• Nie Znaleziono Wyników

Variability of air-mass occurrence in southern Poland (1951-2010)

N/A
N/A
Protected

Academic year: 2022

Share "Variability of air-mass occurrence in southern Poland (1951-2010)"

Copied!
9
0
0

Pełen tekst

(1)

DOI 10.1007/s00704-013-0861-9 O R I G I N A L P A P E R

Variability of air mass occurrence in southern Poland (1951-2010)

Paweł Kotas • Robert Twardosz • Zenon Nieckarz

Received: 3 February 2012 /Accepted: 18 February 2013 /Published online: 12 March 2013

© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract T h e p a p e r d is c u s s e s th e fre q u e n c y , p e rs is te n c e a n d s u c c e s sio n se q u e n c e o f six ty p e s o f a ir m a s s d u rin g th e p e rio d 1 9 5 1 -2 0 1 0 . T h e study, w h ic h re lie d o n a c a le n d a r o f a i r m a s s e s i n s o u t h e r n P o l a n d p u b l i s h e d b y T.

N ie d ź w ie d ź , c o n c lu d e s th a t th e re is n o sim p le re la tio n sh ip b e tw e e n th e p e rs iste n c e a n d th e fre q u e n c y o f sp ecific air m a s se s in th e re g io n . T h e stu d y fo u n d th a t th e re w a s a g re a t v a rie ty in th e p e rs iste n c e o f sp e c ific ty p e s o f a ir m a s s a n d th a t p e rs iste n c e d e p e n d e d m o re o n th e d ire c tio n o f a ir m a s s a d v e c tio n th a n o n th e ir fre q u e n c y o f o c c u rre n c e . T h e stu d y also fa ile d to id e n tify a n y stric t o v e ra ll ru le o f su c c e ssio n , as a n y a ir m a s s c o u ld fo llo w a fte r a n y o th er, b u t c e rta in fin er- g ra in e d p a tte rn s e m erg ed . In w in te r a n d su m m er, a rc tic air (A ) n e v e r fo llo w e d d ire c tly a fte r tro p ic a l a ir (T ) o r v ic e v ersa. A lso , th e m o s t fre q u e n t s u c c e s sio n s e q u e n c e id e n ti­

fied w a s fro m P o la r m a ritim e fre sh a ir (m P f) to P o la r m a r­

it im e o ld a n d i t a c c o u n t e d f o r t h e v a s t m a j o r i t y o f su c c e s sio n s fro m m P f in to a n y o th e r a ir m a s s (6 3 % a n n u ­ ally a n d 7 6 % in su m m er).

1 Introduction

T h e ty p e s o f a ir m a s s p re s e n t o v e r a n a re a sig n ific a n tly in flu e n c e th e lo c a l w e a th e r. T h is in flu e n c e g o e s b e y o n d

P Kotas • R. Twardosz ( * )

Department of Climatology, Jagiellonian University, ul. Gronostajowa 7,

30-387 Kraków, Poland e-mail: r.twardosz@uj.edu.pl P. Kotas

e-mail: pawel.kotas@uj.edu.pl Z. Nieckarz

Experimental Computer Physics Department, Institute of Physics, Jagiellonian University, ul. Reymonta 4,

30-059 Kraków, Poland e-mail: zenon.nieckarz@uj.edu.pl

sp ecific v a lu e s o f w e a th e r ele m e n ts a n d also c o v e rs th e ir tim in g (N ie d ź w ie d ź 1 9 8 1 ; T w ard o sz 2 0 0 5 ; T w ard o sz e t al.

2 0 1 1 a , b ), e sp ecially in th e case o f d a n g e ro u s atm o sp h eric p h e n o m e n a (T w ardosz 2 0 1 0 ). T h e stu d y o f air m a s s v a ria b il­

ity h a s th e po ten tial, th erefo re, to co n trib u te to b o th ap p lied m e te o ro lo g y a n d to a b e tte r u n d e rs ta n d in g o f th e c a u se s b e h in d c o n te m p o ra ry c lim a te v a ria tio n , e sp e c ia lly th e o b ­ s e rv e d g ro w th in a ir te m p e ra tu re (K a lk s te in e t al. 1 9 9 8 ; T w ard o sz a n d K o s so w sk a -C e z a k 2 0 1 2 ). N e v e rth e le ss, c lim a ­ to lo g ists ra re ly ta k e u p th is to p ic be c a u se , as w a s a p tly p o in te d o u t b y U strn u l (2 0 0 7 ), th ere is a sev ere sh o rtag e o f cale n d ars o f a ir m a s s types.

W h a t re s e a rc h is a v a ila b le is m a in ly a b o u t th e fre q u e n c y o f o c c u rre n c e o f a ir m a s se s. R e le v a n t stu d ie s p e rta in in g to th e te rrito ry o f P o la n d in c lu d e th o s e b y R a fa ło w sk i e t al.

( 19 5 5 ), B o ła s z e w s k a a n d R e u tt ( 1 9 6 2 ), W a ra k o m sk i ( 19 6 9 ), a n d W ię c ła w (2 0 0 4 ), w h ile w o rk s p u b lis h e d b y B u c h e rt (2 0 0 6 ) a n d N ie d ź w ie d ź (2 0 0 0 , 2 0 0 3 ) w e n t d o w n to th e scale o f a re g io n . A n o ta b le stu d y b y K a sz e w s k i ( 1 9 7 7 ) id en tifies a re la tio n sh ip b e tw e e n arc tic a n d tro p ic a l a ir a d v e c tio n , o n th e o n e h a n d , a n d s y n o p tic s itu a tio n s in c e n tr a l- e a s te r n P o la n d o n th e other. T h e s e a s o n a lity o f a ir m a s s fre q u e n c y w a s a ls o s tu d ie d in o th e r a re a s , e s p e c ia lly in th e U S A (S c h w a rtz 1 9 9 5 ; K a lk s te in e t al. 1 9 9 6 , 19 9 8 ). T h e se stu d ies also d e ta il m e th o d s fo r th e id e n tific a tio n o f a ir m a s s types.

P e rs iste n c e is a c h a ra c te ristic o f a ir m a s s v a ria b ility th a t is b o th im p o rta n t, e sp e c ia lly fo r fo re c a stin g (O su c h o w sk a - K le in 1 9 7 5 ), a n d ra re ly re se a rc h e d . S tu d ies in to th is c h a r­

a c te ris tic w e re p u b lis h e d , a m o n g o th e rs, b y W a ra k o m sk i ( 1 9 6 9 ), W ię c ła w (2 0 0 4 ), a n d r e c e n tly b y K o ta s (2 0 1 1 ).

