• Nie Znaleziono Wyników

Synthesis of 1,2,4-triazolin-5-one derivatives - Biblioteka UMCS

N/A
N/A
Protected

Academic year: 2021

Share "Synthesis of 1,2,4-triazolin-5-one derivatives - Biblioteka UMCS"

Copied!
20
0
0

Pełen tekst

(1)

LUBLIN - POLONIA

VOL. LIV/LV, 25 SECTIO AA 1999/2000

Synthesis of l,2,4-triazolin-5-one derivatives

M. Dobosz and M. Pitucha

Zakład Chemii Organicznej, Wydział Farmacji, Akademia Medyczna, ul. Staszica 6, 20-081 Lublin, Poland

This paper is a review of the methods used for preparation of 1,2,4- triazolin-5-one derivatives. The initial products were semicarbazide and semicarbazone derivatives, amidrazones and their salts, aminoguanidine salts.

l,2,4-triazolin-5-one derivatives have the general formula:

N—R I C=O

R

were: R, R, R can be hydrogen, alkyl, aryl, amine group.

In the case when R = H or R = H, in this type of compounds tautomerism is likely to occur as can be see in the formulae:

N II C—OH

r"

As reported in the literature these compounds are applied as herbicides [1-26] or fungicides [27-33].

This paper is a review of the methods used for preparation of 1,2,4-triazolin-5-one derivatives.

l,2,4-Triazolin-5-one was obtained using semicarbazide as an initial product.

One of the methods consists in cyclization of semicarbazide with formic acid in

(2)

the presence of concentrated H2SO4 which was carried out at 95-100 °C with the yield of about 90 % [34-37]:

HCOOH

,h2nnhcnh2---• о

II

While studying chemical properties of s-triazine, Grundmann [38] carried out the reaction with semicarbazide according to the scheme:

-3NH,

This reaction was characterized by a small yield and same difficulties with the synthesis of s-triazine. As follows from the literature reports s-triazine is formed during the thermal decomposition of triformylaminomethane [39]:

2 HC( NHCHO)3 ---

f

'll + 2 CO + 3 HCONH2 + H2O.

N^N

This method was shortened owing nomethane at the temperature of its semicarbazide without separation of 90 % [40].

to the direct reaction of triformylami- decomposition (about 180-190 C) with s-triazine. The reaction yield was about

NH—NH2 HC(NHCHO)3 + O=CZ

'"''NH2

-3NH3 HC

NH

c=o

H

Derivatives of semicarbazide, semicarbazones, amidrazones and their salts were the initial products used for preparation of alkyl or aryl derivatives of

1,2,4-triazolin-5-one.

1-Substituted -l,2,4-triazolin-5-one was obtained using the above mentioned methods.

Cyclization of 1-phenylsemicarbazide with formic acid led to 1-phenyl-1,2,4- -triazolin-5-one proceeding at 120-130°C with the yield of 80 % [34]:

(3)

HCOOH .C6H5-NHNHCNH2 --- ► HC

N—C6H5 N-C=°

I H

n-c6h5

О

A better yield (90 %) was obtained heating 1-phenylsemicarbazide with formic acid for 6 hours in the presence of concentrated H2SO4 at 95-100°C [41]. The same compound with the yield of about 18 % was obtained in the way similar to the synthesis of l,2,4-triazolin-5-one in the cyclization reaction of

1-phenylsemicarbazide with s-triazine [38]:

// ^N-C6H5

HC I 7—-

\t__c=o

// ^n-c6h5

HC

\^C-OH.

A better yield (93 %) of this compound was obtained by means of a shortened method of direct cyclization of 1-phenylsemicarbazide with triformylami­

nomethane which was a product used for the synthesis of s-triazine.

The reaction proceeded at 180-190°C [40]:

HC(NHCHO)3 +

Semicarbazide was also used as an initial product to prepare 3-substituted- -l,2,4-triazolin-5-one. A good yield was obtained in the reaction with imidoes- ter hydrochlorides and nitriles [42]:

NH— NH2

o=c

nh2

HCI-HN

C—CgHs HsCsO^

-NH4CI -C2H5OH

H

// N.__

HO—CZ II

\^c-c6H5.

