• Nie Znaleziono Wyników

The Bell System Technical Journal : devoted to the Scientific and Engineering aspects of Electrical Communication, Vol. 22, No. 2

N/A
N/A
Protected

Academic year: 2022

Share "The Bell System Technical Journal : devoted to the Scientific and Engineering aspects of Electrical Communication, Vol. 22, No. 2"

Copied!
130
0
0

Pełen tekst

(1)

P - 2 S / V 3

THE BELL SYSTEM

TECHNICAL JOURNAL

DEVOTED T O THE SCIENTIFIC A N D ENGINEERING ASPECTS OF ELECTRICAL CO M M U NIC ATIO N

A M ineral Survey for Piezo-Electric Materials

— W. L. Bond 145

The Fundamental Equations of Electron M otion (Dynam­

ics of High Speed Particles) . . . . L. A. M acColl 153

Quartz Crystal A p p lic a t io n s W. P. M ason 178

M ethods for Specifying Quartz Crystal Orientation and Their Determination by Optical M eans . W. L. Bond 224

A N ote on the Transmission Line Equation in Term s of I m p e d a n c e ... J. R. P ierce 263

Abstracts of Technical Articles by Bell System Authors . 266

Contributors to this I s s u e ...268

AM ERICAN TELEPHONE A N D TELEGRAPH C O M PA N Y NEW Y O R K

50 c per copy $1.50 per Year

(2)

?OI/

P u b lish ed qu arterly by the

Am erican Telephone and T elegraph Com pany 195 B roadw ay, N e w York, N . Y.

EDITORS

R. W. King J. O. Perrine

F. B. Jewett O. E. Buckley S. Bracken

EDITORIAL BOARD

W. H. Harrison

A. B. Clark M . J. Kelly

O. B. Blackwell H. S. Osborne F . A. Cowan

SUBSCRIPTIONS

Subscriptions are accepted at S i.50 per year. Single copies are 50 cen ts each.

The foreign postage is 35 cents per year or 9 cen ts per copy.

Copyright, 1943

American Telephone and Telegraph Company

P R I N T E D I N U . S A .

(3)

F or the purposes of record an d assistance to librarians, a n d for th e inform ation of subscribers, it is to be noted th a t th ere was no A pril 1943 issue of th e Bell S ystem T echnical Journal.

I t is also to be noted th a t th ere was only one issue of V olum e 21 of th e Bell System T echnical Jo u rn a l. I t was th e issue of Ju n e 1942.

(4)
(5)

T h e Bell System T echnic

Vol. X X I I July, 1943

A M ineral Survey for Piezo-E lectric M aterials

B y W . L. B O N D

T J E C A U S E of th e increasing in te rest in piezoelectric m a teria ls in m an y branches of science an exhaustive stu d y of th e m inerals was u n d e r­

ta k e n w ith th e ob ject of finding all th e m aterials th a t could possibly be of use for piezo-electric elem ents. M uch help was derived from existing d a ta.1

C onsiderations of sym m etry show us th a t for a cry sta l to be piezo-elec- tric ally activ e it m u st belong to a cry sta l class th a t h as no center of sym ­ m e try (th e P en tag o n alico sitetred ral class of th e cubic system , how ever, alth o u g h i t 'h a s no center of sy m m etry ca n n o t be piezo ac tiv e) . 2 T his m akes tw e n ty classes of possible piezo a c tiv ity an d tw elve classes th a t could n o t possibly be active. A b o u t 9 0% of th e crystals found in n a tu re fall in those classes h av in g centers of sym m etry.

A lthough th e m ineralogical d a ta are incom plete in th e ir assignm ent of m inerals to definite classes in th e seven system s, th e existing d a ta give a s ta r t in th e choosing of m inerals likely to h av e useful piezo-electric properties.

All available d a ta were gone th ro u g h to o b ta in th e following list of m in ­ erals classified b y cry sta l stru ctu res. As m any of th e non-centric ones as were o b tain ab le in th e U n ite d S tate s were te ste d by th e m eth o d of Geibe a n d Scheibe3 (resonance in a therm ionic oscillator circuit). W henever the au th o ritie s differed on th e classification of a m ineral it w as so exam ined if obtainable.

In th e m ineral list, each m ineral is num bered according to th e nu m b er of th e class in G ro th ’s Physikalische K ristallographie, as follows: (*) in d ic at­

ing classes of possible a c tiv ity :

1 D ana— A System of M ineralogy, Ford— D a n a ’s T extbook of M ineralogy; Groth—

Chemische Kristalographie; L andölt Börnstein— Tabellen; International Critical Tables;

Zeitschrift fur Kristalographie.