S tu d ies o n p e rs iste n c e are, h o w e v e r, a v a ila b le fo r c irc u la tio n ty p e s (e.g. K y s e ly a n d D o m o n k o s 2 0 0 6 )

In th is study, th e a u th o rs fo c u s e d o n th e s e a s o n a l a n d a n n u a l v a ria b ility o f six a ir m a s s ty p e s in so u th e rn P o la n d d u rin g th e 60 y e a rs sp a n n in g 1 9 5 1 -2 0 1 0 . T h re e c h a ra c te r­

istics w e re ta k e n in to a c c o u n t: freq u en cy , p e rs iste n c e a n d s u c c e s sio n seq u en ce.

(2)

2 Data and methods

The study relies on a calendar o f air masses of southern P oland during the period 1951-2010 publish ed by Niedźwiedź (2011). Air masses identified by Niedźwiedź are based on a classification widely adopted in meteorolog­

ical services (American Meteorological Society 2000) which involves source regions (known as a “geographical classification”) and therm al and m oisture properties (c—continental, m—maritime, w—warm) based on a clas­

sification by Bergeron (1928). Niedźwiedź identified six air masses:

• Arctic—A

• Polar maritime (fresh)—mPf

• Polar maritime old (transformed)—mPo

• Polar maritime warm—mPw

• Polar continental—cP

• Tropical—T

Niedźwiedź classified days with more than one air mass as days with various air masses (vAm). His study area was defined as: 49-51°N and 18-24°E (Fig. 1).

Using his calendar, the authors identified the average frequency and persistence of air masses in separate seasons and in the whole year and their confidence intervals. Strings of days with a given air mass interrupted by a single day

with a different air mass were still counted as one. Strings that straddled across a seasonal divide were included in the season where a larger portion o f the days fell or, where these numbers were equal, the string was included in the earlier season. The study also investigated the variability of fre­

quency and of persistence through the period.

For each air mass type, the study identified the numbers of strings of different persistence, their frequencies and the proportion of the total days in strings of a given length in the overall total number o f days with that air mass in the period.

The frequency of succession sequences was also identi­

fied, i.e. the occurrence after a given air mass of another air mass. The research topic of succession deals with qualitative data, such as air masses. In this study, succession was approached in two ways: (1) by investigating the frequency of the total variability (all instances of succession from one air mass to another representing 100 %) and (2) by investi­

gating the frequency o f succession from a given air mass to another given air mass (where the frequency o f all instances of succession from the former air mass represent 100 %).

3 Frequency

Air masses in southern Poland feature a whole range of thermal and humidity characteristics. During the 60-year

Fig. 1 Location o f study area

(3)

Table 1 Frequency (in percent) of air masses over southern Poland and its 95 % confidence interval (1951-2010)

Air masses Spring Summer Autumn Winter Year

Arctic-A 11.6± 1.8 3.1±1.0 8.6±1.4 8.9±1.6 8.0±0.8

Polar maritime (fresh)—mPf 13.6±1.6 25.6±2.2 16.6±1.8 14.0±1.6 17.5±1.2

Polar maritime old (transformed)—mPo 31.1 ±3.0 35.4±2.4 31.4±2.4 32.9±2.4 32.7±1.8

Polar maritime warm—mPw 6.6±1.2 3.7±1.0 10.2±1.6 9.3±1.6 7.4±0.8

Polar continental— cP 23.5±2.6 18.6±2.6 20.1±2.8 23.6±3.4 21.4±1.6

Tropical—T 3.7±1.0 4.3±1.2 3.3±1.0 1.0±0.6 3.1±0.6

Various air masses—vAm 10.0±2.0 9.3±1.8 9.8±1.8 10.5±2.0 9.8±1.8

stu d y p e rio d , th e m o s t fr e q u e n t a ir m a s s w a s th e P o la r m a ritim e o ld (tra n sfo rm e d ) a ir w h ic h a c c o u n te d fo r a p p ro x ­ im a te ly o n e th ird o f a ll d a y s, in c lu d in g 35 % in s u m m e r a n d 3 1 % in sp rin g a n d a u tu m n (T able 1 ). T h is is c o m p a tib le w ith a n e a rlie r s tu d y b y B o ła s z e w s k a a n d R e u tt ( 1 9 6 2 ), w h o c o n c lu d e d th a t th is a ir m a s s ty p e w a s th e m o s t fre q u e n t a c ro ss P o la n d . P o la r c o n tin e n ta l a ir w a s th e se c o n d m o s t fre q u e n t a t 24 % in w in te r a n d sp rin g a n d 19 % in sum m er.

S u m m e r w a s a lso th e se a s o n w h e n m P f in c re a se d in fre ­ q u e n c y to 26 % . O th e r a ir m a s se s w e re less fre q u e n t, e sp e ­ c ia lly th e o n e s o rig in a tin g o u ts id e th e m o d e ra te la titu d e s, an d fo llo w se a s o n a l p a tte rn s. P o la r m a ritim e w a rm a ir is n e a rly 2 .5 tim e s m o re fre q u e n t in a u tu m n (1 0 % ) th a n in s u m m e r (4 % ); A rc tic a ir p e a k s in fr e q u e n c y in sp rin g (12 % ) a n d re a c h e s its lo w in s u m m e r (3 % ); tro p ic a l a ir is a t its m o s t f r e q u e n t in s u m m e r (4 % ) a n d a t th e le a s t fre q u e n t in w in te r (1 % ). F in ally , th e re are a b o u t 10 % o f d a y s w ith a ir m a s s c h a n g e in a ll seasons.

N o sta tistic a lly s ig n ific a n t se a s o n a l v a ria b ility w a s fo u n d in th e m o s t fre q u e n t a ir m a s se s, i.e. m P o a n d cP, as th e y are ty p ic a l o f th e c lim a te z o n e o f th e s tu d y a re a w ith its c o n s is ­ te n t p re v a le n c e o f zo n a l circu latio n . T h e re m a in in g fo u r air m a s se s d is p la y c le a r se a so n a litie s. T h e re is also a g re a t d e a l o f y e a r-to -y e a r v a ria b ility o f th e sam e a ir m a sse s. F o r e x ­ am p le, a rctic a ir m a y n o t o c c u r in th e sp rin g o f 1 y e a r b u t m a y p e rs is t fo r 30 % o f d a y s in th e sam e se a s o n o f th e fo llo w in g y e a r (T able 2 ).