I H

(4)

NH—NH2. HCl N.

/ -NH4CI / // N

•O=C\ + c6H5CN --- ► o=c II но-o' Il

NH2 \^-С—C6H5 CeH5.

M H

The same derivatives can be obtained in the reaction of thiobenzamide with ethyl hydrazine formate but with a smaller yield [43]:

s h2n-nh

.C6H5—+ \=O

\h2 H5C2O

3-Substituted-l,2,4-triazolin-5-one can be obtained using semicarbazone derivatives as the initial products. A good yield was provided by the reaction of semicarbazones oxidation with copper perchlorate in acetonitrile at 40°C [44].

Cu(CIO4)2 CH3CI\T

40°C

The reaction of semicarbazones oxidation with potassium iodide in the presence of Na2CO3 had a similar course [45].

3-Substituted-l,2,4-triazolin-5-one can be obtained with the yield of about 90 % due to the transformation of oxadiazoles carried out at the ethanol boiling point in the presence of KOH [46]:

R-C

C-NH2 KOH EtOH

// N R-C К -

V-C-OEt I

H

4-Phenyl-l,2,4-triazolin-5-one was obtained in the cyclization reaction of 4- phenylsemicarbazide with ethyl formate in the presence of sodium methylate [47]:

(5)

.O=C

NH—NH2

HCOOC2H5

HN CH nh-c6h5 CH3°Na

/N\

N CH

o=c—n-c6h5 ho-c— -c6h5- l,3-Disubstituted-l,2,4-triazolin-5-one was obtained with 70 % yield heating ethoxycarbonylimidoesters with hydrazine derivatives in toluene with the addi­

tion of Et3N at 100 °C for three hours [48,49]:

.R-C

N-COOC2H5

+ R'NHNH2 OC2H5

R-C

N-COOC2H5

(CąHsląN OH' NHNHR'

.R-C

• ^N-R'

R-C

' ^N-R'

N-C=°

I H

A similar yield can be obtained for l,3-disubstituted-l,2,4-triazolin-5-one heat­

ing suitable 3-methylthio derivatives of 1,2,4-triazole in the basic medium [50]:

// ^N-R'

.R-C ---OH' „ ► R-C'

' ^N-R‘

R-C

' ^N-R'N-^

C-SCH3 N-C=° C-OH.

H

The reaction of acetylurethane with phenylhydrazine gave 2-phenyl- -3-methyl-1,2,4-triazolin-5-one [51-53]:

о

.СИзССМИ^ + c6h5nhnh2

'''OC2H5

C6H5 'N^NH CH3— c

^c=o.

C6H5 n-n

•снз—%

N

(6)

2,3-Disubstituted-l,2,4-triazolin-5-one was obtained also by means of cycliza­

tion of 4-acyl derivatives of semicarbazide with 10 % NaOH heating at the boiling point for one hour. The reaction yield was 85 % [54,55]:

,R-NHNH2 + R—C-N=C=O О

R' I NH

I

c=o

yNH—NH—C=O.

R I R'—C—NH

II О

l,4-Disubstitued-l,2,4-triazolin-5-one can be 1-formylsemicarbazide in the basic medium [56]:

obtained by cyclization of

О

^C—NHN-C-NHR' -2Ü-

•H ROI II

Chemical literature reports several methods of the synthesis of 3,4-disubstituted-l,2,4-triazolin-5-one. One of them is oxidation of semicarba­

zone derivatives. As oxidizers there were used metal salts e.g. FeCl3, K2Fe(CN)6 [57,58]:

RNH R'CH

NH C=O

FeCI3

--- ► R'—— С I

1hatm. —°

125-130°C i R

The yield of this method depends on the oxidizer used. Better yields were obtained using copper perchlorate in acetonitrile at 40 °C [44]. 3,4-Disubstituted -l,2,4-triazolin-5-one was obtained also by heating ethyl esters of ethoxycar- bony Ihydrazones with amines at 130 °C with the yield of about 20-70 % [59- 61]:

(7)

N—NH-COOC2H5 n—C

oc2h5

H2N-R'

-C2H5OH

N—NH-COOC2H5

//

NH—R'

POCI3 -C2H5OH

Cyclization of 1-acetylsemicarbazide derivatives in the basic medium is a frequently applied method in the synthesis of 3,4-disubstituted-l,2,4-triazolin- -5-one [62-71]:

NH—NH—C=O.

