• Nie Znaleziono Wyników

Low surface energy rubber m aterials: influence of the netw ork structure of silicone ru bb er on tack

N/A
N/A
Protected

Academic year: 2021

Share "Low surface energy rubber m aterials: influence of the netw ork structure of silicone ru bb er on tack"

Copied!
7
0
0

Pełen tekst

(1)

M arek M ikrut*,

J.W .M . Noordermeer*, G. Verbeek**

Low surface energy rubber m aterials: influence of the netw ork structure of silicone ru bb er on tack

T h e r e l a ti o n s h i p b e t w e e n s t r u c t u r e o f p o l y m e r n e t w o r k s a n d t h e i r t a c k i n e s s h a s b e e n s t u d i e d . T h e a i m o f th i s r e s e a r c h w a s to c h a r a c t e r i z e th e in f lu e n c e o f t y p e a n d i n i t i a l m o l e c u l a r w e i g h t o f th e u n c r o s s l i n k e d r u b b e r , r e s p e c t i v e l y a m o u n t o f c r o s s - li n k i n g a g e n t o n th e c r o s s l i n k d e n s i t y a n d o n th e r e s u lt i n g r u b b e r - r u b b e r t a c k i n e s s . T h e p o l y m e r u s e d w a s p o l y d i m e t h y l s i l o x a n e ( P D M S ) , c r o s s l i n k e d w ith tr i- , t e t r a - , a n d m u l t i f u n c t i o n a l s i l a n e s . T h e ta c k e x p e r i m e n t s w e r e p e r f o r m e d w i th a t a c k t e s t i n g d e v i c e , d e v e l o p e d s p e c i a l l y f o r th is p u r p o s e . T h e n e t w o r k s w e r e c h a r a c t e r i z e d w i th N M R s p e c t r o s c o p y , s w e l l i n g a n d m e ­ c h a n i c a l p r o p e r t i e s m e a s u r e m e n ts . H i g h m o l e c u l a r w e i g h t P D M S s h o w s m u c h m o r e t a c k c o m p a r e d to l o w m o l e c u l a r w e i g h t s p e c i e s c r o s s l i n k e d to th e s a m e l e v e l w i th s i l a n e o f th e s a m e f u n c t i o n a l i t y . I n c r e a s in g th e c r o s s - li n k i n g a g e n t f u n c t i o n a l i t y f r o m th r e e t o f o u r s i g n i f i c a n t l y r e d u c e s th e P D M S ta c k ; f u r t h e r i n c r e a s e o f f u n c t i o n a l i t y c a u s e s o n l y s m a l l c h a n g e s . T h e s u r f a c e h y d r o p h o b i- c i t y m e a s u r e d b y c o n t a c t a n g l e h y s t e r e s i s c h a n g e s o n l y s lig h tly . T h e o b s e r v e d d i f f e r e n c e s in t a c k i n e s s c a n b e e x p l a i n e d b y a n i n c r e a s e d m o b i l i t y o f e l a s t o m e r c h a in s e g m e n ts . T h e p r e s e n c e o f n u m e r o u s f r e e o r p e n d a n t c h a in s f a v o r s th e t a c k b y i n c r e a s i n g i n t e r p e n e t r a t i o n o f th e c h a i n s a n d s t r e n g t h e n in g th e r u b b e r - - r u b b e r in te r f a c e . I n c r e a s e in th e c r o s s - l i n k i n g a g e n t f u n c t i o n a l i t y r e s u lt s in a m o r e c o n s t r a i n e d n e t w o r k , w h i c h s t r o n g l y r e d u c e s m o b i l i t y a n d c o n s e q u e n t l y th e ta c k .