4 Persistence

4.1 A v e ra g e p e rs iste n c e

I n s o u th e rn P o la n d a ir m a s s e s p e r s is t in s trin g s o f 2 .2 c o n se c u tiv e d a y s o n av e ra g e . T h e re is a g o o d d e a l o f d iffe r­

en ce b e tw e e n e a c h ty p e , h o w e v e r, s u c h as 1.6 d a y s fo r m P w in s u m m e r a n d 4.3 d a y s fo r cP in w in te r (T able 3). T h e m o s t fre q u e n t a ir m a s s o f all, m P o , m a in ta in e d a c o n s is te n t a v e r­

ag e p e rs iste n c e in a ll se a s o n s a t 2 .6 d ays. A m u c h sh o rter a v e ra g e p e rs iste n c e w a s c a lc u la te d fo r m P f a n d m P w a ir a t a p p ro x im a te ly 1 d a y each. In su m m er, th e tw o ty p e s d iffe re d sig n ific a n tly a t 2 .2 ± 0 .1 d a y fo r m P f a n d 1 .6 ± 0 .2 d a y for m P w . In th e re m a in in g se a so n s, a n y d iffe re n c e s b e tw e e n th e s e ty p e s w a s in s ig n ific a n t a t a = 0 .0 5 . T h e re la tiv e ly sh o rt p e rs iste n c e o f m P f a n d m P w a ir m a s s e s w a s a re s u lt o f th e ra p id m o v e m e n t o f d e p re s s io n s a c ro ss P o la n d a c c o m p a n ie d b y e x te n s iv e sy s te m s o f fro n ts a n d a su b s e q u e n t tra n s fo r­

m a tio n o f th e s e m a s se s in to m P o . T h is ty p e o f tra n s fo rm a ­ ti o n is th e q u ic k e s t in w in te r a n d in s p r in g , w h e n th e te m p e ra tu re d if fe re n tia l b e tw e e n th e A tla n tic O c e a n a n d la n d in E u ro p e is a t its g reatest. A t th a t tim e , its av e ra g e p e rs iste n c e sta n d s a t 1.7 d ay s. In su m m er, th is tra n s fo rm a ­ tio n p ro c e s s is m u c h s lo w e r a n d th e p e rs is te n c e e x te n d s to 2 .2 d a y s o n av erag e.

A m o n g th e six ty p e s o f a ir m a s s, cP a ir sta n d s o u t w ith its lo n g e s t a v e ra g e p e rs is te n c e o v e r th e w h o le y e a r a n d n o

Table 2 Range o f frequency variability (a) minimum and (b) maximum (in percent) o f air masses in southern Poland (1951-2010) (number of extreme occurrences in brackets)

Air masses Spring Summer Autumn Winter Year

a b a b a b a b a b

A 0.0 (1) 30.4 (1) 0.0 (20) 14.1 (1) 0.0 (1) 24.2 (1) 0.0 (2) 22.0 (1) 2.5 (1) 17.0 (1)

mPf 3.3 (1) 32.6 (1) 8.7 (1) 55.4 (1) 4.4 (1) 33.0 (2) 1.1 (1) 26.7 (1) 10.7 (3) 29.0 (1)

mPo 13.0 (1) 70.7 (1) 20.7 (1) 63.0 (1) 13.2 (1) 53.8 (2) 14.4 (1) 51.1 (1) 19.7 (1) 53.7 (1)

mPw 0.0 (2) 20.7 (1) 0.0 (11) 16.3 (1) 1.1 (1) 30.8 (1) 0.0 (3) 26.7 (1) 0.8 (1) 14.8 (1)

cP 2.2 (1) 46.7 (1) 0.0 (1) 44.6 (1) 2.2 (2) 48.4 (1) 1.1 (1) 57.8 (1) 8.8 (1) 38.9 (1)

T 0.0 (20) 15.2 (2) 0.0 (17) 19.6 (1) 0.0 (17) 17.6 (1) 0.0 (42) 11.1 (1) 0.0 (2) 10.1 (1)

vAm 0.0 (6) 26.1 (1) 0.0 (6) 22.8 (1) 0.0 (8) 25.3 (3) 0.0 (6) 31.1 (1) 0.0 (3) 24.4 (1)

(4)

Air masses Spring Summer Autumn Winter Year Table 3 The average persis­

tence of air masses (in days) and their 95 % confidence intervals

(1951-2010) A 2.50±0.22

m Pf 1.73±0.10

mPo 2.52±0.16

mPw 1.66±0.14

cP 3.83±0.36

T 2.00±0.30

vAm 1.29±0.06

Avg. 2.30±0.08

1.94±0.26 2.29±0.20

2.17±0.14 1.91±0.14

2.51±0.16 2.63±0.18

1.56±0.18 2.01±0.20

3.32±0.32 3.95±0.46

1.86±0.20 1.90±0.26

1.26±0.06 1.22±0.06

2.20±0.08 2.30±0.08

2.12±0.20 2.27±0.12

1.67±0.10 1.90±0.06

2.64±0.18 2.57±0.08

1.93±0.16 1.83±0.08

4.25±0.44 3.83±0.20

1.56±0.30 1.88±0.14

1.33±0.06 1.27±0.04

2.30±0.08 2.27±0.04

s ig n ific a n t s e a s o n a lity ( a = 0 .0 5 ). W a ra k o m sk i ( 19 6 9 ) a n d W ię c ła w (2 0 0 4 ) fo u n d cP to b e th e m o s t p e rs is te n t in th e w h o le o f P o la n d , w h ic h m u s t b e a ttrib u te d to th e v e ry g re a t sta b ility o f th e e a ste rn c irc u la tio n fro m w h e re th is ty p e o f air m a s s c o m e s (O su c h o w sk a -K le in 19 7 5 ).

T w o a ir m a s s e s th a t a rr iv e in s o u th e r n P o la n d fro m o u ts id e m o d e ra te la titu d e s, i.e. T a n d A , sta n d o u t w ith th e ir

lo n g e s t sp rin g tim e p e rs iste n c e a t 2 a n d 2.5 d ay s, re s p e c tiv e ­ ly. It is th e ir e ffe c t th a t is b e h in d th e ty p ic a lly h ig h w e a th e r v a ria b ility in sp rin g tim e , w h ic h ra n g e s fro m fro sty sp e lls to h e a t w a v e s, as m e rid io n a l c irc u la tio n in c re a se s its sh are a t th e c o s t o f lo n g itu d in a l c irc u la tio n (N ie d ź w ie d ź e t al. 2 0 0 9 ).