2 W. V oigt, K ristal physik.

3 Z e its/ P hysik 33, pg. 761 (1925).

145

(6)

*3 Sphenoidal]

4 D om atic \ M onoclinic system 5 Prism atic J

*6 Bisphenoidal'l

*7 Pyram idal j- Orthorhombic system 8 Bipyram idal j

*9 Bisphenoidal

*10 Pyram idal

*11 Scalenohedral

*12 Trapezohedral 13 Bipyram idal

*14 D itetragonal Pyramidal 15 D itetragonal Bipyramidal

T etragonal system

*16 Pyram idal 17 Rhom bohedral

*18 Trapezohedral

*19 Bipyram idal

*20 D itrigonal pyramidal 21 D itrigonal Scalenohedral

*22 D itrigonal Bipyram idal

*23 Pyram idal ]

*24 Trapezohedral

25 Bipyram idal \

*26 Dihexagonal Pyramidal 1 27 Dihexagonal BipyramidalJ

*28 Tetrahedral-Pentagonal-Dodecahedral 29 Pentagonal Icositetrahedral

30 D yakis-D odecahedral

*31 Hexakis-tetrahedral 32 H exakis Octahedral

Rhom bohedral system

H exagonal system

Cubic system

In a d d itio n to th e above classification, th e following list of m in erals is a n n o ta te d w ith th e following sym bols:

A = active by test I = in active by test R = unavailable or rare

M = mineral occurs only m assive, am orphous or in other unsuitable form

S = crystal alw ays very small

H = mineral is alw ays non-hom ogeneous U = unstable

C = electrically conducting

? = class not absolutely certain

A ctinolite A delite Aegirite A enigm atite Aeschynite A labandite A lam osite Albite

lgondonite ctite

C L A SS IF IE D L IS T OF M IN E R A L S 5 Allanite

5 A llem ontite 5?I Allophane

2 Alm andite 8 A ltaite

*311 Alum inite A lunite Alunogen Am blygonite 5

2 H

5?SI A m esite

5 A m osite M

21 A m pangabeite 8?U I

M A m phibole 5?H I

32 A nalcim e 32

32 A ncylite 8

M A ndalusite 8

21 A ndesine 2

M A ndorite 8

2 Andradite 32

5 A nem ousite 2

(7)

A nglesite 8

A nhydrite 8

A nkerite 17

A nnabergite 5

A nnerodite 8

A nom ite S

A northite 2

A northoclase 2

A nthophyllite 8

A ntigorite 5?H

A ntlerite M

A p atite 251

A phrosiderite ?I

A p h th italite 21

A pophyllite 15

A ragonite 8

Ardennite 8

Ardunite M

A rfvedsonite 5

Argen tite 32

Argentojarosite I

A rgyrodite 32

Arrhenite H

Arseniosiderite 8

Arsonolite 32

A rsenophyrite 8

Ascharite M

A strakanite 5

A strophyllite 8?I

A tacam ite 8

A uerlite 15

A ugite 51

Aurichalcite M

A utom olite 32

A venturine 2

A xinite 2

B abingtonite 2

B addeleyite 5

Baldaufite PR

B arkevikite 5

Barite 8

B arytocalcite 5

B astn äsite I

Baum hauerite 5

B auxite M

Beaverite PS

B echilite M

Beckelite 32PS

B em en tite 8PI

B enitoite *221

Beraunite I

Bertrandite *71

Beryl 27

Beryllonite 8

Berzelianite M R

Berzelite 32PI

B etafite 32

Bindheim ite M

Binnite 32 PI

B iotite 5

Bischofite 5

B ism ite 21PI

B ism uthinite 8

B ism utite M

B löd ite 5

Blom strandine 8PMI

B oleite 15 PI

B oracite *7A

Borax 5

Borickite M

Bornite *111

B oulangerite 8

Bournonite 8

Braunite 15

B reithauptite *201

B ritholite 27PS

B rochantite 8

Brom yrite 32

B rookite 8

B rucite 21

Brushite 5

Bunsenite 32

B ytow n ite 2

Cabrerite 5

C acoxnite M

Calam ine *7A

C alaverite 5

Calciothorite M

Calcite 21

Caledonite 8

Calomel 15

Cam pylite 25

Cancrinite 27

Canfieldite 32

Cannizzarite PI

Carnallite 8

Carnotite I

Carpholite 5

Caryocerite 21

Cassiterite 15

Castorite 5

Casw ellite I

C atapleite 5

C elestite 8

Celsian 5

Cenosite 8PI

Cerargyrite 32

Cerite 8

Cerrusite 8

C ervantite 8?