K e y w o r d s : r u b b e r , P D M S , t a c k

* Dutch Polymer Institute, P.O Box 902, 5600A X Eindhoven, The Netherlands, University of Twente, Fac. of Science and Technology, D ept, o f Rubber T echnology, P.O.Box 217, 7500AE Enschede, The Netherlands

** Oce Technologies B. V.; P.O.

Box 101, NL-5900MA, Venlo, The Netherlands

Materiały elastomerowe o niskiej energii powierzchniowej: wpływ struktury sieci elastomeru silikonowego na kleistość

B a d a n o z a l e ż n o ś ć p o m i ę d z y s t r u k t u r ą s i e c i e l a s t o m e r o w y c h a k l e i s t o ś c i ą . C e le m p r a c y b y ł o z b a d a n i e w p ł y w u c i ę ż a r u c z ą s t e c z k o w e g o e l a s t o m e r u o r a z r o d z a ju i i l o ś c i s u b s t a n c j i s i e c i u j ą c e j n a g ę s t o ś ć u s i e c i o w a n i a i n a k l e i s t o ś ć e la s to m e r - e l a s to m e r . Z a s t o s o w a n o k a u c z u k s i l i k o n o w y ( P D M S ) u s i e c i o w a n y z a p o m o c ą tr ó j- , c z t e r o - o r a z p o l i f u n k c y j n y c h s ila n ó w . P o m i a r y k l e i s t o ś c i p r z e ­ p r o w a d z o n o z a p o m o c ą u r z ą d z e n i a s k o n s t r u o w a n e g o s p e c j a l n i e w ty m c e lu . P a r a m e t r y s i e c i s c h a r a k t e r y z o w a n o z a p o m o c ą b a d a ń m e t o d ą N M R , p ę c z n i e ­ n i a r ó w n o w a g o w e g o o r a z w ł a ś c i w o ś c i m e c h a n i c z n y c h . W ł a ś c i w o ś c i p o ­ w i e r z c h n i o w e g u m y s i l i k o n o w e j b a d a n o p o p r z e z p o m i a r y h i s t e r e z y k ą t a z w i l ż a ­ n ia . P D M S o d u ż y m c i ę ż a r z e c z ą s t e c z k o w y m w y k a z u j e z n a c z n i e w i ę k s z ą k l e i s ­ t o ś ć w p o r ó w n a n i u d o p o l i m e r ó w o m a ł y m c i ę ż a r z e c z ą s t e c z k o w y m u s i e c i o w a ­ n y c h d o t e g o s a m e g o s t o p n i a z a p o m o c ą s i l a n ó w o t a k ie j s a m e j f u n k c y j n o ś c i . Z w i ę k s z e n i e f u n k c y j n o ś c i z t r z e c h d o c z t e r e c h p o w a ż n i e z m n i e j s z a k l e i s t o ś ć P D M S ; d a l s z e z w i ę k s z a n i e f u n k c y j n o ś c i p o w o d u j e t y l k o n i e w ie l k ie z m ia n y . H y d r o f o b o w o ś ć p o w i e r z c h n i , m i e r z o n a z a p o m o c ą h i s t e r e z y k ą ta z w i l ż a n ia , z m i e n ia s i ę t y l k o n i e z n a c z n i e . Z a o b s e r w o w a n e r ó ż n i c e w k l e i s t o ś c i m o g ą b y ć s p o w o d o w a n e z w i ę k s z o n ą r u c h l i w o ś c i ą s e g m e n t ó w ła ń c u c h ó w p o l i m e r o w y c h . D o d a t k o w o o b e c n o ś ć l ic z n y c h s w o b o d n y c h k o ń c ó w ła ń c u c h ó w s p r z y j a z w i ę k ­ s z e n i u k l e i s t o ś c i p o p r z e z z w i ę k s z o n e w z a j e m n e p r z e n i k a n i e ł a ń c u c h ó w i w z m o c n i e n i e p o ł ą c z e n i a e l a s t o m e r - e l a s t o m e r . U ż y c i e ś r o d k a s i e c i u j ą c e g o o w i ę k s z e j f u n k c y j n o ś c i p r o w a d z i d o s i e c i o m n i e j s w o b o d n y c h ł a ń c u c h a c h i w r e z u l t a c i e d o z m n i e j s z e n i a k l e i s t o ś c i .