A -ty p e a ir m a s se s a rriv e in P o la n d in c o n n e c tio n w ith h ig h p re s su re sy ste m s, w h ic h te n d to b e m o re stab le. F in ally , air

Table 4 Number of strings o f days with individual air masses (NS), frequency (in percent) o f strings (FS), and the proportion (in percent) o f each string length in the total number o f days with that air mass type (FD) (1951-2010)

Air Strings o f days

masses

1 2 3 4 5 6 7 8 9 10 11-15 16-20 21-30 2

A NS 301 233 118 63 32 15 10 4 2 1 2 - - 781

FS 38.5 29.8 15.1 8.1 4.1 1.9 1.3 0.5 0.3 0.1 0.3 - - 100

FD 17.0 26.3 19.9 14.2 9.0 5.1 3.9 1.8 1.0 0.6 1.2 - - 100

mPf NS 1,118 496 233 101 61 20 15 3 4 4 6 - - 2,061

FS 54.2 24.1 11.3 4.9 3.0 1.0 0.7 0.1 0.2 0.2 0.3 - - 100

FD 28.5 25.3 17.8 10.3 7.8 3.1 2.7 0.6 0.9 1.0 1.9 - - 100

mPo NS 1,230 605 360 232 131 104 63 40 18 11 34 8 - 2,836

FS 43.4 21.3 12.7 8.2 4.6 3.7 2.2 1.4 0.6 0.4 1.2 0.3 - 100

FD 16.9 16.6 14.8 12.7 9.0 8.6 6.0 4.4 2.2 1.5 5.5 1.8 - 100

mPw NS 510 217 101 33 19 16 4 2 2 2 1 - - 907

FS 56.2 23.9 11.1 3.6 2.1 1.8 0.4 0.2 0.2 0.2 0.1 - - 100

FD 30.7 26.1 18.2 7.9 5.7 5.8 1.7 1.0 1.1 1.2 0.7 - - 100

cP NS 301 271 195 103 113 58 31 45 31 24 38 15 5 1,230

FS 24.5 22.0 15.9 8.4 9.2 4.7 2.5 3.7 2.5 2.0 3.1 1.2 0.4 100

FD 6.4 11.5 12.4 8.7 12.0 7.4 4.6 7.6 5.9 5.1 10.1 5.6 2.6 100

T NS 188 95 46 24 5 2 2 - - 1 1 - - 364

FS 51.6 26.1 12.6 6.6 1.4 0.5 0.5 0.0 0.0 0.3 0.3 - - 100

FD 27.5 27.8 20.2 14.0 3.7 1.8 2.0 - - 1.5 1.6 - - 100

vAM NS 1,157 244 50 16 3 - - - 1,470

FS 78.7 16.6 3.4 1.1 0.2 - - - 100

FD 61.7 26.0 8.0 3.4 0.8 - - - 100

Total NS 4,805 2,161 1,103 572 364 215 125 94 57 43 82 23 5 9,649

FS 49.8 22.4 11.4 5.9 3.8 2.2 1.3 1.0 0.6 0.4 0.8 0.2 0.1 100.0

FD 21.9 19.7 15.1 10.4 8.3 5.9 4.0 3.4 2.3 2.0 4.5 1.8 0.6 100.0

The largest values given in italics

(5)

m a s s c h a n g e is fo u n d to b e la rg e ly lim ite d to sin g le d a y s a n d av e ra g e s 1.3 days.

G e n e ra lly , th e re is n o sim p le re la tio n sh ip b e tw e e n th e p e rs iste n c e o f in d iv id u a l ty p e s o f a ir m a s s a n d th e ir fre q u e n ­ cy. It is th e d ire c tio n o f a d v e c tio n w h ic h p la y s a sig n ific a n t ro le h e re a n d e a ste rn c irc u la tio n te n d s to su p p ly a ir m a s se s th a t p e rs is t fo r a lo n g e r tim e. T h is is p a rtic u la rly tru e o f th e c P m a s s , th e m o s t f r e q u e n t a ir m a s s a rr iv in g w ith th is c irc u la tio n (N ie d ź w ie d ź 19 8 1 ). N o rth e r n c irc u la tio n fa v o u rs A -ty p e m a s se s a n d th e ir h ig h e s t fre q u e n c y is in sp rin g tim e.

4 .2 S trin g s o f d a y s w ith a ir m a s se s

T h e sim ila rity o f th e a v e ra g e se a s o n a l p e rs iste n c e b e tw e e n v a rio u s a ir m a s s ty p e s m e a n t th a t in th e se a rc h fo r d iffe r­

e n ces th e s tu d y h a d to tu r n to a n n u a l p a tte rn s (T able 4 ).

S e a s o n a l v a lu e s w e re o n ly c o m p a re d in te rm s o f m a x im u m p e rs iste n c e s (T able 5 ).

T h e p e r s is te n c e s r a n g e d fro m s in g le d a y s to 3 0 -d a y strin g s (T ab le s 4 a n d 5 ). S in g le -d a y p e rs is te n c e s w e re a cle a r m a jo rity , e s p e c ia lly in th e “ v a r io u s a ir m a s s ” c a te g o ry (79 % ) a n d th e tro p ic a l a ir (5 2 % ). S in g le d a y s w e re th e m o s t fre q u e n t in a ll ty p e s o f a ir m a s s a n d re p re se n te d th e la rg e st p ro p o rtio n o f d a y s w ith a g iv e n a ir m a s s w ith th e

e x c e p tio n o f cP air. H e re to o , P o la r c o n tin e n ta l a ir o c c u rre d m o s t fre q u e n tly o n sin g le d a y s, b u t th e to ta l n u m b e rs o f d a y s w ith th a t a ir m a s s in o th e r strin g p e rs is te n c e s (2, 3, 5 a n d 1 1 -1 5 d a y strin g s) w e re g re a te r th a n th a t in sin g le d a y o c c u rre n c e s.

O v e ra ll, th e g re a te s t n u m b e r o f strin g s w ith a sin g le air m a s s ty p e ra n g e d fro m 1 to 3 d a y s lo n g , w h ic h w a s ty p ic a l o f th e ir v a ria b ility in b o th so u th e rn P o la n d a n d in th e w h o le c o u n try (W a ra k o m sk i 19 6 9 ). A t th e o th e r e n d o f th e sp e c ­ tru m , th e re w e re lo n g sp e lls th a t so m e tim e s e v e n in v o lv e d a ir m a s se s o rig in a tin g fro m o u ts id e m o d e ra te latitu d es. F o r e x a m p le , th e re w e re tw o lo n g sp ells o f A la s tin g fo r 11 c o n s e c u tiv e d a y s ( 1 0 - 2 0 A p ril 19 7 7 a n d 2 - 1 1 F e b ru a ry 2 0 0 4 ) (T able 5). A lso , T te n d e d to p e rs is t fo r lo n g e r p e rio d s a n d p e a k e d a t 11 d a y s o n e a u tu m n (T able 5).