C habazite 21 PI

C halcanthite 2

C halcedony 8PM

Chalcocite 8

Chalcolam prite 32

C halcophyllite 21 PI

Chalcopyrite *11C

C halcosiderite 2

C halcostibite 8

Cham osite M

C hiastolite 8

Childrenite 8PI

Chillagite 10?

C hloanthite 30

C hlorastrolite H

Chlorite 5

Chloritoid 5

C hlorm anganokalite 21

Chloropal M

C hloraphoenicite I

Chlorospinel 32

Chondrodite 5

Chrom ite 32

Chrysoberyll 8

Chrysolite 8

Cinnabar *181

C laudetite 5

C lausthalite M

C leveite 32

Clinochlor 5

C linoclasite 5

Clinohedrite *4A

C linohum ite 5

C linozoisite 5

C obaltite *28C

C ohenite M

C olem anite 5

Collinsite I

Collophanite M

Coloradoite M

Colum bite 8

C onnellite 25

C ookeite M

Cordylite 21

C ornetite PI

Corundum 21

Corynite 281

C otunnite 8

C ovellite *18?I

C restm oreite M

Cristobalite M

Crocidolite M

Crocoite 5

C ronstedtite *16A

Crookesite M

Cryolite 5

C ryolithionite 32

Cuprite 32

Cuproscheelite I

C yanite 2

Cyrtolite I

D ahllite M

D anburite 8

D atolite 5

D aw sonite M

D echenite 8

D elessite PSI

D ellafosite I

Delorenzite 8

D elvauxite M

D em antoid 32

D eschloizite 8

Desm ine 5

(8)

D ew eylite M

D iam ond 31 ?I

D iaphorite 8

Diasporę 8

D iopside 5

D iop tase 17

D ixenite ?SI

D olem ite 17

D om eykite 8

D ouglasite 5

D ufrenite 8

D ufreneysite 5

D um ortierite 8

D y sa n a ly te 32

D yscrasite 8

E dingtonite *6A

Eleonorite ?R

Ellsw orthite M R

Elpidite 8

E m bolitę 32

Em erald 27

E m m onsite ?SI

Em plectite 8

Enargite 8

E n sta tite 8

Eosphorite 8?H I

Epidesm ine 8?SI

Epididym ite 8

Epidote 5

E pistilbite *4?A

E p istolite 5

Epsom ite *6A

Erikite 8

E rythrite 5

Erythrosiderite 8

Euclase 5

Euchroite 8?I

Eucolite 21

Eucairite M

E u d ialyte 21

E udidylite 5

E u ly tite *311

Euxenite 8

Fairfieldite 2

F assaite 5

F aujasite 32

F ayalite 8

Ferberite 5

Fergusonite *101

Ferrierite I

F lorencite 21

Fluocerite 27

Fluorite 32

Forsterite 8

Forshagite M

Fouquerite I

Fow lerite 2

Francolite 25

Franklinite 32

Freibergite *31C

F reyalite M

Frieseite 8

Fritzscheite 15

Fuchsite I

Gadolinite 5

G ageite I

G ahnite 32

Galena 32

G anom alite I

Garnet 32

G astaldite 5

G ay-L ussite 5

G edrite 8

G ehlenite 15

G erm antite 32

Gersdorffite 30

G eyserite M

G ilsonite M

G ism ondite 5

Glaserite 21

G lauberite 5

G laucodot 8

G lauconite M

G laucophane 5

Gm elinite 17

G oethite 8

Goslarite *61

Graphite 21

Greenockite *20IS

Griffithite M

Grossularite 32

G uanajuatite 8?

G um m ite M

G ym nite M

G ypsum 5

H ackm anite I

H aidingerite ?S

H alite 32

H alloysite M

H am bergite 8

H ancockite 5?S

H anksite 27

H ardystonite M

H arm otone 5

H atch ettolite 32?I

H auerite *281

H ausm annite *111

H au yn ite *311

H edenbergite 5

H edyphane M

H ein tzite 5

H ellandite 5

H eloite *28?R

H elv ite *311

H em atite 21

H ercynite 32

Herderite 8

Herrengrundite 5

H essite 32

H etaerolite M

H eu lan d ite 5

H ielm ite 8?I

H iera tite 32

H illebrandite M

H iortdah lite 2

H isin gerite M

H od gk inson ite 5?I

H oeferite M

H ok u tolite H

H olm q u istite 5?H I

H opeite 8

H ow lite M

H uebnerite 5

H um ite 8

H ussakite *13

H u tchin sonite 8

H yalophane 5

H ydroboracite 5

H ydrom agnesite 5

H ydrozincite M

H ypersthene 8

Ilm enite 17

Ilm inerutile 15

Ilsem annite M

llv a ite 8

Inesite 2

Iodem bolite 32 ?I

Iodobrom ite 32

Iodyrite *26?I

Iolite 8

Jadeite 5

Jam esonite 5?SI

Jarosite 21

Jefiersonite 5?I

Jenkinsite M

Jezekite 5?

