• Nie Znaleziono Wyników

Efficient modelling of pile foundations in the finite element method

N/A
N/A
Protected

Academic year: 2021

Share "Efficient modelling of pile foundations in the finite element method"

Copied!
21
0
0

Pełen tekst

(1)

Ronald B.J. Brinkgreve Plaxis / Delft University of Technology

Efficient modelling of pile foundations

in the Finite Element Method

DFIMEC 2014 1 / 40

Outline

• Introduction

• Embedded pile (3D)

• Embedded pile row (2D)

• Applications of embedded piles

• Ongoing research

• Conclusions

(2)

Introduction

Finite Element Method (FEM) in geotechnical engineering: • Numerical solution of boundary value problems:

- Deformation (stress, strain) analysis (SLS) and ULS design

- Groundwater flow analysis

- (Geo)thermal analysis

- Thermo-Hydro-Mechanical coupling

• Realistic simulation of soil, structure, soil-structure interaction and construction process

3 / 40

DFIMEC 2014

Introduction

Dancing Towers, Dubai

4 / 40

(3)

Introduction

FEM modelling piles:

• 2D:

- Axisymmetry: Axially loaded single pile - Plane strain: Pile (beam) becomes a wall

- New: Embedded pile rowin 2D

• Most practical applications involving pile foundations require a 3D model !

5 / 40

DFIMEC 2014

Modelling options of piles in 3D FEM: • Solid elements:

 ‘Expensive’  Poor mesh quality  No structural forces

• Beam elements:

 No pile volume  No surface area

 Unrealistic pile-soil interaction

Introduction

(4)

Introduction

DFIMEC 2014

(Courtesy of Prof. H.F. Schweiger)

?

7 / 40

Efficient 3D modelling feature: Embedded pile elements

• Pile as beam elements

• Pile-soil interaction

(shaft friction, end bearing) • Arbitrary crossing of soil elements

Embedded pile (3D)

DFIMEC 2014 soil pile tskin Ffoot 8 / 40

(5)

Embedded pile (3D)

soil pile tskin Ffoot s t n ks kt kn ks kt kn ks kt kn Skin stiffness: ks : axial stiffness Kn,kt: lateral stiffness Skin tractions:

ts= qs/length= ks(uspile-ussoil) ≤ tmax

tn= qn/length= kn(unpile-unsoil)

tt= qt/length= kt(utpile-utsoil)

kb

Base stiffness: kb : base/foot stiffness

Base/Foot force: Fb= kb(ubpile - ubsoil) ≤ Fmax

t urel k 1 tmax (Engin et al, 2007) 9 / 40 DFIMEC 2014

Embedded pile (3D)

Embedded pile:

• Beam nodes: Real nodes; 6 d.o.f.’s per node (uxuyuzrxryrz)

• Interface nodes: Virtual nodes, 3 d.o.f.’s per node (uxuyuz), expressed in volume element shape functions

(6)

Embedded pile (3D)

Fmax Ttop Tbot Lpile Bearing capacity =

½ (Ttop+Tbot)×Lpile+ Fmax

DFIMEC 2014 11 / 40

Embedded pile – Deformation behaviour

Pile bearing capacity is inputand not result of FEM calculation

F

u

Specified bearing capacity

Global pile response from soil modelling and pile-soil interaction

t urel k 1 tmax F urel k 1 Fmax Local Global 12 / 40 DFIMEC 2014

(7)

Embedded pile –

Elastic region

Soil stress points inside elastic region are forced to remain elastic

• Around shaft

• Around foot

DFIMEC 2014 13 / 40

Embedded pile – Output

Displacements, bending moments, axial forces, shaft friction, foot force

B A C

u N Ts

14 / 40

(8)

Embedded pile – Validation by TUGraz

DFIMEC 2014

(Tschuchnigg, 2009)

15 / 40

2D model: 72 mm

3D model - volume piles: 70 mm

3D model - embedded piles: 74 mm

DFIMEC 2014

Embedded pile – Validation

(9)