P o la r c o n tin e n ta l a ir h a s th e w id e s t ra n g e o f p e rs iste n c e s w ith th e lo n g e s t strin g la s tin g fo r 30 d a y s (3 O c to b e r-1 N o v e m b e r 1951) (T able 5 ). A s a r e s u lt o f th a t p a rtic u la r sp e ll o f P o la r c o n tin e n ta l a d v e c tio n , th is p a r t o f E u ro p e su ffe re d a n a c u te p re c ip ita tio n d eficit, in c lu d in g a c o m p le te la c k o f p re c ip ita tio n a t m a n y w e a th e r sta tio n s (C e b u ls k a an d T w a rd o sz 2 0 1 0 ).

L o n g p e rs is te n c e o f a g iv e n cP a ir m a s s is lin k e d w ith a s ta g n a tio n o f h ig h p re s su re sy s te m s o v e r s o u th e rn P o lan d ,

Table 5 The maximum duration o f air masses (1951-2010)

Air masses Spring Summer Autumn Winter

Duration Data o f the beginning and end

Duration Data of the beginning and end

Duration Data o f the beginning and end

Duration Data of the beginning and end

A 11 10-20 April

1977

8 1-8 June 1962 9 13-21 September

1977, 21-29 October 1997

11 9-19 February

2004

mPf 8 21 -28 May

1960, 27 February-6 March 1990

13 13-25 August

1961, 2-14 July 2003, 2-14 August 2006

11 24 September-4

October 1997, 26 October-5 November 1998

6 23-28 December

1954, 14 -19 January 1984

mPo 16 23 March-7

April 1951, 18 April-3 May 2006

16 10-25 June 1989 16 1 -1 6 November

1959, 10-25 October 1980

19 20 December 1960­

7 January 1961

mPw 11 26 February-

8 March 1959

7 25 June-1

July 2009

10 7-16 October

1976, 18-27 October 1989

9 30 November-

8 December 2000

cP 22 11 March-1

April 1956

19 23 May-10

June 1963

30 3 October-1

November 1951

21 12 December 1969­

1 January 1970

T 11 27 April-7

May 1969

7 7-13 July

2006, 21-27 July 2006

10 4-13 October

1966

4 15-18 December

1964, 19-22 February 1966

vAm 5 21 -25 March

1970, 23-27 March 1992

5 7-11 June 2009 4 8-11 November

1979, 20-23 October 1986

4 6-9 February 1981,

1-4 February 1983, 23-26 December 1983, 20-23 February 1995

(6)

Table 6 Frequency (in percent) of overnight change o f air masses during the year

The largest values given in italics

Air mass Air mass on given day

A mPf mPo mPw cP T vPm

Air mass on following day A 56.0 4.4 3.1 2.5 1.2 1.2 14.7

mPf 4.0 47.4 11.0 18.8 2.8 17.4 33.2

mPo 18.8 33.4 61.1 13.4 12.1 13.2 16.8

mPw 2.8 5.4 5.4 45.5 1.7 3.1 7.8

cP 14.2 2.5 10.3 2.1 73.9 3.7 3.7

T 0.2 1.4 1.8 3.8 1.5 46.8 2.2

vAm 4.1 5.6 7.2 13.8 6.8 14.8 21.6

e sp e c ia lly in a u tu m n , w h e n th e y are p re s e n t fo r u p to 60 % o f th e tim e o n a v e ra g e (T w a rd o sz e t al. 2 0 1 1 a , b ). U s in g th e c irc u la tio n c a le n d a r b y N ie d ź w ie d ź ( 1 9 8 1 , 2 0 1 1 ), it w a s e sta b lish e d th a t in O c to b e r 1951 th e d o m in a n t c irc u la tio n w a s a n ticy clo n ic w ith a ir ad v e c tio n fro m th e e a st o r southeast, w h ic h b ro u g h t in th e cP m asses.

5 Succession

S u c c e s s io n is a v e ry im p o rta n t c h a ra c te ristic o f a ir m a sse s, e sp e c ia lly fro m th e p e rs p e c tiv e o f a p p lie d m e te o ro lo g y . A ir m a s se s c a n su c c e e d o n e a n o th e r b y re p la c e m e n t (as a re s u lt o f th e p a s s a g e o f a fro n t) o r th r o u g h tra n sfo rm a tio n , b u t th is d iv isio n is b e y o n d th e sc o p e o f th is study.

In a n a v e ra g e y e a r o f th e stu d y p e rio d , 1 9 5 1 -2 0 1 0 , air m a s se s w e re re p la c e d o r tra n s fo rm e d o n 161 d ay s, o r e v e ry

2.3 d ay s. D iffe re n c e s in fre q u e n c y b e tw e e n w in te r (3 9 d ay s) a n d s u m m e r (41 d a y s) are n o t d u e to d iffe re n t p e rs iste n c e s o f th e a ir m a s se s (o n av erag e approx. 2.3 d ay s, T able 3), b u t to th e d iffe re n t p e rsiste n c e s o f th e seasons. A n a n aly sis o f su c ­ c e ssio n starts w ith sh o w in g o v e rn ig h t c h a n g e s in a ir m asses.

E a c h o f th e six air m a sse s u n d e r co n sid e ra tio n h a s sh o w n its e lf to b e m o re lik e ly to re m a in th e sam e o n th e fo llo w in g d a y th a n to b e su c c e e d e d b y a n o th e r a ir m a s s (T able 6). F o r ex am p le, in 74 % o f all d a y s w ith cP, th is air m a s s c o n tin u e d to a t le a s t th e fo llo w in g d a y a n d o n ly in 2 6 % c a se s w a s it replaced. O n ly th e c a te g o ry o f a “d a y w ith v a rio u s a ir m a s se s”

(v A m ) sh o w e d a re v e rse d p a tte rn w ith th ere b e in g ju s t a 2 2 % ch an ce o f re m a in in g th e sam e o n th e fo llo w in g d a y (it w a s also th e m o s t lik e ly to b e re p la c e d b y m P f air).