Johnstrupite 5

Jordanite 5

Joseite M

K ainite 5

K alinite 30

K aolinite 5

K asolite I

K elih au ite 5

K entrolite 8

K erm esite 5?SI

K ieserite 5

K lap roth olite 8

K lebelsbergite ?S

K n op ite 32PI

K ob altm anganerz M

K oen en ite 21

K op p ite 32

K ornerupine 8

K rennerite 8

K roeh n k ite 5

K u n zite 2

(9)

Labradorite 2

L angbanite 17

Langbeinite *28A

Langite 8

Lanthanite 8

Lapis-lazuli H

L aum ontite 5

Laurionite 8

Laurite *28

Lautarite 5

L avenite 5

Law sonite 8

Lazulite 5

Lazurite 5

L eadhillite 5

Lehnerite I

Lehrbachite M

Leonite 5

Lepidolite 5

Lepidom elane H

Leucite *31 ?I

Leucophanite *6A

Leucopboenicite 5?I

Libethenite 8

Lim onite M

Linarite 5

Linnaeite 32?

Licroconite 5?I

Liskeardite M

Lithiophilite 8

Loew eite 15

Loellingite 8

Loparite I

Lorandite 5

Loranskite 8?

Ludlam ite 5?I

Ludw igite M

M agnesite 21

M agn etite 32

M agnetoplum bite I

M alachite 5

M alacon I

M allardite M I

M anganhedenbergite 5?I

M anganite 8

M anganophyllite I

M anganosite 32

M anganotantalite 8?

M arcasite 8

M argarite 5?R I

M argarosanite 2

M argasite 5

M arialite 13

M arignacite 32

M arm olite M

M arshite *311

M artite 32?I

M ascagnite 8

M atlock ite 15?I

M aucherite i5?r

M eion ite 151

M elanite 32

M elanocerite 21

M elanophlogite ?SI

M elanterite 5

M elilite 15

M eliphanite *9?A

M ellite 15

M endozite 30

M enilite M

M erw inite I

M esolite 5

M etacinnabarite *311

M eta Torbernite I

M etavoltin e ?SI

M iargyrite 5

M icrocline 2

M icrolite 32

M icroperthite ?HS

M icrosom m ite ?SI

M iersite *31R

M ilarite 27*

M illerite *201

M im etene 25

M im etite 25, 231

M inium ?S

M irabilite 5

M izzonite 13

M olyb d en ite 27

M olyb d ite 8

M onazite 5

M onticellite 8

M ontm orillonite M

M ontroydit 8

M orensonite 6

M organite 27

M osandrite 5

M ossite 15

M ottram ite M

M uellerite M

M u scovite 5

M uthm annite *7R

N adorite 8?I

N agyagite 8

N atrolite 8

N atron 5

N aum annite 32

N em alite M

N eotan talite 32

N eo to cite M

N ep h elite *231

N ephrite M

N ep tu n ite 5

N esquehonite 8?I

N iccolite *201

N ickolsonite 8

N ick elb lu ete 5

N ickeleisen 32

N iter 8

N ocerite 21PSI

N orthrupite 32

N oselite *311

N ow m eite M

Ochrolite I

Octahedrite 15

Okenite M

O ligoclase 2

Olivenit'e 8

O livine 8

O m phacite M

Onofrite 31

Opal M

Orpim ent 8

Orthoclase 2

Osmiridium 21

O tavite 21

O ttrelite 2?I

Pachnolite 5

Panderm ite 5

Paragonite 5

Parahoepite 2

Paralaurionite 5

Paratakam ite 21?

P aravavxite I

Pargasite 5

Parisite 21

P atronite M

Pearceite 5

P ectolite 5

Penninite 5

P entlandite 32

P ercylite 32?I

Periclase 32

Peristerite 2

Perovskite 8?

P erthite ?H, S

P etalite 5

P etzite 32?