R—C —NHNH2 + R'—n=C=O

О

R— C

W о

C-OH

2 % or 10 % NaOH were used for the cyclization reaction. Good yields for semicarbazide derivatives of aliphatic acids are obtained by cyclization with 2 % NaOH solution carried out by heating at the boiling point for 1-5-hours.

However, for semicarbazide derivatives of aromatic acids it is better to use 10 % NaOH solution and many-hour heating at the boiling point. New 3,4-disubstituted derivatives of l,2,4-triazolin-5-one obtained in the reactions are separated by neutralization with diluted hydrochloric or acetic acid. The reaction yield is 50-80 %.

While studying the properties of amidrazone salts, Bany T. worked out the reactions of cyclization with isocyanates which were carried out in the alloy at 100-110 °C for 12 hours. As a result there were formed l,2,4-triazolin-5-one derivatives with the yield 75-85 % [72].

The reaction of N'-unsubstituted amidrazone salts with isocyanates gave 3,4-disubstituted-1,2,4-triazolin-5-one:

(8)

N—NH2 //

.R—C +

"xNH2- HCl

NCO I R'

N-NH-C— NHR' / 11

O -NH4CI

R-C.

NH2 ■ HCl

R'

The cyclization reaction of N3-substituted amidrazones with ethyl chlorocar­

bonate [73], phosgene [74] and urea [75] proceeded in a similar way. The yield of these reactions was 70-80 %:

N—NH2

// CICOOC2H5 .R— C\ ---

NHR'

N-NHC—OC2H5 //

R—C NHR'

C-OH I

R' N-NH2

//

R— C

NH-R'

-HCI

N-NHCOCI.

//

R—C NHR'

N

II

C-OH.

R'

(9)

NH—R‘

NH2—c—nh2

О

l,3,4-Trisubstituted-l,2,4-triazolin-5-one was obtained using the method prepared by Bany T. in the reaction of hydrochlorides of N1-substituted amidra- zones with isocyanates while heating in the alloy at 100-110 °C for 12 hours with the yield of about 85 % [72].

N—NH—R'

.R-C +

^NH2- HCI

NCO I R"

Similarly, l,3,4-trisubstituted-l,2,4-triazolin-5-one can be obtained in the reac­

tion of ester hydrazones with isocyanates carried out at the chlorobenzene boil­

ing point with the yield of about 70 % [76]:

N-NHPh

.R-с/ + R"N=C=O OR'

N-N-Ph cZ/

OR' ,NH R"

Amine derivatives of l,2,4-triazolin-5-one are a large group of compounds of similar properties. There are various methods used to prepare 4-amino-1,2,4- -triazolin-5-one derivatives.One of them is heating oxadiazoles with hydrazine hydrate at 50-150 °C in polar organic solvents in the presence of a base. The yield is about 80 % [77]:

\ IO^C=O

nh2nh2 h2o 50-150°C

N // N

R -\

\_^C-OH.

II

nh2

A similar yield can be obtained for 4-amino-1,2,4-triazolin-5-one derivatives in the condensation reaction of carbonic acid dihydrazide with acetic acid [78], carboxylic acid nitriles [79] and carboxylic acid esters [80,81]:

(10)

O

h2n-nhx .2h2O

.ch

c z + c=o --- « OH

h2n-nh/

// N ^NH H 3C— C I

y-c=o

nh2

H 3c-C

//

II

\_-C-OH.

nh

I

2

The condensation reaction of ester ethoxycarbonylhydrazones with hydra­

zine in propanol gives 4-amino-l,2,4-triazolin-5-one dervatives [82]:

,N—NHCOOC2H5 + NH2NH2 OC2H5

^N—NHCOOC2H5 .R C

nhnh2 ch3ch2ch2oh.

nh2

R -< // II

V C-OH.