T h e issu e o f su c c e ssio n w a s c o n sid e re d b o th in th e w h o le y e a r a n d seasonally. F o r th e w h o le y e a r th e to ta l su ccessio n freq u en cy w a s u s e d (all cases o f su c c e ssio n a c c o u n t fo r 100 %

Table 7 Frequency (in percent) of air mass succession during a year: (A) total frequency and (B) frequency of succession from a given air mass to another

Air mass Air mass on given day

A mPf mPo mPw cP T vAm

A

Air mass on following day A - 1.8 2.3 0.4 0.6 0.1 2.9

mPf 0.7 - 8.3 3.2 1.4 1.2 6.5

mPo 3.5 13.5 - 2.3 5.9 0.9 3.3

mPw 0.5 2.2 4.1 - 0.8 0.2 1.5

cP 2.6 1.0 7.8 0.4 - 0.3 0.7

T 0.0 0.6 1.4 0.7 0.7 - 0.4

vAm 0.7 2.3 5.5 2.4 3.3 1.0 -

B

Air mass on following day A - 8.4 7.9 4.6 4.6 2.2 18.8

mPf 9.1 - 28.3 34.5 10.7 32.7 42.4

mPo 42.6 63.4 - 24.6 46.2 24.7 21.4

mPw 6.4 10.2 14.0 - 6.7 5.8 9.9

cP 32.3 4.7 26.5 3.9 - 6.9 4.7

T 0.4 2.6 4.7 7.1 5.7 - 2.8

vAm 9.2 10.6 18.6 25.4 26.1 27.7 -

(7)

Table 8 Frequency (in percent) o f air mass succession during the seasons

A ir mass A ir mass on given day A ir mass A ir mass on given day

A m P f mPo m Pw cP T vArn A m P f mPo m Pw cP T vArn

Spring Autumn

A ir mass on A

-

12.6 10.6 7.5 8.1 5.1 20.8 A ir m ass on A

-

8.8 8.6 4.9 2.1 3.1 23.6

follow ing day m P f 5.4

-

24.5 30.7 7.2 25.2 40.0 following day m P f 9.7

-

26.2 33.5 10.9 31.3 34.8

mPo 45.5 59.6

-

22.4 45.3 29.3 19.5 mPo 39.1 58.8

-

23.9 44.0 22.9 23.4

m Pw 5.8 10.36 14.4

-

4.8 6.1 10.5 mPw 8.2 12.9 17.3

-

14.4 12.5 12.0

cP 33.5 4.5 26.6 4.8

-

11.1 6.6 cP 36.2 4.1 24.4 2.8

-

6.3 2.4

T 1.2 2.7 5.7 8.3 5.4

-

2.6 T

-

3.1 4.4 9.9 3.9

-

3.8

vArn 8.6 10.3 18.3 26.3 29.1 23.2

-

vArn 6.8 12.3 19.2 25.0 24.6 24.0

-

Summer Winter

A ir mass on A

-

3.9 3.8

-

2.8

-

6.0 A ir m ass on A

-

10.6 9.3 4.2 5.1

-

23.8

follow ing day m P f 18.4

-

35.2 40.2 15.2 42.9 60.1 following day m P f 9.1

-

26.2 36.1 9.8 19.4 35.8

mPo 52.9 76.1

-

18.9 38.0 19.5 22.7 mPo 38.7 53.6

-

30.0 57.9 36.1 20.3

m Pw 1.1 5.3 8.5

-

4.1 0.8 3.7 m Pw 7.4 14.5 16.8

-

4.0 5.6 13.1

cP 17.2 5.6 29.9 4.5

-

2.3 4.0 cP 33.0 4.3 24.6 3.8

-

13.9 5.6

T

-

3.6 5.9 8.3 11.7

-

3.4 T

-

0.7 2.5 2.3 1.3

-

1.3

vArn 10.3 5.6 16.7 28.0 28.2 34.6

-

vArn 11.7 16.3 20.6 23.6 21.9 25.0 -

The largest values given in italics

ariabilityof airmass occurrence in southern Poland(1951-2010)

(8)

Table 7a) as w e ll as th e b re a k d o w n o f su c c e ssio n o f a g iv e n air m a s s (100 % ) b y o th e r air m a s se s (T able 7 b ). T h e seaso n al an aly sis c o n sid e re d o n ly th e latter b re a k d o w n (T able 8).

A su m m a ry o f th e a n n u a l su c c e ssio n fre q u e n c y (T able 6 a ) sh o w s th a t e a c h a ir m a s s ca n b e su c c e e d e d b y a n y other. T he m o s t fre q u e n t su c c e ssio n is fro m m P f to m P o a t 13.5 % o f all su ccessio n s (1 ,3 0 7 su c c e ssio n days). I t c a n b e a ttrib u te d to a n a tu ra l re s u lt o f th e circu latio n p ro c e sse s p re s e n t in th e stu d y area, in v o lv in g a tra n sfo rm a tio n o f a fresh air m a s s as it arrives fro m th e A tlan tic O c e a n a n d v e n tu re s d e e p e r o v e r th e c o n ti­

nent. O th e r fre q u e n t su ccessio n s in clu d e fro m m P o to m P f (8.3 % su ccessio n s in a y ear), m P o to cP (7.8 % ) a n d cP to m P o (5.9 % ). O verall, th ere is a greater lik e lih o o d o f w a rm air b e in g re p la c e d b y c o o l a ir th a n v ic e versa. T h e le a st freq u en t are m u tu a l s u c c e s s io n s o f tw o a ir m a s s e s o rig in a tin g o u ts id e m o d e r a te la titu d e s : A to T (0.1 % , th re e case s) a n d T to A (0 .2 % , e ig h t c a se s ), w h ic h is d u e to th e lo w fre q u e n c y o f th e a ir m a s s e s th e m s e lv e s , e s p e c ia lly o f T. D ir e c t s u c c e s s io n s b e tw e e n th e s e tw o ty p e s o f a ir c a n a lso h a v e b io m e te o r o lo g ic a lly a d v e rs e e ffe c ts, d u e to th e ir e x tr e m e ly d if fe re n t p h y s ic a l p ro p e rtie s .

F ro m th e p e rs p e c tiv e o f w e a th e r fo re c a stin g , it is th e fre q u e n c y o f s u c c e s sio n s b e tw e e n c e rta in a ir m a s s e s th a t is m o re im p o rta n t. A s c o u ld h a v e b e e n e x p e c te d , th e re is a v e ry h ig h lik e lih o o d th a t a d a y w ith m P f w ill b e fo llo w e d b y a d a y w ith m P o , w h ic h a c c o u n te d fo r 63 % o f m P f su c c e s­

sio n s b y a n y o th e r a ir (T able 7 b ). T h is is c a u s e d b y th e c irc u la tio n e ffe c t m e n tio n e d earlier. N o o th e r a ir m a s s h a s a c o m p a ra b le lik e lih o o d o f su c c e s s io n b y a n o th e r sp e c ific air m a s s (m o re th a n 50 % ). m P o is a ls o th e m o s t fre q u e n t s u c c e s s o r to A a n d cP, b u t w ith le s s th a n 5 0 % lik e li­

h o o d . D a y s w ith m P o , m P w , T, o r v A m a re m o s t lik e ly to b e f o l lo w e d b y m P f ( a t 2 8 , 3 5 , 33 a n d 4 2 % , re s p e c tiv e ly ).