Pharm acolite 5

Pharm acosiderite *311

Phenacite 17

Phillipsite 5

Phlogopite 5

Phosgenite 15

Phosphoferrite M

Phosphophyllite 5

Phosphosiderite I

Phosphuranylite M

Pickeringite M

P icotite 32

Picromerite 5

Piedm ontite 5

Pinakiolite I

Pinguite M

P in ite M

P innoite *101

Pirrsonite *7

P isolite M

Pitchblende 32

Plagionite 5?I

Plattnerite 15

(10)

P leonast Plum bojarosite P olian ite P ollu cite P olyb asite P olycrase P o ly d y m ite P olyh alite P olym ign ite P ow ellite P rehnite Priorité Prism atine Probertite Prochlorite P rou stite Pseudobrookite P seudom alichite P silom elane P sitta cin ite P tilolite P ucherite P um pellyite Pyroargyrite P yrite Pyroaurite Pyrochlore Pyrochroite P yrolusite Pyrom orphite Pyrope P hyrophanite P yrop hyllite Pyropissite Pyrosm allite P yrostilpn ite P yroxene Pyroxm angite P yrrhotite Quartz Q uenselite Q uercyite Q uisqweite R alston ite R am m elsbergite R aspite R ealgar R habdophanite R hodochrosite R hodolite R h od on ite R hom ite R ichterite R ichardite R iebeckite R in k ite R in n eit R ip id olite R isorite R iversideite

32 R om eite 21 R oscoelite 15 R osenbushite

?I R ow landite

5 R uby

8 R um pfite 32? Rutherfordine 5?I R u tile

8

13C Safflorite

*71 Sal-am m oniac 8?I Salite

8 Samarskite

M Sanidine

5?I Sapphirine

*20C Sarcolite 8?S Sartorite M Sassolite M Scheelite M Schefferite

?S Schirmerite 8 Schizolite I Schorlom ite

*201 Schreibersite 30 Schrockingerite 21 Schrotterite 32 Schw artzengergite

*20?I Schw etzite 8?H I Scolecite

25 Scorodite 32? S em seyite

17 Senarm ontite 8 Sepiolite M Serpentine

I Serpiente 5 Shortite 5 Siderite 2 Sillim anite

*20?C Sipylite Skem m atite

*18A Skutterudite I S m altite M Sm ithsonite M Sodalite

Sodaniter 32 Spencerite

8 Spessartite 5 Sphalerite 5 Spinel

M Spodum ene

21 Spurrite I Staffelite 2 S tannite 2 Staurolite I Steenstrupine M Stephanite

5 Sternbergite 5 Stibiconite 21 Stibiotantalite

5 Stibnite 32?I Stichtite

M Stilbite

32?I Stilpnosiderite

?S S tolzite 5 Strengite M Strom eyerite 21 S trontianite M . Struvite

5 Sulfoborite 15 Sulfur

S u lvanite 8 Sussexite

*28 Svanbergite 5 Sych n od ym ite 8 S ylvan ite 5 S y lv ite 5 Sym plesite

*10?I Syndalphite 5?S

9

S yn gan ite

Z

131 T achyaphaltite 5 T achyhydrite

M T alc

2 T an talite 32 T apiolite M T arbu ttite

8 Tasm anite M T eallite

?S Tengerite

*31 Tennantite

*4A Tenorite 8 Tephroite 5?I Tetradym ite

32 Tetrahedrite

M Thalenite

5 Thaum asite 8?S Thenardite

*7A Thermonatrite 21 Thom senolite

8 Thom sonite

*101 Thorianite

H Thorite

30 T hortveitite

*381 Thuringite 21 Tiemannite

*31?I Tiger-eye 21 Tilasite

5 Titanite 32 Titanm agneteise

*31A Topaz

32 Topazolite 5 Torbernite 5?I Tourm aline

M Trechm annite

*111 Trem olite 8 T rid ym ite 21 Trim erite

*7RI T rip h ylite 8 T riplite M Triploidite

*7A T ritom ite 8?I Troegerite

I T roih te

5? Trona

(11)

T roostite 17

Tschefikinite M , H

Tscherm igite 30

T ungstenite M

T u n gstite 8

Turgite I

Turquois 2

T ych ite 32

T yrolite M

T yson ite 27

U lexite M

U llm annite 30

U ralite PHI

U raninite 32

U ranocricite 8?

Uranophone M

Uranopilite M

U ranosphaerite M

Uranospinite 8?