I

nh2

4-Aminosubstituted-l,2,4-triazolin-5-one was obtained with a good yield using hydrazine derivatives in the reaction [83,84].

The same derivatives were obtained in the reaction of ester hydrazones with carboxylic acid chlorides and then with hydrazine derivatives [85]:

N-NHPh

.R-C R'COX R-C

COR' ' ^N-PhI

OC2H5

, + R"NHNH2 OC2H5

.R-C

COR' hk I ' ^N-Ph

NHNH-R'

R-C N—Ph.

C=O

Aminoguanidine salts were the products used to obtain 3-amino-1,2,4- -triazolin-5-one derivatives. In the reaction of aminoguanidine salts (hydrochlo­

ride or sulfate) with isocyanate there were obtained the linear products of l-amidine-4-substituted semicarbazide which were isolated in a crystalline form as p-toluenesulfonate. Cyclization of these compounds in the basic medium (3N NaOH) gave 3-amino-4-substituted-l,2,4-triazolin-5-one with the yield 51-60% [86].

(11)

,H2N—C

NH-NH-C-NHR NaOH // ^NH /

H2N—C I , h2n-c

'n-c=0 \"сн

I • I

R R

The structure of aminoguanidine salts is similar to that of amidrazone which can cyclize with isocyanate giving l,2,4-triazolin-5-one derivatives by heating sub­

strates at 110-120 °C for 12 hours [72].

In the reaction of aminoguanidine salts with isocyanate both hydrazine and amidine groups reacted resulting in urea derivatives with 1,2,4-triazole system of the yield 82-96 % [87]. Hydrolysis of these compounds with 20 % NaOH solution for 5 hours gave 3-amino-4-substituted-l,2,4-triazolin-5-one with the yield of 85 %:

NH-NH2

,H2N-C +

4 NH ■ HCI

NCO

2r

// ^NH

♦ R—NH—C—NH—C I

11 \ •

О -c=o

// ^N H2N—c II

Vc-OH.

I R

3-Aminosubstituted-l,2,4-triazolin-5-one was obtained using this method.

Hydroiodide of 3-thiocarbazic acid methyl ester was the initial product [88]. In the reaction of this compound with the first order amines there were formed hydroiodide of 2-amino-l -substituted guanidine which, on heating with isocyanates at 75-100 °C for 12-15 hours, gave 3-aminosubstituted-1,2,4- -triazolin-5-one derivatives with the yield of 82-87 % [89-92]:

NH-NH2

.НзС-S-cf + R—nh2

XNH-HI

//N"NH2 R' R_ NH-C + I

C3SH NH2-HI

//^

R-NH-C

C-OH I

R' N

II

(12)

Based on the 'H NMR and IR spectra it was stated that the compounds obtained in the reaction of aminoguanidine salts and its derivatives with isocyanates occurred in one of the possible tautomeric forms A2-l,2,4-triazolin-5-one.

REFERENCES

[1] Findeisen K.,Kuhnt D.,Mueller K.H., Koenig K.L., Santel H.J.,Schmidt R„ Ger.Offen. DE 4, 116, 115 (1992), Chem. Abstr. 118 191742f(1993).

[2] Lydon J., Pestic. Bioch. Physl. 31, 74 (1988).

[3] Matringe M., Biochem. J. 260, 231 (1989).

[4] Martinge M., Febs. Lett. 245, 35 (1989).

[5] Nandihalli U.B., J. Agr. Food. Chem. 40, 1993 (1992).

[6] Nandihalli U.B., Pestic. Biochem. Phys. 43, 193 (1992).