T h e s e a s o n a l su c c e s s io n fre q u e n c y (T ab le 8) d is p la y s sim ila ritie s w ith th e a n n u a l p a tte rn d e s c rib e d ab o v e. T h ere is a h ig h lik e lih o o d o f a d a y w ith m P o a fte r a d a y w ith m P f, ra n g in g fro m 54 % in w in te r to 7 6 % in sum m er. T h e re is a g ro w in g fre q u e n c y o f a d a y w ith m P o a fte r A in s u m m e r a t 53 % a n d a fte r c P in w in te r a t 58 % . A ll c a s e s o f th e su c c e s s io n o f T a fte r A o c c u rre d in sp rin g . N o c a se s o f d ire c t m u tu a l su c c e s s io n b e tw e e n A a n d T, in a n y d ire c tio n , w e re re c o rd e d in w in te r a n d sum m er.

6 Conclusions

T h e stu d y d is c u sse s th e v a ria b ility o f o c c u rre n c e o f six air m a s s ty p e s in so u th e rn P o la n d lo o k in g a t th e ir a n n u a l a n d se a s o n a l fre q u e n c ie s, p e rs iste n c e , a n d su c c e s s io n p a tte rn s d u rin g th e p e rio d 1 9 5 1 -2 0 1 0 .

T h e m o s t fre q u e n t a ir m a s s e s in P o la n d in c lu d e m P o a t ap p ro x 33 % d a y s a n d cP a t a p p ro x 21 % d ay s. T h e se are

ty p ic a l a ir m a s se s o f th e s tu d y a r e a ’s c lim a te zo n e a n d th e y sh o w n o s ig n ific a n t seaso n ality . T h e o th e r fo u r ty p e s o f air m asses, o n th e o th e r h a n d , are clea rly se a so n a l in th e ir fre­

q u e n c y v ariab ilities, e sp ecially th e ex o tic o n e s (A a n d T).

D esp ite c o n sid erab le seaso n al d ifferen ces in th e freq u en cy o f o ccu rren ce, th e av erag e p ersisten ce o f a ir m a s se s is sim ilar fo r m o s t o f th e m a t ca. 2 d ay s. S ig n ifican t d ifferen ces are o n ly v isib le in th e m P f, w h ic h ra n g e s fro m 1 .7 ± 0 .1 d a y s in w in te r a n d sp rin g to 2 .2 ± 0 .1 d a y s in sum m er. T h is m e a n s th a t th ere is n o sim p le d e p e n d e n c y b e tw e e n th e p e rs iste n c e o f each p a rtic u la r air m a s s a n d its frequency. T h e re is, h o w ev er, a h ig h d e g re e o f seaso n al d ifferen ce b e tw e e n th e air m a sse s in th e ir av erag e p e rsiste n c e ra n g in g fro m 1.6 d a y s in su m m er (1.6 d a y s o f m P w a n d 3.2 d ay s o f cP ) to 2.9 in w in te r (1.6 o f T a n d 4.3 o f cP). T h e g re a te st v a ria b ility in p ersisten ce is fo u n d in cP air, w h ic h re a c h e s 30 d a y s in autum n.

T h e p e rs iste n c e o f a g iv e n a ir m a s s is lin k e d m o re to th e d ire c tio n o f its a d v e c tio n th a n to th e fre q u e n c y o f o c c u r­

ren ce. E a s te rn a n tic y c lo n ic c irc u la tio n , k n o w n fo r its sta b il­

ity, is p a rtic u la rly c o n d u c iv e to lo n g e r p e rs iste n c e s a n d th is is w h y cP a ir te n d s to p e rs is t fo r longer. M a ritim e a ir fro m th e w e s t te n d s to b e q u ic k ly tra n s fo rm e d o v e r th e c o n tin e n t a n d d o e s n o t la s t fo r as lo n g . T h is tra n s fo rm a tio n p ro c e s s is a t its q u ic k e s t in w in te r a n d sp rin g a n d a t its slo w e s t in su m m er, a re s u lt o f se a s o n a l v a ria b ility in c y c lo n ic activity.

T h e s tu d y o f s u c c e s sio n b e tw e e n a ir m a s se s h a s s h o w n t h a t e a c h a ir m a s s c a n b e r e p la c e d b y a n y o th e r ty p e , a lth o u g h th e re w e re n o re c o r d e d c a s e s o f d ir e c t m u tu a l s u c c e s sio n o f A a n d T a ir m a s se s in w in te r a n d sum m er.

T h ere is also a v e ry h ig h lik e lih o o d th a t a d a y w ith m P f air w ill b e fo llo w e d b y a d a y w ith m P o air. In d eed , th is p a tte rn a cco u n ts fo r 63 % o f su ccessio n s o f th e fo rm er b y a n y o th er air a n d in su m m e r th e p ro p o rtio n is 76 % . T h is p a tte rn is a n a tu ra l re s u lt o f circ u la tio n pro c e sse s in th e tem p erate clim ate z o n e in v o lv in g a tra n sfo rm a tio n o f m aritim e a ir m a s se s o v e r th e c o n tin e n t. N o o th e r a ir m a s s is s u c c e e d e d w ith s u c h fre q u e n c y b y a n y o th e r sp ecific a ir m a s s ty p e (m o re th a n 50 % ). F inally, th e stu d y h a s c o n firm e d a n e x p e c ta tio n th a t th e m o s t fre q u e n t su ccessio n s w o u ld in v o lv e th e a ir m a sse s w ith th e m o s t fre q u e n t occurrence.

Acknowledgments I thank Mr. Paweł Pilch and Dr. Martin Cahn for reviewing the English language.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

American Meteorological Society (2000) Glossary o f meteorology.

A m erican M eteorological Society, B oston, MA (airm ass classification)

(9)

B ergeron T (1928) U b er die d red im en sio n al v erk n u p fen d e Wetteranalyse. I. Teil (three-dimensionally combining synoptic analysis, part I). Geofysiske Publikasjoner 5:1-111

B ołaszew ska J, R eutt F (1962) C zęstotliw ość w ystępow ania poszczególnych mas powietrza w Polsce w okresie 10 lat 1946­

1956, Prace PIHM, 66, 16-32. [The frequency o f air masses in Poland in the years from 1946 to 1956]

Buchert L (2006) Częstość występowania mas powietrznych w rejonie Poznania w latach 1965-1990, Przegląd Geofizyczny, 51 (3-4).

[The frequency o f air masses in the region o f Poznan in the years 1965-1990]

Cebulska M, Twardosz R (2010) Zmienność czasowa najniższych miesięcznych sum opadów atmosferycznych w dorzeczu górnej W isły (1901-2000). Przegląd Geofizyczny, 3 -4 , 175-188.

[Temporal variability o f the lowest monthly precipitation in the upper Vistula river (1901 -2000)]

Kalkstein LS, Nichols MC, Barthel CD, Greene JS (1996) A new spatial synoptic clasification: application to air-mass analysis.