Lateral movement of pile in horizontal soil slice:

 Embedded pile almost behaves as volume pile due to elastic region

DFIMEC 2014

Embedded pile – Validation by TUDelft

(Dao, 2011)

17 / 40

Embedded pile – Validation by TUDelft

Lateral force at pile top:

DFIMEC 2014

(Dao, 2011)

(10)

Embedded pile (3D)

DFIMEC 2014

Conclusions embedded pile:

• Efficient 3D modelling of pile foundations (bored piles, piled rafts) • Realistic pile-soil interaction (shaft friction, end bearing, group effects) • Pile capacity is Input (not a result)

• Since 2005 many applications in practice (pile foundations, ground anchors)

19 / 40

Embedded pile row (2D)

How to model a row of piles (out-of-plane) in 2D ?

20 / 40

(11)

Embedded pile row (2D)

‘Conventional’ 2D options:

• Beam (plate):

 Continuous out-of-plane

 Prevents ‘soil flow’ between piles

• Two-node spring (N2N anchor):

 No bending stiffness  No pile-soil interaction

21 / 40

DFIMEC 2014

Embedded pile row (2D)

New 2D modelling option:

• Embedded pile row:

 Continuous ‘soil’ mesh

 Pile as a superimposed beam element (axial stiffness, bending stiffness)  Pile and soil can move independently  Pile-soil interaction (interface)

(shaft friction, end bearing)  Out-of-plane spacing (Ls)

Ls

22 / 40

(12)

Embedded pile row (2D)

(Sluis, 2012)

23 / 40

DFIMEC 2014

Calibration of interface stiffness from 3D calculations

Embedded pile row (2D)

(Sluis, 2012)

24 / 40

(13)

Calibration of interface stiffness from 3D calculations

Embedded pile row (2D)

(Sluis, 2012) (out-of-plane)

25 / 40

DFIMEC 2014

Embedded pile row (2D)

1 0 m 150 kN/m N 26 / 40 DFIMEC 2014

(14)

Case study: Bridge abudment

Embedded pile row (2D)

Soft layers (peat/clay)

Deep sand (foundation layer)

Bridge deck Piled abutment

Embankment Road/railway

freeboard

27 / 40

DFIMEC 2014

Embedded pile row (2D)

2D 3D detail -20 -15 -10 -5 0 5 10 -600 -400 -200 0 200 400 v e rt ic a l h e ig h t [m ]

First pile row: M/Q/N

Q 2d emb [kN] M 2d emb [kNm] N 2d emb [kN] N 3D [kN] M_2 3D [kNm] Q_13 3D [kN] Case study: Bridge abudment

Comparison 2D vs. 3D

28 / 40

(15)

Embedded pile row (2D)

Conclusions embedded pile row:

• Efficient 2D modelling of pile rows (out-of-plane) • Pile and soil can move independently

• Realistic pile-soil interaction (shaft friction, end bearing)

• Calibration of interface stiffness, based on out-of-plane spacing (Ls) • Successful validation

• Since 2012 several applications in practice (piles and ground anchors)

29 / 40

DFIMEC 2014

Applications of embedded piles

Quay wall

30 / 40

(16)

Applications of embedded piles

Foundation of high-rise building in Frankfurt (Japan Centre)

(Courtesy of Prof. Y. El-Mossallamy)

31 / 40

DFIMEC 2014

Applications of embedded piles

Foundation of high-rise building in Singapore

32 / 40

(17)

Applications of embedded piles

Railway station in Vienna

~ 500m ~ 400m 47464 elements ~500 m ~400 m

(Courtesy of Prof. H.F. Schweiger) 33 / 40

DFIMEC 2014

Applications of embedded piles

Railway station in Vienna

Model without soil (bottom view)

615 Piles

 Different pile lengths  Different pile inclinations

(Rest is modelled as blocks)

34 / 40

(18)

Applications of embedded piles

Railway station in Vienna

axial force shaft friction

35 / 40

DFIMEC 2014

Applications of embedded piles

Excavation in Monaco (Odeon Towers)