S ł o w a k l u c z o w e : g u m a , P D M S , k l e i s t o ś ć

TOM 10 lipiec - sierpień 2006 r. S ia A tM ten y nr 4

ki eistość silikonów

(2)

1. Introduction

Tack of materials is the ability to resist separation after bringing their surfaces into contact for a short time under pressure. Two types of tack can be defined: auto- hesive, when the materials in contact have the same chemical composition; and adhesive, when both mate­

rials have different compositions [1]. Adhesion of rub­

ber is important in many industrial processes. Good adhesion is required for tire building, in adhesive labels and tapes (so called pressure-sensitive adhesives), etc.

Conversely, elastomeric materials that exhibit low tack are also important in industry.

Lots of work has been done in the field of adhesion [2]. However, the problem of contact between two vis­

coelastic bodies is generally poorly understood [3,4]. It is already well known, that tackiness is a result of for­

mation of intermolecular forces at the interface: chemi­

cal, hydrogen and van der Waals bonds [5]. The pre­

sence of numerous interfacially anchored chains is an­

other factor strongly promoting the adhesion of elas­

tomers [6].

The poly(dimethylsiloxane) is well known for its surface properties. PDMS has a very surface active pen­

dant group - the methyl group: see Figure 1.

CHs CH3 CH

-|—S i - O —S i- O - S i- j- n

c h

3

c h

3

c h

3

Fig. 1. S t r u c t u r e o f P D M S m o l e c u l e

Rys. 1. S c h e m a t c z ą s t e c z k i P D M S

The methyl groups are arranged along the flexible backbone: the siloxane chain. Because of this, PDMS has a very low surface energy [7, 5]. This makes PDMS a very good substrate for low-tackiness applications.

lii eistość silikonów

internal NMR standard without further purification.

The solvents used were all of pro analysis quality.

Samples preparation

For every batch of polymer the exact amount of vinyl groups was determined using NMR measure­

ments (Bruker 300 MHz apparatus); pyrazine as an in­

ternal standard. From those results and the molecular structure of the cross-linking agent, the hydrogen-to-vi- nyl ratio (H/V) was calculated. For both types of PDMS samples and the different cross-linking agent function­

alities, samples were prepared using the H/V ratios: 1.0, 1.2, 1.4 and 1.7. The curatives were mixed together with the polymer, then the mixture was degassed and cured in a com pression molding machine (WLP 1600/5x4/3 Wickert laboratory press) at 120 °C for 30 min. Clean Teflon foil was placed between the cured mixture and the mold plates to avoid surface contami­

nation and sticking of the material to the mold. The 90x90x2 mm sheets were post-cured in an oven at 120 °C for 48 hours.

Mechanical testing

Shore A hardness was measured using Zwick hard­

ness tester according to the ISO R868 standard.

Contact angle hysteresis

Contact angle hysteresis measurements were per­

formed using the Dataphysics OCA 15 plus apparatus using deionized water as a liquid probe.

Crosslinking density

All crosslinking density measurements were made by swelling rubber samples in toluene for 48 hours;

calculations were performed using the Flory-Rehner equation.

2. Experimental

Materials

Vinyl-terminated PDMS of molecular weight of 17 000 and 50 000 g/mol (MQ 17 and MQ 50 respec­

tively) were used for the study. As cross-linking agent tris(dim ethylsiloxy)ethoxysilane (trifunctional), tetrakis(dimethylsiloxy)silane (tetrafunctional) and a multifunctional silane were used. The platinum-cy- clovinylmethylsiloxane complex was used as cure reac­

tion catalyst and 1-ethynylcyclohexanol (99%) was used as a temporary reaction inhibitor. All the above materials were obtained from ABCR, with the excep­

tion of the multifunctional silane, which was provided by a proprietary source. The inhibitor was obtained from Aldrich. Pyrazine (Aldrich, 99%) was used as an

Tack measurements

Tack measurements were performed using a cus­

tom-made device based on the Tel-Tak principle [8].