[7] Mueller K.H., Koenig K., Kluth J., Luerssen K., Santel H.J., Schmidt R.R., Eur. Pat. Appl. EP 507, 171 (1992), Chem. Abstr. 118, 38929c (1993).

[8] Theodoridis G„ ACS Sym. Ser. 504, 122 (1992).

[9] Theodoridis G., ACS Sym. Ser. 504, 134 (1992).

[10] Witkowski D.A., Plant. Physiol. 87, 632 (1988).

[11] Witkowski D.A., Plant. Physiol. 90, 1239(1989).

[12] Kuhnt D., Moeller K.H.,Findeisen K.K,Luerssen K.,Santel H.J.,Schmidt R.R., Eur. Pat. Appl. EP 503, 437 (1992), Chem. Abstr. 118 21082 v (1993).

[13] Findeisen K.K., Mueller K.H., Koenig K., Louerssen K.,Santel H.J., Schmidt R.R., Eur. Pat. Appl. EP 503, 437 (1992), Chem. Abstr.

118, 6980 w (1993).

[14] Linker K.H., Findeisen K., Haas W., Schallner O., Dollinger M., Santel H.J., Ger. Offen DE 4, 303, 676 (1994), Chem. Abstr. 121, 230777e (1994).

[15] Schallner O., Haas W., Linker K.H., Findwisen K., Koenig K., Marhold A., Santel H.J.,Schmidt R.R., Ger. Offen. DE 4, 239, 296 (1994), Chem. Abstr. 121, 108808 a (1994).

[16] Findeisen K., Linker K.H., Schallner O.,Mueller K.H., Koenig K., Santel H.J., Schmidt R.R., Gen. Offen. DE 4, 236, 220 (1994), Chem.Abstr. 121, 83346 h (1994).

(13)

[17] Schallner O., Haas W., Linker K.H., Findeisen K., Koenig K., Marhold A., Santel H.J., Schmidt R.R., U.S. US 5, 378, 681 (1995), Chem. Abstr. 123, 83370 c (1995).

[18] binding M., Findeisen K., Mueller K.H., Santel H.J., Schmidt R.R., Strang H., Feucht D., König К., Lurssen К., U.S. US 5, 625, 073 (1994), Chem. Abstr. 126, 17680 к (1997).

[19] Merakami M., Nakagawa H., Endo Y., Yanase D., Akasaka T., Jpn.

Kokai Tokkyo Koho JP 10 45, 754 (1998), Chem. Abstr. 128 167428 u (1998).

[20] Findeisen K., Kuhnt D., Mueller K.H., Haug M., Koenig K., Luerssen K., Santel H.J., Schmidt R.R., Eur. Pat. Appl. EP 513, 621 (1992), Chem. Abstr. 118, 101965 d (1993).

[21] Findeisen K.K., Kuhnt D., Mueller K.H., Haug M„ Koenig K„

Luerssen K., Santel H.K., Schmidt R.R., Eur. Pat. Appl. EP 513, 621 (1992), Chem. Abstr. 118, 101965 d (1993).

[22] Kuhnt D., Findeisen K., Haug M., Kluth J., Mueller K.H., Koenig K., Himmler T., Beck G„ Santel H.J., Ger. Offen. DE 4, 103, 700 (1992), Chem. Abstr. 117, 234021 (1992).

[23] Findeisen K., Lindig M., Santel H.J., Luerssen K., Schmidt R.R., Ger. Offen. DE 3, 920, 414 (1991), Chem. Abstr. 115, 49692 j (1991).

[24] Mueller K.H., Babczinski P., Santel H.J., Schmidt R.R., Eur. Pat.

Appl. EP 425, 948 (1991), Chem. Abstr. 115, 14509 w (1991).

[25] Findeisen K., Santel H.J., Luerssen K., Schmidt R.R., Gen. Offen.

DE 3, 939, 952 (1991), Chem. Abstr. 115, 114514 u (1991).

[26] Linding M., Mueller K.H., Freucht D., Schmidt R.R., Ger. Offen.