(i.c.w. Terrasol, France; Plaxis Bulletin 29, 2011)

36 / 40

(19)

Ongoing research

DFIMEC 2014

Research on installation effects of driven piles at TUDelft:

• Idea: Impose modified stress and density on ‘wished-in-place’ pile

(Engin, 2013)

37 / 40

Research on large deformation analysis (MPM) due to pile installation

Ongoing research

(20)

Conclusions

DFIMEC 2014

• Efficient modelling of piles in FEM:

- Embedded pile row (2D)

- Embedded pile (3D)

• Realistic pile-soil interaction (shaft friction, end bearing) • Pile capacity is Input (not a result)

• Meanwhile many applications in practice (piles and ground anchors)

• Ongoing research:

- Installation effects

- Pile penetration using MPM

39 / 40

References

1. Engin H.K., Septanika E.G. and Brinkgreve R.B.J. (2007). Improved embedded beam elements for the modelling of piles. In: G.N. Pande & S. Pietruszczak (eds.), Int. Symp. on Numerical Models in Geomechanics – NUMOG X, 475-480. London: Taylor & Francis group.

2. Engin H.K., Septanika E.G., Brinkgreve R.B.J., Bonnier P.G. (2008). Modeling piled foundation by means of embedded piles. 2nd International Workshop on Geotechnics of Soft Soils - Focus on Ground Improvement. 3-5 September 2008, University of Strathclyde, Glasgow, Scotland.

3. Septanika E.G., Brinkgreve R.B.J., Engin H.K. (2008). Estimation of pile group behavior using embedded piles, the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1-6 October, 2008, Goa, India.

4. Tschuchnigg F. (2009). Embedded piles – 1. Report. CGG_IR021_2009. Technische Universität Graz. 5. Tschuchnigg F. (2009). Embedded piles – 2. Report. Improvements. Technische Universität Graz.

6. Dao T.P.T. (2011). Validation of PLAXIS embedded piles for lateral loading. MSc thesis. Delft University of Technology.

7. Brinkgreve R.B.J., Engin E., Dao T.P.T. (2012). Possibilities and limitations of embedded pile elements for lateral loading. IS-GI Brussels.

8. Sluis J. (2012). Validation of embedded pile row in PLAXIS 2D. MSc thesis. Delft University of Technology. 9. Engin H.K. (2013). Modelling pile installation effects – A numerical approach. PhD thesis. Delft University of

Technology.

(21)

Efficient modelling of pile foundations in the finite element method

Ronald B.J. Brinkgreve

Cytaty

Powiązane dokumenty

Drugi „ustrojowy” rozdział zawiera analizę uprawnień i funkcjonowania sądu oraz urzędu grodzkiego. W szeregu kolejnych podrozdziałów autor omawia również szeroko

W ikipedia i W ikisłow nik zostają potraktow ane jak o opracow ania pow stałe na styku funkcji poznaw czej (przejaw iającej się w projekcie tw orzenia i rozbudo­

Korelacje mię- dzy czasem staniem na jednej nodze a czasem stania na jednej nodze z oczami zamkniętymi i liczbą sko- ków na jednej nodze wskazują, że dzieci, które dłużej

Materkowska ) 12 00 -13 30 SEMINARIA: Nowotwory u biorców przeszczepów narządowych Dr hab.. Dęborska- Materkowska ( dr med.

Autorka postawiła sobie trudne zadanie przybliżenia dziejów polskich księgo- zbiorów prywatnych z terenu Grodzieńszczyzny pierwszej połowy XIX wieku – ich zarejestrowania,

Рефлексія є осмисленням відношення цих уявлень до наших різних джерел пізнання і тільки завдяки їй їх відношення один до одного може бути

Найбільша небезпека полягає у тому, що для осіб, які де-юре надали добровільну згоду, не створено окремих юридичних гарантій

ROSIK S., Finalizm życia chrześcijańskiego w swiede twórczości papieża Grzegorza Wielkiego, (KUL, Lubiin 1976).