Fig. 2. T h e p r i n c i p l e o f t a c k - t e s t i n g d e v i c e ; 1 - r u b b e r s a m p l e s , 2 - c la m p s , 3 - s e p a r a t o r

Rys. 2. Z a s a d a d z i a ł a n i a u r z ą d z e n i a d o p o m i a r u k l e i s ­ to ś c i; 1 - t e s t o w a n e p r ó b k i , 2 - z a c i s k i , 3 - s e p a r a t o r

SiaAtotn&Uf, nr 4 lipiec - sierpień 2006 r. TOM 10

(3)

Pieces of rubber 20x20x2 mm were used as test sam­

ples. Pairs of samples were pressed against orifice disks to generate a curved contact surface, Figure 2. The cur­

vatures were compressed under 2.5 N load for 10 mi­

nutes, and then separated; the maximum separation force was recorded. The contact area was calculated from the radius of curvature.

IR spectra were recorded using a Bio-Rad FTS60 spectrometer. 256 scans were collected. The mixtures were analyzed as films cast on KBr dishes. The spectra taken before and after crosslinking were normalized using the PDMS methyl peak at 2900 cm"1 [9].

3. Results

Tack measurements

Figure 3 presents the shape of a sample separation curve. A force less then zero means, that the sample is still in compression. At zero force separation starts, but the samples are still held together by the interfacial tack forces.

Fig. 3. Example o f sample separation curve

Rys. 3. Przykład krzywej uzyskanej podczas separacji próbek

Fig. 4. Tackiness in relation to crosslink density fo r MQ 17. Trifunctional silane used as crosslinker; IS tacki­

ness, ♦ crosslink density

Rys. 4. Zależność kleistości od gęstości usieciowania MQ 17 usieciowanego za pomocą trójfunkcyjnego sila­

nu; ^ kleistość, ♦ gęstość usieciowania

Fig. 5. Tackiness in relation to crosslink density fo r MQ 17. Tetrafunctional silane used as crosslinker; & tacki­

ness, ♦ crosslink density

Rys. 5. Zależność kleistości od gęstości usieciowania MQ 17 usieciowanego za pomocą czterofunkcyjnego silanu; ^ kleistość, ♦ gęstość usieciowania

At the maximum force the contact between the two sample halves breaks. That value was taken for further calculations of rubber-rubber tackiness.

Figures 4 to 6 present the results of tackiness mea­

surements for MQ 17 vs. H/V ratio in correlation with crosslink density of the samples, and the cross-linking agent functionality varied from 3, 4 to multifunctional.

In all cases, the crosslink density increases almost linearly with increasing amount of silane. For the stoichiometric amount of cross-linking agent, the sam­

ple is still clearly undercrosslinked and exhibits a high level of tackiness. The rubber-rubber tack decreases quickly with increasing crosslink density, finally falling below the detection level of the apparatus.

From Figure 5 it can be seen, that for the tetrafunc­

tional crosslinker, the trend in tackiness change is simi­

lar to the trifunctional crosslinker. However, the values of recorded tack are greater that those seen in Figure 4.

The crosslink density also follows a slightly different trend. There is a large increase between rubbers with hydrogen to vinyl ratios 1.2 and 1.4.

Fig. 6. Tackiness in relation to crosslink density fo r MQ 17. Multifunctional silane used as crosslinker; II tacki­

ness, ♦ crosslink density

Rys 6. Zależność kleistości od gęstości usieciowania MQ 17 usieciowanego za pomocą wielofunkcyjnego si­

lanu; ^ kleistość, ♦ gęstość usieciowania

TOM 10 lipiec - sierpień 2006 r. StaAtatH&ity nr 4

\ kleistość silikonów

(4)

Fig. 7. Tackiness in relation to crosslink density fo r MQ 50. Trifunctional silane used as crosslinker; ^ tacki­

ness, ♦ crosslink density

Rys. 7. Zależność kleistości od gęstości usieciowania MQ 50 usieciowanego za pomocą trójfunkcyjnego si­

lanu; li kleistość, ♦ gęstość usieciowania

Figure 6 presents the relation between tackiness and crosslink density for MQ 17 crosslinked with the multifunctional silane. The values of tackiness for the lowest crosslinked samples are similar to the analogous samples crosslinked with the tetrafunctional silane, but the rubber-rubber tackiness falls below the detection level already for the sample with 1.2 Fl/V ratio of cross- linking agent added. The crosslink density follows a similar trend, the large increase between Fl/V ratios 1.2 and 1.4 is again clearly visible.