Uranothallite 8

Uranothorite M

Uranotile 2

U tah ite ?S

U van ite 8?S

U varogite 32

V alentinite 8

V anadinite 251

Variscite 8?S

Vauxite I

Verm iculite I

V esuvianite 15

V illiaum ite 32?I

V ivianite 5

Volborthite I

V oltaite 32PI

V onsenite 8?I

Wad M

W agnerite 5

W alpurgite 2

W arwickite I

W avellite I

W ernerite *101

W hew ellite 5

W hitneyite M I

W iikite I

W ilkeite I

W illem ite 17

W ilsonite I

W itherite 8

W ittichenite 8

W oehlerite 5

W olfachite 8

W olframite 5

W ollastonite 5

W ulfenite *10

W urtzite *20A

X an thoconite 21

X an th op h yllite 5 PI

X an thoxenite 5PS

X en otim e 15

Y ttrialite M

Y ttrocerite M

Yttrofluorite 32

Y ttrokrasite 8

Y ttrotan talite 8

Zeratite M

Zaophyllite I

Zeunerite 15

Zincite *19?I

Zinkenite 8

Zinw aldite 5

Zircon 15

Zirkelite 32

Zoisite 8

Zorgite M

Zunyite *31AS

Of th e 830 m inerals listed 70 belong to classes th a t allow piezo -activ ity b u t only 17 are fo u n d to be ac tiv e b y th e Giebe a n d Scheibe te st. (O ur te s t of Io d y rite w as n egative b u t G reenw ood a n d T o m b o u lian4 found it to be activ e; on th e o th e r h an d , we found Scolecite to be ac tiv e w hile th e y re p o rt it inactive.) I t m a y b e t h a t o th e rs of th e rem aining 56 classes h av e such sm all piezo-electric c o n stan ts as to be u n d etectab le. O th ers m a y be in ­ correctly classified as to sym m etry.

Of these ac tiv e m aterials, q u a rtz is th e m ost im p o rta n t. B ecause of its excellent m echanical p ro p ertie s (stab ility , etc.) as well as for its rela tiv e cheapness it seems d estined to rem ain one of th e m ost im p o rta n t piezo m a ­ terials.

T o u rm alin e is also im p o rta n t because of th e high m a g n itu d e of its elastic m oduli in certain directions; how ever, it c a n n o t be o b ta in ed in large pieces of sa tisfac to ry hom ogeneity.

S p halerite is v ery difficult to han d le because of its m a n y cleavage planes, a n d ap p ears to give little prom ise of becom ing p rac tica lly useful. I ts a c tiv ­ ity is q u ite m arked.

H om ogeneous cry stals of calam ine a p p e ar to be v ery rare, so th a t w ork­

able crystals large enough for o rd in ary piezo-electric app licatio n are u n ­ obtain ab le. M o st of th e m a te ria l occurs m assive.

4 On Piezo E lectricity— Greenwood and Tom boulian— Zeits. f. K rist. Jan. 1932.

(12)

E p so m ite gives a m a rk e d response b u t th e cry sta ls are gen erally sm all and t ey do n o t w ea th er well. T h ere is som e p o ssibility, how ever, th a t they can be m a d e artificially.

B o rac ite gives a m a rk e d response, b u t b o rac ite a lte rs slowly. I ts imper­

m anence m a y b a r it for som e uses.

S tib io ta n ta lite occurs only in th in scales, a n d th e necessary cuts m ust be m ade in th e m o st w asteful w ay. T w inning is p re v a le n t a n d the composi­

tio n v aries w idely.

Scolecite occurs only as sm all cry sta ls a few m illim eters in diam eter and a ce n tim ete r o r so in length, uniform ly tw inned.

Io d y rite h a s been found to be ac tiv e b y o th e r investigators. I t is electrically conductive, v ery soft a n d n o t v ery com m on.

S tru v ite is soft, u n sta b le , a n d occurs only in sm all crystals.

Z u n y ite occurs only in m in u te crystals.

L an g b e in ite slowly changes its c ry sta l stru c tu re . I t m ay be m ade a r ­ tificially so m a y b e of som e use if it can b e k e p t from alteration.

L eu c o p h an ite a n d M e lip h a n ite are re la te d m inerals. N either seem s to occur in good (i.e., hom ogeneous a n d untw in n ed ) crystals of usable size.

W u rtz ite does n o t a p p e a r v ery ac tiv e b u t good crystals w ere n o t obtain ab le.

T ie m an n ite cry stals were also u n o b tain ab le, b u t fragm ents of m assiv e tie m a n n ite responded. C ry sta ls m ig h t respond more energetically if th e y w ere o b ta in ab le, b u t m inerals t h a t are too difficult to g et w ould n o t b e of p ra c tic a l use.

E p istilb ite occurs only in sm all specim ens, uniform ly tw inned.

T h e m ineral clinohedrite is stro n g ly active b u t crystals are v e ry ra re . C ro n ste d tite a n d E d in g to n ite are v ery weakly active. C ry sta ls of th e se are v ery rare.

(13)

(D ynam ics of H igh Speed Particles)

By L. A. MacColl

I . In t r o d u c t i o n

In w ork relatin g to th e m otion of electrons a n d o th e r p article s it is fairly com m on to assum e th a t th e p article s obey th e laws of N ew to n ian dynam ics.

