ar - chive/00001578/

Cytaty

Powiązane dokumenty

one incomplete shell from set X; 2 fragments from set XXI; 4 incomplete articulated shells, 3 dorsal valves, and several fragments from set XXII; 5 frag- ments from set

B – Measurements of a stromatoporoid dome exposed on a palaeobottom surface; V = vertical height (measured perpendicular to the average sediment surface), Bs max = maximum

Late Palaeozoic strike-slip faulting event (I-2) During the next strike-slip faulting event (I-2), a dextral strike-slip component probably occurred along the

Different contraction and extension fault sets, as well as cleavage, small-scale duplexes, boudinage and stylolites, developed progressively on both gradually steepening limbs of

In the Orlej quarry three sites consisting of 12 hand samples (i.e. fragments of beds) were collected from the Visean dark sediments and five hand samples were taken from the

In the ¸ysogóry Unit (Holy Cross Mountains) sed- imentation of the greywackes of the Wydryszów Beds was terminated by uppermost Ludfordian oolitic deposits of the Jadowniki

Stromatoporoid skeletons from polished slabs of stromatoporoid- and coral-bearing limestones of the Upper Devonian Kowala Formation from the Holy Cross Mountains in central Poland

1 – Fragment of the cyclothemic succession in the Jaworznia quarry; section Jaworznia E; numbers in circles indicate boundaries of cyclothems illustrated on the photos 2-4; 2-4