Figures 7 to 9 show the relation between rubber- -rubber tackiness for the high molecular weight PDMS MQ50. It exhibits significantly higher levels of tack, than its low molecular weight counterpart. The decreas­

ing trend in tackiness is even more pronounced, a very high tack for H/V 1.0 decreases much after a slight in­

crease in crosslinking density.

The increase in crosslinker functionality from three to four results in different behavior from MQ17. As can

kleistość silikonów

Fig. 9. Tackiness in relation to crosslink density fo r MQ 50. Multifunctional silane used as cross-linking agent;

^ tackiness, ♦ crosslink density

Rys. 9. Zależność kleistości od gęstości usieciowania MQ 50 usieciowanego za pomocą wielofunkcyjnego si­

lanu; ii kleistość, ♦ gęstość usieciowania

Fig. 10. Tackiness in relation to functionality of cross- linking agent fo r MQ50 ofH /V = 1.0

Rys. 10. Zależność kleistości od liczby grup silanowych w cząsteczce substancji sieciującej dla MQ 50 i H/V - 1.0

Fig. 8. Tackiness in relation to crosslink density fo r MQ 50. Tetrafunctional silane used as cross-linking agent;

^ tackiness, ♦ crosslink density

Rys. 8. Zależność kleistości od gęstości usieciowania MQ 50 usieciowanego za pomocą czterofunkcyjnego sianu; M kleistość, ♦ gęstość usieciowania

be seen in Figures 8 and 9, MQ50 crosslinked with tetra and multifunctional silanes show very low levels of tack, which in addition decreases very fast with increas­

ing H/V ratio. The crosslink density behaves in a diffe­

rent way as well: it is much higher at low H/V ratios compared to the trifuntional cross-linking agent, and exhibits only a slightly increasing trend.

Figure 10 shows how rubber-rubber tackiness changes for MQ50 with increase in cross-linking agent functionality for H/V ratio 1.0. The level of tackiness decreases by orders of magnitude with increase of si­

lane functionality from three to four. Further increase in functionality does not cause significant changes any­

more.

Figure 11 shows the results of surface characteriza­

tion done by the contact angle hysteresis measure­

ments.

The general trend for MQ17 is, that the contact angle hysteresis decreases with increasing excess of cross-linking agent. This is less pronounced in the case

SCcbtftMt&ity nr 4 lipiec - sierpień 2006 r. TOM 10

(5)

Fig. 11. Contact angle hysteresis measurements fo r MQ 17 (a) and MQ 50 (b); trifunctional; (M) tetrafunc- tional; ( • ) multifunctional silane as crosslinking agent Rys. 11. Histereza kąta zwilżania dla (a) MQ 17 i (b) MQ 50 usieciowanych za pomocą (+) trój funkcyjne go;

(M) czterofunkcyjnego; (* ) wielofunkcyjnego silanu.

of the high molecular weight MQ50, which exhibits similar values of hysteresis like MQ17, but it tends to vary much less with degree of crosslinking.

Hardness

The hardness of MQ17 increases with increasing H/V ratio. It follows the trend exhibited by crosslink density, however the gaps visible for higher functiona­

lity crosslinkers are not so pronounced in the hardness.

It is interesting, that the hardness of the MQ50 samples does not really change with crosslinker amount, but only with the functionality.

Spectral analysis

FT-IR spectra were collected to gather information about changes in the amount of vinyl bonds during the cure reaction and to explain the role of different mecha­

nisms responsible for tack. Figure 13 shows a sample spectrum. The peaks at 1599 and 2140 cm"1 are as­

signed to the vinyl double bonds and Si-H vibration, respectively [10]. Table 1 shows the intensities of both peaks relative to the C-H vibration peak of the methyl group in PDMS, which served as an internal standard.

The values are shown for mixtures of MQ17, cured with trifunctional crosslinker and for H/V ratios of 1.0 and 1.7.

It can be seen from Table 1, that for H/V = 1.0 the level of silane functional end-groups, as represented by

Table 1. Changes in reactive groups concentration for MQ 17

Tabela 1. Zmiany stężenia grup reagujących na przy­

kładzie MQ 17

Time [min]

. ..