DE3, 833, 801 (1990), Chem. Abstr. 113, 19467 f (1990).

[27] Brown R.J., Frasier D.A., Hapersett C., Castro P.P., Sternberg C.G., PCT Int. Appl. WO 96 26, 191 (1996), Chem. Abstr. 125, 24833 a (1996).

[28] Ohsumi T., Matsunaga R., PCT Int. Appl. WO 97 05, 120 (1997), Chem. Abstr. 126, 17680(1997).

[29] Ohsumi T., Hirose T., Ujihara K., Matsunaga R., PCT Int. Appl. WO 96 38, 425 (1996), Chem. Abstr. 126, 104094 v (1997).

[30] Hirose T., Osumi T., Matsunaga R., Jpn Kokai Tokkyo Koho JP 09, 104, 676 (1997), Chem. Abstr. 126, 17679 s (1997).

[31] Rentzea C.Z.B., Pommer E.H., Mappes C.J., Gen. Offen. DE 3, 015, 090 (1981), Chem. Abstr. 96, 20108 b (1982).

[32] Mueller K.H., Kirsten R., Gesing E.R.F., Kluth J., Findeisen K., Jansen J.R., Koenig K., Riebel H.J., Bielefeldt D. et al., Ger. Offen.

DE 19, 508, 119 (1996), Chem. Abstr. 125 247829 d (1996).

[33] Mueller K.H., Koenig K., Findeisen K., Santel H.J., Luerssen K., Schmidt R.R., Dutzmann S., U.S.US 5, 516, 749 (1996), Chem. Abstr.

123 114640 p (1995).

(14)

[34] Widman O., Chem. Ber. 26, 2612 (1893).

[35] Glanowska E., Ziolko M., Matys Z., Organica (1996) (Publ. 1997 17- 22 Pol. Instytut Przemysłu Chemicznego), Chem. Abstr. 127 248063 c (1997).

[36] Stunder A., Gen. Offen. DE 3, 114, 349 (1983), Chem. Abstr. 98 198240t (1983).

[37] Boudakian M.M., Fidler D.A., U.S. US 4, 927, 940 (1990), Chem.

Abstr. 113 97614(1990).

[38] Grundman H., Kreutzberger A., J. Am. Chem. Soc. 79, 2839 (1957).

[39] Bredereck H., Effenberger F., Hoffmann A., Chem. Ber. 96, 3260 (1963).

[40] Dobosz M., Annales UMCS, Lublin, Sectio AA, 34, 163 (1979).

[41] Koch M„ Gen.Offen. DE 3, 114, 314 (1982), Chem.Abstr. 98 72110g (1983).

[42] Weidiner H„ Kranz L, Chem. Ber. 96, 1064 (1963).

[43] Pesson M., Dupin S., Antoine M., Buli. Soc. Chim. France, 1364 (1962).

[44] Nato R., Gruttaduaria M., Lomeo P., Frenna V., Werber G., Jumal of Heterocyclic Chemistry 32, 1277 (1995).

[45] Soliman F.S.G., Shafik R.M.,Darwish M„ Pharmazie 34(3) 198-9 (1979).

[46] Alekseva V.Y., Boikov Y.A., Viktorovskii J.V., V’yunov K.A., Khim. Geterotsikl. Soedin. (1986), Chem. Abstr. 107 236006 f (1987).

[47] Pesson M., Dupin S., Compt. Rend. 252, 3830 (1961).

[48] Nihon N., Jpn Kokai Tokkyo Koho JP 58, 225, 070 (1983), Chem. Abstr.

100 209881 (1984).

[49] Nihon N., Jpn Kokai Tokkyo Koho JP 81 53, 664 (1981), Chem. Abstr.

96 85555 q (1982).

[50] Pilgram K.H., Skiles R.D., J.Heterocycl. Chem. 20(6) (1983).

[51] Andreocci A., Gazz. Chim. ItaL 19, 448 (1889).

[52] Andreocci A., Chem. Ber. 22R, 737 (1889).