Int J Climatol 16:983-1004

Kalkstein LS, Sheridan SC, Graybeal DY (1998) A determination of character and frequency changes in air masses using a spatial synoptic classification. Int J Climatol 18:1223-1236

Kaszewski M (1977) W arunki synoptyczne napływu pow ietrza arktycznego i zwrotnikowego nad środkowowschodni makroregion Polski (1961-1970). Przegląd Geofizyczny 22(30):49-59 [Synoptic conditions o f the arctic and tropical air flow over central Poland (1961-1970)]

Kotas P (2011) Długotrwałość mas powietrznych w Polsce Południowej.

Prace i Studia Geograficzne 47:247-253 [Long-term variability of air-mass duration in southern Poland]

Kysely J, Domonkos P (2006) Recent increase in persistence of atmo­

spheric circulation over Europe: comparison with long-term var­

iations since 1881. Int J Climatol 26:461-483

N iedźw iedź T (1981) Sytuacje synoptyczne i ich w pływ na zróżnicowanie przestrzenne w ybranych elementów klimatu w dorzeczu górnej Wisły, Rozprawy habilitacyjne UJ, 58, Kraków. [Synoptic situations and its influence on spatial differ­

entiation of selected climatic elements in upper Vistula basin]

Niedźwiedź T (2000) Dynamika adwekcji mas powietrza arktycznego nad Polską południową, Acta Universitatis Nicolai Copernici, Geografia 31. Nauki matematyczno-przyrodnicze 106:203-211 Niedźwiedź T (2003) Częstość występowania mas powietrznych

w Polsce południowejw drugiej połow ie XX wieku. Prace Geograficzne 188:65-74 [Frequency o f air masses in southern Poland in the second half of the twentieth century]

Niedźwiedź T (2011) Kalendarz typów cyrkulacji atmosfery dla Polski południowej—zbiór komputerowy (http://klimat.wnoz.us.edu.pl/

index1024.html), Uniwersytet Śląski, Katedra Klimatologii, Sosnowiec. (Catalogue o f circulation types in southern Poland) Niedźwiedź T, Twardosz R, Walanus A (2009) Long-term variability

o f precipitation series in east central Europe in relation to circu­

lation patterns. Theor Appl Climatol 98(3-4):337-350

Osuchowska-Klein B (1975) Prognostyczne aspekty cyrkulacji atmosferycznej nad Polską. Prace Instytutu M eteorologii i Gospodarki Wodnej 7:5-51 [Forecasting aspects of the atmo­

spheric circulation over Poland]

Rafałowski S, Bołaszewska J, Reutt F (1955) Częstotliwość występowania poszczególnych mas powietrza w Polsce, Wiadomości Służby Hydrologicznej i Meteorologicznej, III, 5, 3-23. [Frequency of air masses in Poland]

Schwartz MD (1995) Detecting structural climate change: an air mass- based approach in the North Central United States, 1948-1992.

Ann Assoc Am Geogr 85:553-568

Twardosz R (2005) Dobowy przebieg opadów atmosferycznych w ujęciu synoptycznym i probabilistycznym na przykładzie K rakow a (1 8 8 6 -2 0 0 2 ). In sty tu t G eografii i G ospodarki Przestrzennej UJ, Kraków. [The synoptic and probabilistic aspects o f diurnal precipitation variation in Cracow (1886-2002)]

Twardosz R (2010) A synoptic analysis of the diurnal cycle o f thun­

derstorm precipitation in Kraków (Southern Poland). Int J Climatol 30:1008-1013

Twardosz R, Kossowska-Cezak U (2012) Exceptionally hot summers in Central and Eastern Europe (1951-2010). Theor Appl Climatol. doi:10.1007/s00704-012-0757-0

Twardosz R, Łupikasza E, Niedźwiedź T (2011a) Zmienność i uwarunkowania cyrkulacyjne występowania postaci i typów o p a d ó w a tm o s f e r y c z n y c h n a p r z y k ła d z ie K ra k o w a . Wydawnictwo UJ, Kraków. [Temporal variability in the form and type o f precipitation in Kraków in relation to circulation patterns]

Twardosz R, Niedźwiedź T, Łupikasza E (2011b) The influence of atmospheric circulation on the type o f precipitation (Kraków, southern Poland). Theor Appl Climatol 104:233-250

Ustrnul Z (2007) Warunki cyrkulacyjne, [in:] D. Matuszko (ed.), 2007, K lim at Krakowa w XX w ieku,21-40, IGiGP UJ, Kraków.

[Atmospheric circulation conditions]

Warakomski W (1969) Częstość występowania dni i okresów z poszczególnymi typami mas powietrza nad Polską (1951-1960).

Przegląd Geofizyczny 1:67-77 [Frequency o f days and periods with different types o f air masses over Poland (1951-1960)]

Więcław M (2004) Masy powietrza nad Polską i ich wpływ na typy pogody, A kadem ia B ydgoska im. K azim ierza W ielkiego, Bydgoszcz [Air mass over Poland and their impact on the types o f weather]

Cytaty

Powiązane dokumenty

Niektórymi z nich są: odpowiednie przy- gotowanie specjalistyczne (zawodowe) - wzięcie pod uwagę realnej sytuacji i w oparciu o nią powinno nastąpić wyznaczenie

Met werk aan katalytische aromatische acylering was Böeseken beslist zijn tijd vooruit.. Toen Holleman in 1904 inging op een aanbod van de universiteit van Amsterdam was Böeseken

Po lekturze ksi  azki jawi sie jednak pytanie, czy przdestawiona wizja jest pena i czy ukazuje chrzes´cijan´sk  a tozsamos´c´ osoby w caej jej wyrazistos´ci.. Wydaje sie,

politykę władz sowieckich w stosunku do ludności polskiej, zaryzykować można stwierdzenie, iż polscy oficerowie z obozów w Kozielsku, Starobielsku i Ostaszkowie, rozstrzelani

Yet, families in Africa play a key role in the process of human trafficking and at every stage of this process there is a need to examine a potential involvement of a family..

Jego celem jest opisanie filozoficznych korzeni myśli i działalności Arona, zawiera on jednak także analizę pierwszych poważnych tekstów francuskiego filozofa dotyczących

zewnętrznego toku szynowego i ustawić się twarzą do przejeżdżającego pociągu.. zewnętrznego toku szynowego i ustawić się tyłem do

blokach  w  elektrowniach:  Bełchatów,  Jaworzno,  Konin,  Opole  oraz  w  elektrociepłowniach:  Bydgoszcz,  Łódź,  Poznań,  Żerań,  a  także