H/V = 1.0 ; H/V := 1.7 Ratio C=C Ratio Si-H Ratio C=C Ratio Si-H

0 0.29 0.28 0.12 0.16

H I 0.11 0.15 0.10 0.03

5 0.06 0.00 0.12 0.02

10 0.06 0.00 0.12 0.00

the level of IR absorbtion of C=C-bonds, decreases quicker than for H/V = 1.7. There are still some unre­

acted double bonds present, most probably in a form of pendant chains. For the H/V = 1.7, the silane reacts slightly slower. It is surprising to see, that the amount of double bonds seems to stay at the same level during the

Fig. 12. Hardness measurements fo r MQ17 (a) and MQ50 (b). For some samples, hardness at H/V 1.0 was too low to measure using the Shore A scale; (♦ ) trifunc­

tional; /■ ) tetrafunctional; multifunctional silane as crosslinking agent

Rys. 12. Pomiary twardości (a) MQ 17 i (b) MQ 50.

Przy H/V 1.0 twardość niektórych próbek była zbyt nis­

ka na pomiar metoda Shore A. Próbki usieciowano za pomocą /♦ ) trójfunkcyjnego; czterofunkcyjnego;

( • ) wielofunkcyjnego silanu

TOM 10 lipiec - sierpień 2006 r. S fa d & w tw / nr 4

kleisto,st silikonów

(6)

Fig. 13. Sample FT-IR spectrum o f the uncured mixture Rys. 13. Przykładowe widmo FT-IR nieusieciowanej mieszanki

reaction. The same phenomenon was observed for MQ17 cured with the tetrafunctional cross-linking agent.

The spectra for longer curing times have been made, but obviously the crosslinking reaction is fin­

ished after ten minutes. There were no significant changes observed anymore.

4. Discussion

As expected, rubber-rubber tackiness decreses with increase in crosslink density for all combinations inves­

tigated. Lower crosslink density results in larger amounts of unattached chains, pendant network chains, as well as in a less constrained network. All these phe­

nomena are known to promote tack by partial migration or penetration of polymer entities across the contact interface. During the contact, polymers can also ex­

change other interactions, like van der Waals or hydro­

gen bonding. It was already proven by others, that for PDMS-PDMS contact the forces are dispersive: van der Waals in nature, due to the presence of numerous methyl groups on the interface [11]. Thus the tack in­

crease must mainly be due to the presence of pendant chains and increased chain mobility. The FT-IR spectra show, that there is always some amount of pendant PDMS chains (Table 1), irrespective of the FI/V-ratio and the cure time, due to network imperfections. The contact angle hysteresis gives some additional informa­

tion. The difference between advancing and receding contact angle is related to the mobility of macromolecu- lar segments at the surface [12, 13]. It can be seen from Figure 11, that hysteresis decreases with increase in crosslink density, which indicates, that at least partiali chain mobility plays a role as well.

The increased molecular weight of the polymer re­

sults in a large increase in tackiness values for the sam­

ples crosslinked with the trifunctional silane: Figures 4 and 7. The contact angle hysteresis does show, that molecular mobility stays similar within the measure­

ment error: Figure 11. However, during separation the chains are extended before full release. The extensions and disentanglements cost more energy for the longer, higher molecular weight chains [13]. Thus, the increase in tack value can be explained by an increased disentan­

glement energy and possibly a higher amount of entan­

glements formed by the large macromolecules.

Interesting phenomenon is the significant tack de­

crease by change from trifunctional to tetrafunctional silane. This is most pronounced for the high molecular weight PDMS: Figure 10. The big decrease in tack is combined with increase in crosslinking density: Figures 7-9, which seems to be the main reason for this effect.

5. Conclusion

The experiments indicate that the cross-linking agent amount, its functionality and molecular weight of polymer have a large influence on rubber-rubber tacki­

ness. It decreases with increasing crosslink density and crosslinker functionality. However, the latter causes a very significant drop of tackiness.