[53] Murai T., Kuriyama K., Hyama Y., Nagatahria R., Ito K., Jpn. Ko­

kai Tokkyo Koho JP 02 15,069 (1990), Chem. Abstr. 113 23929 a (1990).

[54] Wheeler and Johnson, J. Am. Chem. Soc. 27, 218 (1902).

[55] Arcus C.L. and Prydal B.S., J. Chem. Soc. 1091 (1957).

[56] Butkiewicz К., Wojciechowski J., Pakula R., Arch. Pharm. (Wein­

heim Ger.) (1982), Chem. Abstr. 96 142771 h (1982).

[57] Young G. and Witham E., J.Chem. Soc. 77, 224 (1900).

[58] Srinivasan V.R., Romachander G., Arch. Pharm. 295, 40511 (1962).

[59] Ikizler A.A., Yuksek H„ Turk J. Chem. 16(4), 284 (1992), Chem.

Abstr. 120 323391 u (1994).

[60] Ауса E., Ikizler A.A., Serdar M., Chim. Acta Turc. 9(1) (1981), Chem.

Abstr. 95 169085 d (1981).

(15)

[61] Ikizler A.A., Kirmizigul S., Fen. Fak. Derg. Seni. 7 (1) (1984), Chem.

Abstr. 101 90846 m (1984).

[62] Raptonow V.M.and Zvorykina V.K., Izvest. Akad. Nauk. S.S.S.R., Otdel. Khim. Nauk. (1953), 70, Chem. Abstr. 48, 5184 a (1954).

[63] Gehlen H., Ann. 563, 185 (1949).

[64] Gehlen H„ Ann. 577, 237 (1952).

[65] Widman O., Chem. Ber. 29, 1946 (1896).

[66] Widman O. et al., Chem. Ber. 31, 378 (1898).

[67] Gehlen H„ Schade W„ Ann. 675, 180 (1964).

[68] Dobosz M., Struga M., Acta Polon. Pharm. 54, 4, 313-318 (1997).

[69] Kutschy P., Dzurilla M., Ficeri V., Chem. Pap. 47(1), 64-6 (1993), Chem. Abstr. 119 249889 y (1993).

[70] Kagawa T., Ikeda M., Sugano H., Yamamoto Y., Miyagi Y., Jpn Kokai Tokkyo Koho JP 03, 106, 865 (1991), Chem. Abstr. 115 183319 w (1991).

[71] Kane J.M., Baron B.M., Dudley M.W., Sorensen S.M., Staeger M.A., Miller F.P., J. Med. Chem. 33 (10), 2772-7 (1990).

[72] В any T„ Roczniki Chem. 42, 247 (1968).

[73] Spassov A., Golowiński E., Demirov G., Chem. Ber. 98, 932 (1965).

[74] Reimlinger H., Lingier W.R., Vandevale J.M., Chem. Ber. 104, 693 (1971).

[75] Maliszewska A., Annales UMCS, Lublin, Sectio AA, 41, 63 (1986).

[76] Chihaoui M., Baccar B., C.R. Hebd. Seances Acad. Sei., Ser. C 287(4) (1978), Chem. Abstr. 90 22913 к (1979).

[77] Diehr H.J., Mueller K.H., Lantzsch R., Ger. Offen. (1995), Chem.

Abstr. 126, 212153 x (1997).

[78] Liang F., Huang R., Wang Z„ Yu X, Huaxue Tongbao (10) 38-39, (1996), Chem. Abstr. 126 47164 s (1997).

[79] Koenig K„ Mueller K.H., Rohe L„ Eur. Pat. Appl. 403, 889 (1990), Chem. Abstr. 114 164248 к (1991).

[80] Braeuniger H., Fokken B., Kristen H., Paseke K., Ger. (East) 115, 496(1975).

[81] Milcent R., Redeuilh G., J. Heterocycl. Chem. 16(2), 403-7 (19779).

[82] Milcent R., Vicart P., Bure A.M., Eur. J. Med. Chem.-Chim. Ther. 18/3 215-20(1983).