T h a t is, briefly, it is assum ed t h a t th e rec tan g u la r coordinates (x, y, z) of th e p article u n d er consideration satisfy th e differential equ atio n s

m x = X , m y = Y , m'z — Z ,

w here m is th e m ass of th e p article (assum ed c o n sta n t), X , Y , a n d Z are th e com ponents of th e applied force, an d th e d o ts in dicate d ifferentiation w ith respect to th e tim e t.

H ow ever, it is well recognized now t h a t th e above equ atio n s are n o t stric tly correct, a n d t h a t th e y m erely rep resen t an appro x im atio n w hich is ad e q u ate w hen th e speed of th e p a rtic le is sufficiently sm all com pared w ith the speed of light. T h e system of dynam ics based upon th e correct eq u a­

tio n s1 (which will be exhibited presently) is com m only called relativistic dynamics, n o t because an y know ledge of th e th e o ry of re la tiv ity is essential to its u n d ersta n d in g a n d use2, b u t b ecause it is in ag reem ent w ith th e th e o ry of re la tiv ity (which N ew tonian dynam ics is n o t), because it w as first de­

veloped in connection w ith w ork on th e th e o ry of rela tiv ity , a n d because even y e t v irtu a lly all of th e expositions of th e su b ject are to be found in books a n d p ap e rs dealing p rim a rily w ith th e th e o ry of rela tiv ity .

J u s t w here th e dividing line should be set betw een cases in w hich N ew ­ to n ia n dynam ics is an ad e q u a te ap p ro x im atio n a n d cases in w hich it is necessary to use rela tiv istic dynam ics is, of course, a ra th e r vague question which ca n n o t be answ ered sim ply a n d definitely. W e m a y note, how ever,

1 I t is not the purpose of this article to discuss questions of fundam ental physics, or the physical valid ity of any particular equations. For purposes of discussion, we assum e outright that relativistic dynam ics is at least more nearly correct than is N ew tonian dynam ics.

2 T he theory of relativity can be described briefly as a theory of the relations betw een the descriptions of phenom ena in term s of different system s of reference. W e shall not be concerned w ith this theory, because we shall be em ploying the sam e reference system throughout m ost of our discussion. In the final section of the paper we shall consider purely geom etrical transformations of the coordinate system . These transformations, how ever, involve nothing th at is really characteristic of the theory of relativity in the usual sense.

153

(14)

th a t according to rela tiv istic d ynam ics th e m ass of a five th o u sa n d volt electron is a b o u t one p e r cen t g re a te r th a n th e m ass of a n electron a t rest.

F ro m th is we can infer th a t, while N ew to n ia n dyn am ics m a y be adequate for m a n y p urposes in o u r stu d ies of electron m otion, we do n o t have any g re a t a m o u n t of m argin, a n d t h a t it will b e necessary to use relativistic d ynam ics w henever we wish to o b ta in really good resu lts concerning the m o tio n of even m o d e ra tely high speed electrons.

T h is article is p u rely expository. I ts p u rp o se is to set forth the funda­

m e n ta l eq u a tio n s a n d theorem s of re la tiv istic p a rtic le dynam ics in a clear a n d concise form , u n encum bered w ith a n y m a te ria l rela tin g to the theory of re la tiv ity pro p er. A lm ost all of th e m a te ria l is to be regarded as already know n, b u t a p p a re n tly it is only to be fo und in an inconvenient and scattered form . T h e incom plete b ib lio g ra p h y a t th e end of th e p a p e r gives references to some of th e m ore accessible sources of th is a n d o th e r related m aterial.

I I . Th e El e m e n t a r y Di f f e r e n t i a l Eq u a t i o n s o f Mo t io n

O ur discussion m ig h t be beg u n in a n y one of a num ber of ways, a n d no d o u b t th e different app ro ach es w ould appeal unequally to different read ers.

C onsidering th e n a tu re a n d p urposes of th is article, the a u th o r h as deem ed it b e s t to beg in b y w ritin g dow n a t once th e differential equations of m o tio n of a p a rtic le (according to re la tiv istic dynam ics) in th e ir m ost ele m e n ta ry form . T h en , for th e p urposes of th is discussion, these eq u a tio n s will h a v e th e s ta tu s of a fu n d a m e n ta l assum ption. I t need h ard ly be said t h a t th e eq u a tio n s a re n o t w ritte n dow n a rb itra rily . On th e co n trary , th e y re p re se n t th e consensus of m odern opinion as to th e laws u nder w hich p a rtic le s re a lly do m o v e. 3 T h e grounds, experim ental and theoretical, for this opin ion are se t fo rth in v ario u s of th e w orks cited in th e bibliography.