There are several mechanisms involved; the sur­

face analysis and a spectral investigation of the cure reaction help to understand their role. The reduction in chain mobility combined with a decrease in amount of pendant chains seems to be the main reasons for the tackiness drop. However, the molecular weight effect is mostly caused by an increase in amount of entangle­

ments of molecules and a higher energy needed to un­

ravel the entangled chains. The drop of tackiness with increased crosslinker functionality seems to be the combined effect of decrease in amount of pendant chains and increase in crosslink density.

S ia A tM t& iy nr 4 lipiec - sierpień 2006 r. TOM 10

kleistość silikonów

(7)

Acknowledgment

The Dutch Polymer Institute (DPI) is gratefully acknowledged fo r financial support o f this research in the project #317.

References

1. Hamed G. R.: Rubb. Chem. Technol, 1981, 54, 577 2. Rhee C. K.: Andries J. C R u b b . Chem. Technol.,

1981, 54, 101

3. Unertl W. N.: J. Adhes. 2000, 2A, 195

4. Giri M., Bousfield D. B., Unertl W. N.: Langmuir,

2 0 0 1, 1Z 2973

5. Owens D. K., Wendt R. C J . Appl. Polym. Sci., 1969, 13, 1741

6. De rue Ile M., Leger L , Tirrell M.: Macromolecules, 1995, 28, 7419

7. Owen M. J.: Ind. Eng. Chem. Prod. Res. Rev., 1980, 19, 97

8. Beatty J. R.: Rubb. Chem. Technol, 1969, 42, 1040 9. Bontems S. L , Stein J., Zumbrum M. A.: J. Polym.

Sc. Part A, 1993, 31 2697

10. Flipsen T. A. C., Derks R., Van Der Vegt H., Pen- ningsA. J., Hadziioannou G.: J. Polym. Sci. Part A, 1997, 35, 41

11. Galliano A., Bistac S., Schultz J J . o f Coll. And Interface Sci., 2003, 265. 372

12. Yasuda H., Sharma A. K.: J. Polym. Sci., Polym.

Phys. Ed., 1991, 19, 1285

13. Hillborg H., Gedde U. W: Polymer, 1998,1 2 1991

Firma Rohm and Haas znany światowy producent

oferuje:

• kleje do łączenia gum z metalami, zapewniające optymalne połączenia dla różnych zastosowań:

MEGUM™ i THIXON™

• kleje do tłokowania typu POLYFLOCK™

zapraszamy

Dystrybucja w Polsce:

P rzed sięb io rstw o P rodukcyjne H. Leszczyński ul. K om ornicka 2, 62-052 Głuchow o

te l. 061 8990600 lub 061 8990603, fax 061 8997217 e-m ail: leszczynski@ hl.biz.pl

TOM 10 lipiec - sierpień 2006 r. SOz&totH&iy nr 4

k l e i s t o ś ć s i l i k o n ó w

Cytaty

Powiązane dokumenty

The purpose of the work was to determine the value of the maximum shear stress at which the composite material breaks away from the enamel. It is assumed that the condition of

Not much higher surface free energy values are observed from the estimation based on the contact angles measured using the sessile drop method but both

Artykuł zajmuje się problemem małych aglomeracji wiejskich, w których obserwuje się brak równowagi demograficznej.. Autorka zadaje sobie pytanie — czy i w jaki

One interpretation is that the boundary layer on the rough model was turbulent, however it is not unknown that high values of heat transfer can be caused by

Dopiero 8 kwietnia 1720 r. w aktach urzędującego ówcześnie burmistrza Ga­ briela a Bomeln znajdujemy następującą wiadomość dotyczącą kasy. Otóż dnia tego

Państwo pojęte jako konstrukcja rozumna odsyła do tego, co noumenalne w rzeczywistości, podobnie jak teoria — uporządkowanie świata w słowach, możliwa jest dzięki temu, iż

Żegnając się powiedział prorocze słowa „zobaczycie, że Wojtyła będzie papieżem” Po wyborze księdza kardynała Karola Wojtyły przypomnieli sobie te słowa… Skąd Kazio o

Vanwege de interesse voor de ‘Grote Monumenten van Geschiedenis en Kunst’ sinds het einde van de negentiende eeuw is de toepassing van met name mergel stroomafwaarts langs de