[83] Ауса E., Ikizler A.A., Serdar M., Chim. Acta Ture. 9(2), 381(1981), Chem. Abstr. 97 6227 d (1982).

[84] Mathis R., Mathis F., Chichaoui M., Baccar B.G., Spectrichim. Acta Past. A. 38 A (2) 133-44 (1982), Chem. Abstr. 97 55778 t (1982).

[85] Chihaoui M., Baccar B.G, Mathis R., C.R. Seances Acad. Sei. Ser.

293(8) (1981), Chem. Abstr. 96 199590 c (1982).

[86] Godfrey L.E.A., Kurzer F., J. Chem. Soc. 5137 (1961).

[87] Dobosz M., Annales UMCS, Lublin, Sectio AA, 35, 49 (1980).

(16)

[88] Wheeler H.L., Meriam H.F., J. Am. Chem. Soc., 29, 478 (1994).

[89] Dobosz M., Rękas-Szylar J., Acta Polon. Pharm. 51, 155 (1994).

[90] Dobosz M., Rękas-Szylar J., Acta Polon. Pharm. 51, 235 (1994).

[91] Dobosz M., Rękas-Szylar J., Acta Polon. Pharm. 52, 3 (1995).

[92] Dobosz M., Rękas-Szylar J., Ann. UMCS, Lublin, Sectio DD 6/7, 131 (1993/1994).

CURRICULA VITAE

Prof. Maria Dobosz. Bom in Poland in 1938. Graduated from Medical University, Faculty of Pharmacy in Lublin. Since 1962 employed in Department of Organic Chem­

istry. Ph. D. degree received in 1969. Since 1986 Head of the Department of Organic Chemistry.

The main field of interest is synthesis and investigations of properties of 1,2,4-triazole and 1,3,4-thiadiazole derivatives. She pub­

lished over 60 papers and 8 patents. She took part in 34 Polish and 16 international symposia.

Monika Pitucha. Bom in Poland in 1970.

Graduated from Maria Curie-Sklodowska University in Lublin. Since 1994 employed in Department of Organic Chemistry, Fac­

ulty of Pharmacy of Medical University in Lublin.

She published 3 papers from the field synthesis of 1,2,4-triazole and 1,3,4- thiadiazole derivatives. At present she has worked on the Ph.D. dissertation. She took part in 8 Polish and 7 international sympo­

sia.

(17)
(18)
(19)
(20)

UMCS

WYDAWNICTWO

UNIWERSYTETU MARII CURIE-SKŁODOWSKIEJ PI. Marii Curie-Skłodowskiej 5, 20-031 Lublin

POLSKA

Cytaty

Powiązane dokumenty

p = ..., therefore we reject /do not reject the null hypothesis that the row and column variables are independent of each other (mark the right answer).. Hint: The χ 2 (2)

Synthesis of 3-amino-1,2,4-triazole derivatives 107 On the basis of above reactions there can be obtained 3-amino-substituted derivatives with 1,2,4-triazole system. As a

The reaction path was determined by elementary analysis, 'Н-NMR spectrum and X-ray view of crystal structure showed that there was an elimination of molecule of water and

Then 10cm3 of water was added, the fluffy, slightly creamy precipitate formed was purified by crystallization from water-methanol solution (1:1). The data relating to IR

The aim of the present paper was to analyze the effects of the structure on the chromatographic separation of the selected protein amino acids in the form of their

cidal activity for the fungi: Alternaria tenuis, Botrytis cinerea, Rhizoctonia solani, Fusarium culmorum and Phytophthora cactorum was studied in the tests in vitro as well

A solution of 8.5 g (0.06 mole) of natrium salt of the thiocyanoacetic acid in 15 cm ’ of water was added into 0.05 mole of 5-chloro- or 5-bromo-4-amino- acenaphthene dissolved

Cyclization of thiosemicarbazide derivatives obtained from hydrazide of fumaric acid and aromatic isothiocyanates (I-VI) in this medium led to forma ­ tion of the mixture