F o r th e tim e being, u n til th e c o n tra ry is s ta te d in th e final sectio n , we em ploy a fixed re c ta n g u la r coordinate system . In s te a d of d e n o tin g th e co ordinates of th e p article b y x, y, a n d z, as we h av e done p ro v isio n a lly in th e In tro d u c tio n , we shall denote them b y Xi, x2, a n d x 3. T h e n x 1; x 2, a n d x3 denote th e com ponents of th e velocity of th e particle. ’ T h e co m p o n ents of th e force ac tin g on th e p article will be d enoted b y X h X 2, a n d X s. F o r th e tim e being we need only n o te th a t th e force m a y d ep e n d u p o n th e coordinates, th e velocity, a n d th e tim e; la te r on we shall in tro d u c e som e m ore explicit assum ptions a b o u t th e force. T h e sy m b o l c w ill b e u se d to denote th e speed of lig h t in vacuo.

3 T he validity of these law s is not unrestricted. I t is lim ited on th e one han d b y the quantum phenomena which become appreciable on the atom ic scale, and on the other hand b y certain phenomena revealed b y the general theory of r ela tiv ity w h ich becom e appreciable on the cosm ic scale.

(15)

W e assum e t h a t th e p a rtic le m oves, u n d er th e influence of th e force (X h X 2, X 3), so th a t its coordinates satisfy th e system of differential eq u atio n s

d m3 x n /1

= X n, ( 1 1 = 1, 2, 3), (1) dt \ — (v2/ c2)

w here m3 is a p o sitiv e c o n s ta n t ch a racteristic of th e p article , an d v2 is an ab b re v iatio n for th e expression x/ 1 + x22 + x 32.* T h e positive v alue of th e square root is th e significant one; a n d w herever square ro o ts a p p e a r in th e subsequent w ork it will be understood, unless th e c o n tra ry is sta te d , th a t th e p ositive values are intended.

A few rem arks m ay help b ring o u t th e significance of th e foregoing assu m p ­ tion an d its relatio n s to th e corresponding fu n d a m e n ta l assu m p tio n of N ew tonian dynam ics.

W e call th e c o n sta n t mo th e rest-mass of th e p article , a n d we assum e (in accordance w ith th e ex perim ental evidence) t h a t m0 is id en tical w ith th e m ass of th e p article w hich is used in N ew to n ian dynam ics. In re la tiv istic dynam ics th e q u a n tity m defined b y th e eq u atio n

m =

a / 1 — (v2/ c 2)

is called th e m ass of th e p article. W e no te th a t as v /c approaches zero th e m ass approaches th e rest-m ass (whence th e ap p ro p riaten e ss of th e la tte r term ), an d th a t as v/c approaches u n ity th e m ass increases w ith o u t lim it.

C onsider th e v ec to r h av in g th e com ponents pi, p 2, p3 defined b y th e form ulae

* - m o ± n (2)

V I - (z>2/c 2)

W e call th is v ecto r th e m om entum of th e p article . T h e m o m en tu m is equal to th e velocity of th e p artic le m ultip lied b y th e m ass.

N ow eq u a tio n s (1) assert th a t th e tim e-ra te of change of th e m o m en tu m of th e p a rtic le is equal to th e applied force.

W e h av e alread y observed th a t as v/c approaches zero th e rela tiv istic m ass of a p article approaches th e N ew tonian m ass. W e now n o te th a t as v /c approaches zero th e com ponents of th e rela tiv istic m o m en tu m ap proach th e values

pn - m o X n , (2')

* W e m ight merely say that v is the speed of the particle. H ow ever, for our im m ediate purposes, it is im portant n ot to lose sight of the fact that v is a certain particular function of the com ponents of velocity.

Cytaty

Powiązane dokumenty

sulting from the random packing, there are cavities which are due to bridging action of the particles themselves. ■ This bridging is not due to irregular or

4— The powder pattern produced by colloidal iron oxide on the surface of a demagnetized silicon-iron crystal, showing the presence of inhomogeneous mag­.. netic

As stated earlier a given impedance function can be obtained from a large num ber of networks b u t when th e impedance is to be sim ulated for a limited frequency range, such

cycles.. 3— Sections betw een pinholes. Section m odulus of crossarm sections containing knots of th e sizes shown on the base line and located in the positions

In the usual case of positive characteristic distortion, the maximum S B displacement will occur when the s ta rt transition is preceded by a long marking

In the field of telephone receivers 6 an analysis by means of impressed square waves has been found useful as a measure of transient response. In the

Current in the sheath of buried cables, due to direct lightning strokes, strokes to ground near the cables or discharges between clouds, gives rise to voltages

3.5.8—Lim iting values of amplification factors for linear damped cushioning with no rebound... 3.6.2—Amplification factors for undam ped cushioning w ith cubic